1
|
Jiang XY, Li L, Yan JN, Wang C, Lai B, Wu HT. Binary hydrogels constructed from lotus rhizome starch and different types of carrageenan for dysphagia management: Nonlinear rheological behaviors and structural characteristics. Food Chem X 2024; 22:101466. [PMID: 38808164 PMCID: PMC11130679 DOI: 10.1016/j.fochx.2024.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
This study focused on binary hydrogels constructed from lotus rhizome starch (LRS) and three types of carrageenan (κ-C, ι-C, and λ-C). The enthalpy of LRS gelatinization was reduced by 32.1%-88.4% with the incorporation of carrageenan. Compared with ι-C and λ-C, the conformations of κ-C more facilitated the development of the binary hydrogel network structure. The ability of the LRS/carrageenan binary hydrogel to immobilize water was mainly related to the effect of different types of carrageenan on starch molecular ordering. LRS-based hydrogels were recognized as level 4 in the International Dysphagia Diet Standardization Initiative (IDDSI) framework. Nevertheless, the incorporation of carrageenan significantly reduced the ability of the LRS hydrogel to resist stress under large deformations, which might be favorable to oral processing and swallowing. This research provides preliminary evidence for relevant industries to use carrageenan to adjust LRS hydrogel properties and improve the quality of starch-based foods for dysphagia management.
Collapse
Affiliation(s)
- Xin-Yu Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lin Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jia-Nan Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ce Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bin Lai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hai-Tao Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
2
|
Kaku Y, Okada S, Fujisawa S, Saito T, Isobe N. Low solid content mouldable chitin physical hydrogel prepared by atypical rupture-free swelling. SOFT MATTER 2024; 20:1245-1252. [PMID: 38231553 DOI: 10.1039/d3sm01542d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In this study, the atypical swelling gelation of chitin physical hydrogels was investigated. Just by tuning the amount of the N-acetylation reagent, the degree of acetylation varied and mouldable chitin hydrogels with a wide variety of gel concentrations (0.2-6.4 wt%) were obtained. In response to the gel concentration, the mechanical properties ranged from swollen soft gels to shrunken rigid gels (compressive moduli of 4-310 kPa). The thus-prepared chitin hydrogels, which were composed of only chitin and water, exhibited high transparency and integrity. The swelling gelation of chitin physical hydrogels was achieved owing to both the positive charges of the amino groups inducing the osmotic pressure and the toughness of the crystalline nanofibrous network structure of the chitin hydrogels that endured the large volume change. These previously unnoticed advantageous aspects of chitin have pioneered a novel area of swellable physical gels that has been exclusive to chemical gels so far.
Collapse
Affiliation(s)
- Yuto Kaku
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Biogeochemistry Research Center, Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
| | - Satoshi Okada
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Shuji Fujisawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tsuguyuki Saito
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Noriyuki Isobe
- Biogeochemistry Research Center, Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Safarpour F, Kharaziha M, Mokhtari H, Emadi R, Bakhsheshi-Rad HR, Ramakrishna S. Kappa-carrageenan based hybrid hydrogel for soft tissue engineering applications. Biomed Mater 2023; 18:055005. [PMID: 37348489 DOI: 10.1088/1748-605x/ace0ec] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023]
Abstract
Biological materials such as cell-derived membrane vesicles have emerged as alternative sources for molecular delivery systems, owing to multicomponent features, the inherent functionalities and signaling networks, and easy-to-carry therapeutic agents with various properties. Herein, red blood cell membrane (RBCM) vesicle-laden methacrylate kappa-carrageenan (KaMA) composite hydrogel is introduced for soft tissue engineering. Results revealed that the characteristics of hybrid hydrogels were significantly modulated by changing the RBCM vesicle content. For instance, the incorporation of 20% (v/v) RBCM significantly enhanced compressive strength from 103 ± 26 kPa to 257 ± 18 kPa and improved toughness under the cyclic loading from 1.0 ± 0.4 kJ m-3to 4.0 ± 0.5 kJ m-3after the 5thcycle. RBCM vesicles were also used for the encapsulation of curcumin (CUR) as a hydrophobic drug molecule. Results showed a controlled release of CUR over three days of immersion in PBS solution. The RBCM vesicles laden KaMA hydrogels also supportedin vitrofibroblast cell growth and proliferation. In summary, this research sheds light on KaMA/RBCM hydrogels, that could reveal fine-tuned properties and hydrophobic drug release in a controlled manner.
