1
|
Afarinandeh A, Heidari K, Barczak M, Abdellattif MH, Izadi Yazdanaabadi Z, Mohammadi AA, Haghighat GA, Shams M. Controlled removal of fluoride by ZIF-8, ZIF-67, and Ni-MOF of different morphologies. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
2
|
Khan Z, Ali F, Said A, Arif U, Khan K, Ali N, Shabir G, Iqbal HMN, Bilal M. Polyethylene glycol capped copper ferrite porous nanostructured materials for efficient photocatalytic degradation of bromophenol blue. ENVIRONMENTAL RESEARCH 2022; 215:114148. [PMID: 35995231 DOI: 10.1016/j.envres.2022.114148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/25/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Three different types (blank, annealed, and functionalized) of copper ferrite nanoparticles (CuFe2O4) were synthesized by the co-precipitation method. The CuFe2O4 NPs were characterized by Fourier transform infrared (FTIR), Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Energy-dispersive X-ray spectroscopy (EDX) techniques. FTIR analysis confirmed that 3-APTES is successfully grafted on the surface of CuFe2O4 NPs. XRD results show the amorphous nature of blank CuFe2O4 NPs, and crystalline structure was observed for annealed and functionalized CuFe2O4 NPs. XRD results revealed that crystallite size ranges from 23.6 to 34.6 nm. SEM micrographs of blank CuFe2O4 NPs show the irregular shape and size of the nanostructure. The spherical and strongly linked structure was seen in the micrograph of functionalized CuFe2O4 NPs. EDX analysis revealed the nanostructure composed of Fe, Cu, O, and a small percentage of Si. The photocatalytic degradation efficiency of synthesized CuFe2O4 NPs was examined under UV irradiation in an aqueous medium against bromophenol blue (BPB) dye. The effect of different parameters such as irradiation time and pH on the photodegradation of BPB dye was studied by all three types of CuFe2O4 photocatalyst. Results show that the maximum photocatalytic degradation efficiency was observed for functionalized CuFe2O4 nanoparticles that degraded 98% of BPB dye in the acidic medium at pH = 1. The optimum contact time for dye degradation was 120 min by synthesized photocatalyst. Photodegradation performance of blank and annealed CuFe2O4 NPs is less than 90%. The synthesized CuFe2O4 NPs were recycled and reused, which shows good photocatalytic degradation efficiency up to 4 consecutive cycles. The kinetic model displayed that degradation reaction followed pseudo 1st order kinetics. The blank, annealed, and functionalized CuFe2O4 NPs have turnover numbers of 10.7x10 (Mudhoo et al., 2019), 12.9x10 (Mudhoo et al., 2019), and 22.2x10 (Mudhoo et al., 2019) (kg-1 sec-1) accordingly. In conclusion, all results revealed the high efficiency of prepared photocatalyst for tested hazardous dye from wastewater and encouraged more work on photodegradation of organic pollutants from wastewater.
Collapse
Affiliation(s)
- Zubaria Khan
- Department of Chemistry, Hazara University, Mansehra KPK, 21300, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, Mansehra KPK, 21300, Pakistan.
| | - Amir Said
- Department of Chemistry, Hazara University, Mansehra KPK, 21300, Pakistan
| | - Umar Arif
- Department of Chemistry, Hazara University, Mansehra KPK, 21300, Pakistan
| | - Komal Khan
- Department of Chemistry, Hazara University, Mansehra KPK, 21300, Pakistan
| | - Nisar Ali
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Ghulam Shabir
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland.
| |
Collapse
|
3
|
Zubair M, Aziz HA, Ihsanullah I, Ahmad MA, Al-Harthi MA. Engineered biochar supported layered double hydroxide-cellulose nanocrystals composite-: Synthesis, characterization and azo dye removal performance. CHEMOSPHERE 2022; 307:136054. [PMID: 36007742 DOI: 10.1016/j.chemosphere.2022.136054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/18/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
In this work, engineered biochar decorated layered double hydroxides and cellulose nanocrystals (B-CuFe-CNC) biocomposites were synthesized by the facile ultrasonicated-co-precipitation technique. The biocomposite was investigated for purification of Eriochrome Black T (EBT) dye from water. The characterization results showed that the presence of CNC in biochar-layered double hydroxides resulted in a two-dimensional rod-like structure with excellent crystallinity, improved surface functionalities, and provides an attractive platform for the enhanced adsorption of azo anionic dye molecules. The adsorption system was appropriately demonstrated by the BBD-RSM (R2 > 0.994). The biocomposite exhibited higher EBT adsorption in the acidic pH range (2-5) due to strong electrostatic and chemical interactions. The kinetic and isotherm results were well demonstrated by pseudo-second order, Freundlich, and Redlich Peterson models. The maximum adsorption capacity of biocomposite was 876.2 mg/g achieved within 45 min. The spectroscopic analyses imply that the high removal of EBT by biocomposite is mainly governed by electrostatic attraction, hydrogen bonding, and chemical/metal complexation mechanisms. The biocomposite maintained high EBT removal after six successive adsorption cycles and excellent dye adsorption in the different water matrices. The results suggest that tailoring biochar properties with layered double hydroxide and CNC is a promising way for the enhanced removal of dye contaminants from wastewater.