Collapse
Affiliation(s)
- F Safarpour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - M Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - H Mokhtari
- Division of Polymer Chemistry, Department of Chemistry-Ångstrom Laboratory, Uppsala University, Uppsala 75121, Sweden
| | - R Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - H R Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Seeram Ramakrishna
- Nanoscience and Nanotechnology Initiative, National University of Singapore, 9 Engineering Drive 1, Singapore 1157, Singapore
| |
Collapse
|
4
|
Toader G, Podaru IA, Rusen E, Diacon A, Ginghina RE, Alexandru M, Zorila FL, Gavrila AM, Trica B, Rotariu T, Ionita M. Nafcillin-Loaded Photocrosslinkable Nanocomposite Hydrogels for Biomedical Applications. Pharmaceutics 2023; 15:1588. [PMID: 37376037 DOI: 10.3390/pharmaceutics15061588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Skin infections are frequently treated via intravenous or oral administration of antibiotics, which can lead to serious adverse effects and may sometimes contribute to the proliferation of resistant bacterial strains. Skin represents a convenient pathway for delivering therapeutic compounds, ensured by the high number of blood vessels and amount of lymphatic fluids in the cutaneous tissues, which are systematically connected to the rest of the body. This study provides a novel, straightforward method to obtain nafcillin-loaded photocrosslinkable nanocomposite hydrogels and demonstrates their performance as drug carriers and antimicrobial efficacy against Gram-positive bacteria. The novel formulations obtained, based on polyvinylpyrrolidone, tri(ethylene glycol) divinyl ether crosslinker, hydrophilic bentonite nanoclay, and/or two types of photoactive (TiO2 and ZnO) nanofillers, were characterized using various analytical methods (transmission electron microscopy (TEM), scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDX), mechanical tests (tension, compression, and shear), ultraviolet-visible spectroscopy (UV-Vis), swelling investigations, and via specific microbiological assays ("agar disc diffusion method" and "time-kill test"). The results reveal that the nanocomposite hydrogel possessed high mechanical resistance, good swelling abilities, and good antimicrobial activity, demonstrating a decrease in the bacteria growth between 3log10 and 2log10 after one hour of direct contact with S. aureus.
Collapse
Affiliation(s)
- Gabriela Toader
- Military Technical Academy, "Ferdinand I", 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania
| | - Ionela Alice Podaru
- Military Technical Academy, "Ferdinand I", 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Edina Rusen
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Aurel Diacon
- Military Technical Academy, "Ferdinand I", 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Raluca Elena Ginghina
- Research and Innovation Centre for CBRN Defense and Ecology, 225 Şos. Olteniţei, 041327 Bucharest, Romania
| | - Mioara Alexandru
- Microbiology Laboratory, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului St., 077125 Magurele, Romania
| | - Florina Lucica Zorila
- Microbiology Laboratory, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului St., 077125 Magurele, Romania
- Department of Genetics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Indepententei, 050095 Bucharest, Romania
| | - Ana Mihaela Gavrila
- National Institute of Research, Development for Chemistry and Petrochemistry, 202 Splaiul Independentei, 060041 Bucharest, Romania
| | - Bogdan Trica
- National Institute of Research, Development for Chemistry and Petrochemistry, 202 Splaiul Independentei, 060041 Bucharest, Romania
| | - Traian Rotariu
- Military Technical Academy, "Ferdinand I", 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania
| | - Mariana Ionita
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- eBio-Hub Research Centre, University Politehnica of Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania
| |
Collapse
|
5
|
Incorporation of κ-carrageenan improves the practical features of agar/konjac glucomannan/κ-carrageenan ternary system. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Mahdavinia GR, Hoseinzadeh H, Labib P, Jabbari P, Mohebbi A, Barzeger S, Jafari H. (Magnetic laponite/κ-carrageenan)@chitosan core–shell carrier for pH-sensitive release of doxorubicin. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Papagiannopoulos A, Nikolakis SP, Pamvouxoglou A, Koutsopoulou E. Physicochemical properties of electrostatically crosslinked carrageenan/chitosan hydrogels and carrageenan/chitosan/Laponite nanocomposite hydrogels. Int J Biol Macromol 2023; 225:565-573. [PMID: 36410537 DOI: 10.1016/j.ijbiomac.2022.11.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
In this work physical carrageenan/chitosan (Car/Chit) hydrogels are prepared by electrostatic complexation between the two oppositely charged polysaccharides. The hydrogels have storage moduli in the order of 5-10 kPa and swelling ratios in the order of 5000-6000 %. At conditions where both polysaccharides are highly charged (pH 5) the swelling ratios are lower than the ones at conditions of lower dissociation i.e., at pH 2 and 7 and the opposite trend is found for the storage modulus. Chit appears to act as a crosslinker for Car as increasing its concentration the swelling ratio decreases and the moduli increase. The hydrogels can incorporate the nanoclay Laponite (Lap) and form hybrid nanocomposites where the intercalation by the two biopolymers leads to exfoliation of the clay nanoplatelets in the presence of both Car and Chit. The composite hydrogels retain the mechanical properties of the Car/Chit hydrogels at the studied pH range (pH 2 to pH 7). This shows the prepared hydrogels can be potentially used as multifunctional biomaterials for drug delivery, tissue engineering and bone regeneration applications.
Collapse
Affiliation(s)
- Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Spiridon-Paraskevas Nikolakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Andreas Pamvouxoglou
- Experimental Soft Matter Group, Condensed Matter Physics Laboratory (IPKM), Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Eleni Koutsopoulou
- Technical University of Crete, Department of Mineral Resources Engineering, GR-73100 Chania, Greece; Hellenic Survey of Geology and Mineral Exploration (HSGME), 13677 Acharnes, Greece
| |
Collapse
|
8
|
Liu J, Zhang Z, Liu Z, Yu Y. Preparation of a nanocomposite hydrogel with high adhesion, toughness, and inherent antibacterial properties by a one-pot method. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Abasalta M, Zibaseresht R, Yousefi Zoshk M, Foroutan Koudehi M, Irani M, Hami Z. Simultaneous loading of clarithromycin and zinc oxide into the chitosan/gelatin/polyurethane core–shell nanofibers for wound dressing. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2120892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Mahdi Abasalta
- Biomaterials and Medicinal Chemistry Research Centre, Aja University of Medical Sciences, Tehran, Iran
| | - Ramin Zibaseresht
- Biomaterials and Medicinal Chemistry Research Centre, Aja University of Medical Sciences, Tehran, Iran
- Department of Chemistry and Physics, Faculty of Sciences, Maritime University of Imam Khomeini, Nowshahr, Iran
| | | | - Masoumeh Foroutan Koudehi
- Biomaterials and Medicinal Chemistry Research Centre, Aja University of Medical Sciences, Tehran, Iran
| | - Mohammad Irani
- Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Hami
- Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Amiri S, Nezamdoost-Sani N, Mostashari P, McClements DJ, Marszałek K, Mousavi Khaneghah A. Effect of the molecular structure and mechanical properties of plant-based hydrogels in food systems to deliver probiotics: an updated review. Crit Rev Food Sci Nutr 2022; 64:2130-2156. [PMID: 36121429 DOI: 10.1080/10408398.2022.2121260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Probiotic products' economic value and market popularity have grown over time as more people discover their health advantages and adopt healthier lifestyles. There is a significant societal and cultural interest in these products known as foods or medicines. Products containing probiotics that claim to provide health advantages must maintain a "minimum therapeutic" level (107-106 CFU/g) of bacteria during their entire shelf lives. Since probiotic bacteria are susceptible to degradation and reduction by physical and chemical conditions (including acidity, natural antimicrobial agents, nutrient contents, redox potential, temperature, water activity, the existence of other bacteria, and sensitivity to metabolites), the most challenging problem for a food manufacturer is ensuring probiotic cells' survival and stability enhancement throughout the manufacturing stage. Currently, the use of plant-based hydrogels for improved and targeted probiotic delivery has gained substantial attention as a potential approach to overcoming the mentioned restrictions. To achieve the best possible results from hydrogels, whether used as a coating for encapsulated probiotics (with the goal of stomach protection) or as carriers for direct encapsulation of live microorganisms should be applied kind of procedures that ensure high bacterial survival during hydrogels application. This paper summarizes polysaccharides, proteins, and lipid-based hydrogels as carriers of encapsulated probiotics in delivery systems, reviews their structures, analyzes their advantages and disadvantages, studies their mechanical characteristics, and draws comparisons between them. The discussion then turns to how the criterion affects encapsulation, applications, and future possibilities.
Collapse
Affiliation(s)
- Saber Amiri
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Narmin Nezamdoost-Sani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Parisa Mostashari
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Warsaw, Poland
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Warsaw, Poland
| |
Collapse
|
11
|
Mohammadzadeh Pakdel P, Peighambardoust SJ, Arsalani N, Aghdasinia H. Safranin-O cationic dye removal from wastewater using carboxymethyl cellulose-grafted-poly(acrylic acid-co-itaconic acid) nanocomposite hydrogel. ENVIRONMENTAL RESEARCH 2022; 212:113201. [PMID: 35413301 DOI: 10.1016/j.envres.2022.113201] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Copolymer of acrylic acid (AA) and itaconic acid (IA) grafted onto sodium carboxymethyl cellulose hydrogel (CMC-g-poly (AA-co-IA)) was successfully synthesized as an adsorbent to remove safranin-O from wastewater. The swelling and removal efficiencies of CMC-g-poly (AA-co-IA) were enhanced by increasing IA/AA molar ratio as well as by incorporation of montmorillonite clay nano-sheets (MMT). The surface area of MMT, CMC-g-poly (AA-co-IA), and CMC-g-poly (AA-co-IA) samples was 15.632, 0.61452, and 0.66584 m2/g, respectively, indicating the effectiveness of MMT nano-sheets in improving hydrogel surface area. The maximum removal efficiency of CMC-g-poly (AA-co-IA)/MMT under optimum conditions i.e., pH of 8, initial concentration of 10 mg/L, adsorbent dose of 2 g/L, and contact time of 40 min was ascertained 99.78% using a response surface methodology-central composite design (RSM-CCD). Pseudo-second-order and Langmuir models giving the maximum monolayer adsorption capacity of 18.5185 mg/g and 19.1205 mg/g for CMC-g-poly (AA-co-IA) and CMC-g-poly (AA-co-IA)/MMT samples, respectively are the best-fitted models for kinetic and equilibrium data. Thermodynamically, safranin-O decontamination was spontaneous, exothermic, and entropy decreasing. Moreover, ad (de)sorption behavior study showed that CMC-g-poly (AA-co-IA)/MMT performance was not changed after multiple recovery steps. Therefore, CMC-g-poly (AA-co-IA)/MMT was considered as a highly potential adsorbent for safranin-O removal from wastewater.