Collapse
Affiliation(s)
- Mukarram Zubair
- Department of Environmental Engineering, Imam Abdulrahman Bin Faisal University, Dammam, 31982, Saudi Arabia.
| | - Hamidi Abdul Aziz
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia; Solid Waste Management Cluster, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Mohd Azmier Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Mamdouh A Al-Harthi
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| |
Collapse
|
4
|
Mohammadi AA, Moghanlo S, Kazemi MS, Nazari S, Ghadiri SK, Saleh HN, Sillanpää M. Comparative removal of hazardous cationic dyes by MOF-5 and modified graphene oxide. Sci Rep 2022; 12:15314. [PMID: 36097048 PMCID: PMC9468029 DOI: 10.1038/s41598-022-19550-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/31/2022] [Indexed: 12/07/2022] Open
Abstract
Among cationic dyes, malachite green (MG) is commonly used for dying purposes and also as an inhibitor in aquaculture, food, health, and chemical industries due to its cytotoxic effects. Therefore, MG removal is essential to keep the ecosystem and human health safety. Adsorption is a viable and versatile option and exploring efficient adsorbents have high priority. Herein, MOF-5 and aminated corn Stover reduced graphene oxide (ACS-RGO) of typical adsorbents of metal-organic-frameworks (MOFs) and carbon-based classes were studied for MG removal. MOF-5 and ACS-RGO had a specific surface area and total pore volume of 507.4 and 389.0 m2/g, and 0.271 cm3/g and 0.273 cm3/g, respectively. ACS-RGO was superior for MG adsorption and the kinetic rate coefficient for ACS-RGO was ~ 7.2 times compared to MOF-5. For ACS-RGO, MG removal remained high (> 94%) in a wide range of pH. However, dye removal was pH-dependent for MOF-5 and increased from ~ 32% to ~ 67% by increasing pH from 4 to 12. Increasing dye concentration from 25 mg/L to 100 mg/L decreased adsorption by MOF-5 and ACS-RGO for ~ 30% and 7%, respectively. Dye removal was evident in a few tens of seconds after adding ACS-RGO at doses above 0.5 g/L. A significant loss of 46% in adsorption was observed by decreasing MOF-5 mass from 1 to 0.1 g/L. ACS-RGO removed MG in multilayer with an exceptional adsorption capacity of 1088.27 mg/g. In conclusion, ACS-RGO, and MOF-5 showed promising kinetic rates and adsorption capacities toward MG.
Collapse
Affiliation(s)
- Ali Akbar Mohammadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Soheila Moghanlo
- Department of Environmental Health Engineering, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Malihe Samadi Kazemi
- Department of Chemistry, Faculty of Sciences, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Shahram Nazari
- Department of Environmental Health Engineering, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Najafi Saleh
- Department of Environmental Health Engineering, Khalkhal University of Medical Sciences, Khalkhal, Iran.