Collapse
Affiliation(s)
| | | | - Nasser Arsalani
- Research Laboratory of Polymer, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hassan Aghdasinia
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| |
Collapse
|
12
|
Baltuonytė G, Eisinaitė V, Kazernavičiūtė R, Vinauskienė R, Jasutienė I, Leskauskaitė D. Novel Formulation of Bigel-Based Vegetable Oil Spreads Enriched with Lingonberry Pomace. Foods 2022; 11:foods11152213. [PMID: 35892797 PMCID: PMC9330628 DOI: 10.3390/foods11152213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023] Open
Abstract
In this study, bigel-based vegetable oil spreads with lingonberry pomace addition were prepared. The impact of gelatin, agar and collagen was examined as structuring agents as was the effect of lecithin concentration (0.5, 1.0, 1.5%). Prepared systems were evaluated by physical and chemical stability and structural and rheological properties. It was found that all bigel formulations were self-standing with no signs of phase separation at ambient temperature immediately after preparation and after two weeks of storage at 4 °C temperature. The lingonberry pomace addition affected grainy structure formation with homogenous and uniform distribution of fiber particles throughout the bigel matrix and it also altered the colour of the bigels toward a purple-red. Texture, rheological properties and colour of the spread formulations were affected by the type of the structuring agent as well as the lecithin concentration. The presence of the lingonberry pomace enhanced the resistance of the bigel samples to the oxidation process and it was confirmed by the DPPH• inhibition, peroxide value and oxipress test. Overall, the formulated bigel-based spreads could be beneficial and had a potential application as healthier fat spreads and be a source of dietary fibers (11 g of fibre per 100 g of the spread).
Collapse
|
13
|
Akulo KA, Adali T, Moyo MTG, Bodamyali T. Intravitreal Injectable Hydrogels for Sustained Drug Delivery in Glaucoma Treatment and Therapy. Polymers (Basel) 2022; 14:polym14122359. [PMID: 35745935 PMCID: PMC9230531 DOI: 10.3390/polym14122359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is extensively treated with topical eye drops containing drugs. However, the retention time of the loaded drugs and the in vivo bioavailability of the drugs are highly influenced before reaching the targeted area sufficiently, due to physiological and anatomical barriers of the eye, such as rapid nasolacrimal drainage. Poor intraocular penetration and frequent administration may also cause ocular cytotoxicity. A novel approach to overcome these drawbacks is the use of injectable hydrogels administered intravitreously for sustained drug delivery to the target site. These injectable hydrogels are used as nanocarriers to intimately interact with specific diseased ocular tissues to increase the therapeutic efficacy and drug bioavailability of the anti-glaucomic drugs. The human eye is very delicate, and is sensitive to contact with any foreign body material. However, natural biopolymers are non-reactive, biocompatible, biodegradable, and lack immunogenic and inflammatory responses to the host whenever they are incorporated in drug delivery systems. These favorable biomaterial properties have made them widely applicable in biomedical applications, with minimal adversity. This review highlights the importance of using natural biopolymer-based intravitreal hydrogel drug delivery systems for glaucoma treatment over conventional methods.
Collapse
Affiliation(s)
- Kassahun Alula Akulo
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Mersin 10, Lefkoşa 99138, Turkey; (K.A.A.); (M.T.G.M.)
- Tissue Engineering and Biomaterials Research Center, Near East University, Mersin 10, Lefkoşa 99138, Turkey
| | - Terin Adali
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Mersin 10, Lefkoşa 99138, Turkey; (K.A.A.); (M.T.G.M.)
- Tissue Engineering and Biomaterials Research Center, Near East University, Mersin 10, Lefkoşa 99138, Turkey
- Nanotechnology Research Center, Sabanci University SUNUM, Istanbul 34956, Turkey
- Correspondence:
| | - Mthabisi Talent George Moyo
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Mersin 10, Lefkoşa 99138, Turkey; (K.A.A.); (M.T.G.M.)
- Tissue Engineering and Biomaterials Research Center, Near East University, Mersin 10, Lefkoşa 99138, Turkey
| | - Tulin Bodamyali
- Department of Pathology, Faculty of Medicine, Girne American University, Mersin 10, Girne 99428, Turkey;
| |
Collapse
|
14
|
Çakmak E, Koc-Bilican B, Avila-Poveda OH, Karaduman T, Cansaran-Duman D, Williams ST, Kaya M. Discovery of protein-based natural hydrogel from the girdle of the 'sea cockroach' Chiton articulatus (Chitonida: Chitonidae). PeerJ 2022; 10:e13386. [PMID: 35573172 PMCID: PMC9097651 DOI: 10.7717/peerj.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/15/2022] [Indexed: 01/14/2023] Open
Abstract
Hydrogels are widely used materials in biomedical, pharmaceutical, cosmetic, and agricultural fields. However, these hydrogels are usually formed synthetically via a long and complicated process involving crosslinking natural polymers. Herein, we describe a natural hydrogel isolated using a 'gentle' acid treatment from the girdle of a chiton species (Chiton articulatus). This novel hydrogel is shown to have a proliferative effect on mouse fibroblast cells (cell line, L929). The swelling capacity of this natural hydrogel was recorded as approximately 1,200% in distilled water, which is within desired levels for hydrogels. Detailed characterizations reveal that the hydrogel consists predominantly (83.93%) of protein. Considering its non-toxicity, proliferative effect and swelling properties, this natural hydrogel is an important discovery for material sciences, with potential for further applications in industry. Whether the girdle has some hydrogel activity in the living animal is unknown, but we speculate that it may enable the animal to better survive extreme environmental conditions by preventing desiccation.
Collapse
Affiliation(s)
- Emel Çakmak
- Vegetable and Animal Production, Güzelyurt Vocational School, Aksaray University, Aksaray, Turkey,Science and Technology Application and Research Center, ASUBTAM - Aksaray University, Aksaray, Turkey
| | - Behlül Koc-Bilican
- Science and Technology Application and Research Center, ASUBTAM - Aksaray University, Aksaray, Turkey,Molecular Biology and Genetics, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey
| | - Omar Hernando Avila-Poveda
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Mazatlán, Sinaloa, México,Programa Investigadoras e Investigadores por Mexico, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México,Proyecto Quitón del Pacífico Tropical Mexicano, Mazatlán, Sinaloa, México
| | - Tuğçe Karaduman
- Science and Technology Application and Research Center, ASUBTAM - Aksaray University, Aksaray, Turkey,Molecular Biology and Genetics, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey
| | | | - Suzanne T. Williams
- Department of Life Sciences, Natural History Museum, London, Cromwell Road, United Kingdom
| | - Murat Kaya
- Science and Technology Application and Research Center, ASUBTAM - Aksaray University, Aksaray, Turkey,Molecular Biology and Genetics, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey
| |
Collapse
|
15
|
Lin J, Jiao G, Kermanshahi-pour A. Algal Polysaccharides-Based Hydrogels: Extraction, Synthesis, Characterization, and Applications. Mar Drugs 2022; 20:306. [PMID: 35621958 PMCID: PMC9146341 DOI: 10.3390/md20050306] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrogels are three-dimensional crosslinked hydrophilic polymer networks with great potential in drug delivery, tissue engineering, wound dressing, agrochemicals application, food packaging, and cosmetics. However, conventional synthetic polymer hydrogels may be hazardous and have poor biocompatibility and biodegradability. Algal polysaccharides are abundant natural products with biocompatible and biodegradable properties. Polysaccharides and their derivatives also possess unique features such as physicochemical properties, hydrophilicity, mechanical strength, and tunable functionality. As such, algal polysaccharides have been widely exploited as building blocks in the fabrication of polysaccharide-based hydrogels through physical and/or chemical crosslinking. In this review, we discuss the extraction and characterization of polysaccharides derived from algae. This review focuses on recent advances in synthesis and applications of algal polysaccharides-based hydrogels. Additionally, we discuss the techno-economic analyses of chitosan and acrylic acid-based hydrogels, drawing attention to the importance of such analyses for hydrogels. Finally, the future prospects of algal polysaccharides-based hydrogels are outlined.