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, Himachal Pradesh, 173212, India
| |
Collapse
|
5
|
Mohammadkhani R, Ramezanzadeh M, Fedel M, Ramezanzadeh B, Mahdavian M. PO 43–-Loaded ZIF-8-type Metal–Organic Framework-Decorated Multiwalled Carbon Nanotube Synthesis and Application in Silane Coatings for Achieving a Smart Corrosion Protection Performance. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rahman Mohammadkhani
- Chemical and Petroleum Engineering Department, Sharif University of Technology, P.O. Box 11155-9465, Tehran 14588-89694, Iran
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran 1665618481, Iran
| | - Mohammad Ramezanzadeh
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran 1665618481, Iran
| | - Michele Fedel
- Department of Industrial Engineering, University of Trento, via Sommarive n. 9, Trento 38123, Italy
| | - Bahram Ramezanzadeh
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran 1665618481, Iran
| | - Mohammad Mahdavian
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran 1665618481, Iran
| |
Collapse
|
6
|
Zubair M, Aziz HA, Ihsanullah I, Ahmad MA, Al-Harthi MA. Enhanced removal of Eriochrome Black T from water using biochar/layered double hydroxide/chitosan hybrid composite: Performance evaluation and optimization using BBD-RSM approach. ENVIRONMENTAL RESEARCH 2022; 209:112861. [PMID: 35143802 DOI: 10.1016/j.envres.2022.112861] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
In this research work, a novel hybrid composite consisting of biochar (B), layered double hydroxide (CuFe) and chitosan (CS) (B-CuFe-CS) was produced using an ultrasonication-assisted co-precipitation method. The resultant composite was employed for adsorptive removal of Eriochrome black T (EBT) from water. Physicochemical characterization indicated that the B-CuFe-CS containing 10 wt % CS exhibited a heterogeneous structure with better crystallographic and textural characteristics. The B-CuFe-CS with abundant surface functionalities (-CO, -C-O, -OH, -NO3, and MMO), facilitates faster and enhanced removal of the EBT. The kinetic results showed better fitting to the pseudo-second order model, and equilibrium was achieved within 30 min. Equilibrium data was well explained by Langmuir and Redlich Peterson isotherm models (R2 > 0.98), indicating the EBT removal onto B-CuFe-CS followed monolayer adsorption. The maximum adsorption capacity was 806.4 mg/g, which was higher than pristine B-CuFe (476.19 mg/g) and many other adsorbents. The spectroscopic analysis (FTIR and XPS) and experimental results suggested that EBT adsorption is mainly governed by electrostatic, chemical and anion-exchange interactions. It is evident from these results that coupling B-CuFe composite with bio-filler (chitosan) resulted in an efficient bio-adsorbent to effectively purify dye-contaminated water streams.
Collapse
Affiliation(s)
- Mukarram Zubair
- Department of Environmental Engineering, Imam Abdulrahman bin Faisal University, Dammam, 31982, Saudi Arabia.
| | - Hamidi Abdul Aziz
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia; Solid Waste Management Cluster, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Ihsanullah Ihsanullah
- Center for Environment & Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Mohd Azmier Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Mamdouh A Al-Harthi
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia; Center of Research Excellences in Nanotechnology, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
| |
Collapse
|
7
|
Chen D, Xie Z, Ye H, Li W, Shi W, Liu Y. Upcycling of expanded polystyrene waste: Amination as adsorbent to recover Eriochrome Black T and Congo red. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Ti(IV)-Exchanged Nano-ZIF-8 and Nano-ZIF-67 for Enhanced Photocatalytic Oxidation of Hydroquinone. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Computational investigation on interaction mechanism of sulfur mustard adsorption by zeolitic imidazolate frameworks ZIF-8 and ZIF-67: Insights from periodic and cluster DFT calculations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Manfrin J, Gonçalves Junior AC, Schwantes D, Zimmermann J, Conradi Junior E. Effective Cd 2+ removal from water using novel micro-mesoporous activated carbons obtained from tobacco: CCD approach, optimization, kinetic, and isotherm studies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1851-1874. [PMID: 34900312 PMCID: PMC8617146 DOI: 10.1007/s40201-021-00740-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/11/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE This research aimed to develop activated carbons from tobacco by double (thermal-physical) and triple activations (thermal-chemical-physical) for high-efficiency removal of Cd2+. METHODS The adsorbents were characterized by their chemical composition, point of zero charge (pHPZC), SEM, FT-IR, BET, and BJH. The subsequent adsorption studies were conducted: optimal conditions (CCD on adsorbent dose versus pH of Cd2+ solution), kinetics, equilibrium, thermodynamics, and desorption studies. RESULTS The activated carbons have irregular and heterogeneous morphology, surface functional groups COO-, C-O, C-O-C, C=O and O-H, pHPZC of 11.11 and 10.86, and enhanced SSA (especially for CT NaOH + CO2 = 103.40 g m-2). The optimal conditions for Cd2+ adsorption occur using 4.0 g L-1, pH from 3.0 to 7.0, with most of the Cd2+ adsorbed in the first 10-20 min. The goodness of the fit found for pseudo-first order, pseudo-second order, intraparticle diffusion, Langmuir, Freundlich, Dubinin-Radushkevich, Sips, and Temkin suggest the occurrence of Cd2+ chemisorption and physisorption in mono and multilayers. The values of ∆G° < 0 kJ mol-1 indicate that the observed phenomena are energetically favorable and spontaneous; the values of ∆H° < 0 and the effective desorption rates (58.52% and 44.64%) suggest that the adsorption of Cd2+ is ruled mainly (but not only) by physical interactions. CONCLUSION Our excellent results on Cd2+ removal allow us to state that tobacco use as a raw material for adsorbent development is a renewable and eco-friendly technique, allowing the production of highly effective activated carbons and providing an adequate destination for this waste. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-021-00740-8.