Collapse
Affiliation(s)
- Jianan Lin
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., Halifax, NS B3J 1Z1, Canada;
| | - Guangling Jiao
- AKSO Marine Biotech Inc., Suite 3, 1697 Brunswick St., Halifax, NS B3J 2G3, Canada;
| | - Azadeh Kermanshahi-pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., Halifax, NS B3J 1Z1, Canada;
| |
Collapse
|
16
|
Active Composite Packaging Reinforced with Nisin-Loaded Nano-Vesicles for Extended Shelf Life of Chicken Breast Filets and Cheese Slices. FOOD BIOPROCESS TECH 2022; 15:1284-1298. [PMID: 35495090 PMCID: PMC9033524 DOI: 10.1007/s11947-022-02815-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/14/2022] [Indexed: 01/23/2023]
Abstract
To meet the demands for more effective and ecofriendly food packaging strategies, the potential of nisin-loaded rhamnolipid functionalized nanofillers (rhamnosomes) has been explored after embedding in hydroxypropyl-methylcellulose (HPMC) and κ-carrageenan (κ-CR)-based packaging films. It was observed that intrinsically active rhamnosomes based nanofillers greatly improved the mechanical and optical properties of nano-active packaging (NAP) films. Incorporation of rhamnosomes resulted in higher tensile strength (5.16 ± 0.06 MPa), Young’s modulus (2777 ± 0.77 MPa), and elongation (2.58 ± 0.03%) for NAP than active packaging containing free nisin (2.96 ± 0.03 MPa, 1107 ± 0.67 MPa, 1.48 ± 0.06%, respectively). NAP demonstrated a homogenous distribution of nanofillers in the biopolymer matrix as elucidated by scanning electron microscopy (SEM). Thermogravimetric analysis (TGA) confirmed that NAP prepared with nisin-loaded rhamnosomes was thermally stable even above 200 °C. Differential scanning calorimetry (DSC) analyses revealed that addition of nisin in nanofillers resulted in a slight increase in Tg (108.40 °C), indicating thermal stability of NAP. Fourier transform infrared spectroscopy (FTIR) revealed slight shift in all characteristic bands of nano-active packaging, which indicated the embedding of rhamnosomes inside the polymer network without any chemical interaction. Finally, when tested on chicken breast filets and cheese slices under refrigerated storage conditions, NAP demonstrated broad-spectrum antimicrobial activity (up to 4.5 log unit reduction) and inhibited the growth of Listeria monocytogenes, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. These results suggest that HPMC and κ-CR-based NAP containing functionalized nanofillers can serve as an innovative packaging material for the food industry to improve the safety, quality, and shelf-life of dairy and meat products.
Collapse
|
17
|
Mudhulkar R, Damarla K, Pappula VN. Preparation and characterization of carrageenan-embedded lanthanum iron oxide nanocomposite for efficient removal of arsenite ions from water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:449-459. [PMID: 35022637 DOI: 10.1039/d1ay01772a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Arsenic (As) contamination in drinking water has grown into a global concern in recent years, which demands the development of various As remediation approaches. In this study, a new magnetic nanocomposite, carrageenan-embedded LaFeO3 nanoparticles (abbreviated as CA-LaFeNPs) was synthesized by a sol-gel process and used to remove arsenite [As(III)] from water. The synthesized magnetic adsorbent was characterized by powder XRD, SEM, FTIR, VSM, and TGA. The adsorbent gel, CA-LaFeNP was mainly with LaFeO3 in nanoscale particles with a saturation magnetization of 13.33 emu g-1 and could be easily separated from water with a simple hand-held magnet in 2 minutes. The adsorption outcomes of the CA-LaFeNPs could be finely interpreted by Langmuir, Freundlich, and Tempkin isotherm models. The Langmuir isotherm model appears to have good regression coefficients, and maximum adsorption capacity was estimated to be 91 mg g-1 for CA-LaFeNPs at 27 °C and pH 7. The removal efficiency observed for CA-FeNPs was 91% up to the As(III) concentration of 700 mg L-1, while it decreased to 85% when the As(III) concentration was above 1200 mg L-1. This low-cost and environmentally-friendly magnetic nanocomposite, CA-LaFeNPs could be more appropriate for real-world applications and also a substitute for the traditional magnetic nanoparticles.
Collapse
Affiliation(s)
- Raju Mudhulkar
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, Telangana, India,.
| | | | | |
Collapse
|
18
|
Wang N, Tian J, Wang L, Song S, Ai C, Janaswamy S, Wen C. Fucoidan hydrogels induced by κ-carrageenan: Rheological, thermal and structural characterization. Int J Biol Macromol 2021; 191:514-520. [PMID: 34563575 DOI: 10.1016/j.ijbiomac.2021.09.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 01/13/2023]
Abstract
Fucoidan (FUC) is a non-gelling polysaccharide but could interact with κ-carrageenan (KC) to form a stable gel blend. However, their interaction mechanism is unclear. Herein, FUC and KC blended gels are prepared by mixing FUC (10 and 20 mg/mL) and KC (6, 7 and 8 mg/mL) solutions, and characterized through LF-NMR, rheology, DSC, Cryo-SEM, and FTIR. The FTIR analysis confirms the formation of hydrogen bonds between FUC and KC chains. The KC addition to FUC significantly improves the water retention and frost resistance. The viscoelastic measurements reveal higher gelling nature of the FUC-KC binary mixtures, and the DSC results confirm the higher thermal stability. The Cryo-SEM images clearly reveal the gel network structure. The outcome of this study deemed to further the FUC use in food and non-food applications.
Collapse
Affiliation(s)
- Nan Wang
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Tian
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Linlin Wang
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Song
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chunqing Ai
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Srinivas Janaswamy
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA.
| | - Chengrong Wen
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
19
|
Facile asymmetric modification of graphene nanosheets using κ-carrageenan as a green template. J Colloid Interface Sci 2021; 607:1131-1141. [PMID: 34571300 DOI: 10.1016/j.jcis.2021.09.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
The synthesis of Janus nanosheets using κ-carrageenan (κ-Ca) as a green template endows a greener and more straightforward method compared to traditional approaches of using wax template. We hypothesize that the hydrogen bonding interaction between κ-Ca and graphene oxide (GO) allows partial masking of GO's single facet, paving the way for the asymmetric modification of the exposed surface. GO is first encapsulated within the porous hydrogel matrix formed by κ-Ca to isolate one of the facets. The exposed surface was then selectively hydrophobized to produce an amphiphilic asymmetrically modified graphene oxide (AMGO). The properties of AMGO synthesized under different κ-Ca/GO ratios were studied. The κ-Ca/GO interactions and the properties of GO and AMGO were investigated and characterized. AMGO was successfully produced with a yield of 90.37 % under optimized synthesis conditions. The separation of κ-Ca and AMGO was conducted without organic solvents, and the κ-Ca could be subsequently recovered. Furthermore, the porous hydrogel matrix formed by κ-Ca and GO exhibited excellent shape-retaining properties with high thermal tolerance of up to 50 °C. Given these benefits, this newly developed method endows sustainability and open the possibility of formulating more flexible material synthesis protocols.
Collapse
|
20
|
Marciano JS, Ferreira RR, de Souza AG, Barbosa RFS, de Moura Junior AJ, Rosa DS. Biodegradable gelatin composite hydrogels filled with cellulose for chromium (VI) adsorption from contaminated water. Int J Biol Macromol 2021; 181:112-124. [PMID: 33771541 DOI: 10.1016/j.ijbiomac.2021.03.117] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022]
Abstract
Biopolymers are promising materials for water treatment applications due to their abundance, low cost, expandability, and chemical structure. In this work, gelatin hydrogels filled with cellulose in the form of pristine eucalyptus residues (PER) or treated eucalyptus residues (TER) were prepared for adsorption and chromium removal in contaminated water. PER is a lignocellulosic compound, with cellulose, hemicellulose, and lignin, while TER has cellulose as a major component. FT-Raman Spectroscopy and FTIR analysis confirmed the crosslink reaction with glutaraldehyde and indicated that fillers altered the gelatin molecular vibrations and formed new hydrogen bonds, impacting the hydrogels' crystalline structure. The hydrogen bond energy was altered by the cellulosic fillers' addition and resulted in higher thermal stability (~10 °C). Hydrogels presented a Fickian diffusion, where gelatin hydrogel showed the highest swelling ability (466%), and composites showed lower values with the filler content increase. The chromium adsorption capacity presented values between 12 and 13 mg/g, i.e., featuring an excellent removal capacity which is related with hydrogel crosslinked structure and fibers surface hydroxyl groups, highlighting gelatin hydrogel TER 5% with better removal capacity. The developed hydrogels were produced from biomacromolecules with low-cost and potential application in contaminated water.
Collapse
Affiliation(s)
- Jéssica S Marciano
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Rafaela R Ferreira
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Alana G de Souza
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Rennan F S Barbosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | | | - Derval S Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil.