Collapse
Affiliation(s)
- Jéssica Manfrin
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Universitária Street, 1619, Universitário, Cascavel, State of Paraná 85819-110 Brazil
| | - Affonso Celso Gonçalves Junior
- Pesquisador Produtividade em Pesquisa do CNPq -Nível 1C, Universidade Estadual do Oeste do Paraná (UNIOESTE), Universitária Street, 1619, Universitário, Cascavel, State of Paraná 85819-110 Brazil
| | - Daniel Schwantes
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ing. Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Región Metropolitana, Santiago, Chile
| | - Juliano Zimmermann
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Universitária Street, 1619, Universitário, Cascavel, State of Paraná 85819-110 Brazil
| | - Elio Conradi Junior
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Universitária Street, 1619, Universitário, Cascavel, State of Paraná 85819-110 Brazil
| |
Collapse
|
11
|
Manzar MS, Khan G, dos Santos Lins PV, Zubair M, Khan SU, Selvasembian R, Meili L, Blaisi NI, Nawaz M, Abdul Aziz H, Kayed T. RSM-CCD optimization approach for the adsorptive removal of Eriochrome Black T from aqueous system using steel slag-based adsorbent: Characterization, Isotherm, Kinetic modeling and thermodynamic analysis. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116714] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Baziar M, Zakeri HR, Ghaleh askari S, Nejad ZD, Shams M, Anastopoulos I, Giannakoudakis DA, Lima EC. Metal-organic and Zeolitic imidazole frameworks as cationic dye adsorbents: physicochemical optimizations by parametric modeling and kinetic studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Sadeghi S, Zakeri HR, Saghi MH, Ghadiri SK, Talebi SS, Shams M, Dotto GL. Modified wheat straw-derived graphene for the removal of Eriochrome Black T: characterization, isotherm, and kinetic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3556-3565. [PMID: 32918690 DOI: 10.1007/s11356-020-10647-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
A cost-effective and environment-benign adsorbent was prepared from an abundant agro-waste material. Wheat straw was reduced to graphene and then modified by crosslinking to epichlorohydrin. During the conversion process of wheat straw to graphene, the specific surface area increased more than 100 times (from 4 to 415 m2 g-1). The adsorption efficiency of raw wheat straw, graphene nanosheets, and modified graphene against Eriochrome Black T (EBT) were 8.0, 34.7, and 74.4%, respectively. The modified graphene was further investigated for the effect of environmental condition, i.e., pH (3 to 11), EBT concentration (25-100 mg L-1), adsorbent dosage (0.25-0.75 g L-1), contact time (5-60 min), and solution temperature (30-60 °C). The dye removal remained at a high level under a wide range of pH from 3 to 9. The EBT removal decreased from 87.3 to 54.5 by increasing dye concentration and increased from 38.2 to 85.4% by increasing adsorbent dose in the studied ranges. Dye removal also increased by mixing time from 5 to 30 min, whereas a slight drop was observed by continuing agitation up to 60 min. Conducting experiments at various temperatures revealed an endothermic process. Pseudo-first-order and pseudo-second-order models were adequate to represent the adsorption kinetics. Isotherm models suggest a multilayer adsorption of EBT molecules on heterogeneous modified graphene surface with a maximum adsorption capacity of 146.2 mg g-1. The present work demonstrated that the modified graphene obtained from available and low-cost agro-wastes could be used effectively as adsorbent against EBT from aqueous media.
Collapse
Affiliation(s)
- Shahram Sadeghi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Spiritual Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hamid Reza Zakeri
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hossien Saghi
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyedeh Solmaz Talebi
- Department of Epidemiology, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Mahmoud Shams
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
14
|
Vikrant K, Kim KH. Metal–organic framework micromotors: perspectives for environmental applications. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01124c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Metal–organic framework micromotors possessing a self-propulsion system have been proposed as a new generation of advanced materials for various environmental applications.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| |
Collapse
|