| |
Collapse
|
21
|
Essekri A, Aarab N, Hsini A, Ajmal Z, Laabd M, El Ouardi M, Ait Addi A, Lakhmiri R, Albourine A. Enhanced adsorptive removal of crystal violet dye from aqueous media using citric acid modified red-seaweed: experimental study combined with RSM process optimization. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1857263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Abdelilah Essekri
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Nouh Aarab
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Abdelghani Hsini
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Zeeshan Ajmal
- College of Engineering, China Agricultural University, Beijing, PR China
| | - Mohamed Laabd
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mahmoud El Ouardi
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- Faculty of Applied Sciences, Ibn Zohr University, Ait Melloul, Morocco
| | - Abdelaziz Ait Addi
- Physical Chemistry and Environment Team, Faculty of Science, Ibn Zohr University, Agadir, Morocco
| | - Rajae Lakhmiri
- Laboratory of Materials and Resources Valorization, Faculty of Sciences and Techniques, Abdelmalek Essaadi University, Tangier, Morocco
| | - Abdallah Albourine
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
22
|
Agar/κ-carrageenan/montmorillonite nanocomposite hydrogels for wound dressing applications. Int J Biol Macromol 2020; 164:4591-4602. [DOI: 10.1016/j.ijbiomac.2020.09.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022]
|
23
|
Zheng X, Xu M, Yang S, Omonov S, Huang S, Zhao J, Ruan H, Zeng M. Novel bio-inspired three-dimensional nanocomposites based on montmorillonite and chitosan. Int J Biol Macromol 2020; 165:2702-2710. [PMID: 33086110 DOI: 10.1016/j.ijbiomac.2020.10.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 11/28/2022]
Abstract
In this study, inspired by nacre-like structural natural shells, novel three-dimensional (3D) nanocomposites based on natural nanoplatelets of montmorillonite (MMT) and polysaccharide of chitosan (CS) were prepared with solution intercalation and self-assembly process. The CS-intercalated-MMT nanoplatelets units acted as "bricks" and CS molecules acted as "mortar", arranging in fairly well-ordered layered structure. With addition of glutaraldehyde (GA) and Pd2+ cations, synergistic toughening and strengthening effects of covalent and ionic bonds could be achieved. The best mechanical properties of the prepared 3D nanocomposites were observed as 5.6 KJ/m2 (impact strength), 3.3 GPa (flexural modulus), and 65.8 MPa (flexural strength), respectively, which showed higher toughness but lower flexural properties than natural pearl mussel shells. Nevertheless, both the impact and flexural properties of the prepared 3D nanocomposite were much higher than the other natural shell, i.e. green grab shell. Besides conventional methods characterizations, the nacre-like structure of the artificial 3D nanocomposite was further evidenced with positron annihilation lifetime spectroscopy characterizations. This work might facilitate a versatile platform for developing green 3D bionanocomposites with fairly good mechanical properties.
Collapse
Affiliation(s)
- Xiu Zheng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Mengdie Xu
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Shuai Yang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Shakhzodjon Omonov
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Shuaijian Huang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Jing Zhao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Huajun Ruan
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China; Zhejiang Fenix Health Technology Co., Ltd., Zhuji 311804, China
| | - Minfeng Zeng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| |
Collapse
|
24
|
Ilsouk M, Raihane M, Rhouta B, Meri RM, Zicans J, Vecstaudža J, Lahcini M. The relationship of structure, thermal and water vapor permeability barrier properties of poly(butylene succinate)/organomodified beidellite clay bionanocomposites prepared by in situ polycondensation. RSC Adv 2020; 10:37314-37326. [PMID: 35521238 PMCID: PMC9057159 DOI: 10.1039/d0ra07521c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/05/2020] [Indexed: 01/13/2023] Open
Abstract
The exploitation of beidellite clay (BDT), used as a nanofiller in the preparation of poly(butylene succinate) (PBS)/organoclay biodegradable nanocomposites, was investigated. A series of bionanocomposites with various loadings of the organoclay (3CTA-BDT) were prepared by in situ polycondensation reaction between succinic anhydride (SuAh) and 1,4-butanediol (1,4-BD) at atmospheric pressure in refluxing decalin with azeotropic removal of water, and the reaction was catalyzed by non-toxic bismuth chloride (BiCl3). X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that 3CTA-BDT was likely exfoliated and well dispersed in PBS matrix. Thermal properties (TGA, DSC and thermal conductivity), contact angle measurements and water vapor sorption behavior of the corresponding nanocomposites were also discussed. Compared to pure PBS, a significant reduction of the diffusion coefficient and the water vapor permeability (WVP) by 44 and 37%, respectively, was observed by adding only 5 wt% of 3CTA-BDT. These results could make these bionanocomposites suitable materials for food packaging application.
Collapse
Affiliation(s)
- Mohamed Ilsouk
- IMED-Lab, Faculty of Sciences and Techniques, Cadi-Ayyad University Av. Abdelkrim Khattabi, BP 549 40000 Marrakech Morocco
- Mohammed VI Polytechnic University Lot 660, Hay Moulay Rachid 43150 Ben Guerir Morocco
| | - Mustapha Raihane
- IMED-Lab, Faculty of Sciences and Techniques, Cadi-Ayyad University Av. Abdelkrim Khattabi, BP 549 40000 Marrakech Morocco
| | - Benaissa Rhouta
- IMED-Lab, Faculty of Sciences and Techniques, Cadi-Ayyad University Av. Abdelkrim Khattabi, BP 549 40000 Marrakech Morocco
| | - Remo Merijs Meri
- Institute of Polymer Materials, Riga Technical University Paula Valdena St 3/7 Riga LV-1048 Latvia
| | - Janis Zicans
- Institute of Polymer Materials, Riga Technical University Paula Valdena St 3/7 Riga LV-1048 Latvia
| | - Jana Vecstaudža
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University Pulka 3 Riga LV-1007 Latvia
| | - Mohammed Lahcini
- IMED-Lab, Faculty of Sciences and Techniques, Cadi-Ayyad University Av. Abdelkrim Khattabi, BP 549 40000 Marrakech Morocco
- Mohammed VI Polytechnic University Lot 660, Hay Moulay Rachid 43150 Ben Guerir Morocco
| |
Collapse
|