1
|
Rani I, Warkar SG, Kumar A. Synthesis and characterization of novel carboxymethyl tamarind kernel gum - Poly (vinyl alcohol)/guar gum-based hydrogel film loaded with ciprofloxacin for biomedical applications. Int J Biol Macromol 2024:136766. [PMID: 39447804 DOI: 10.1016/j.ijbiomac.2024.136766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
The current study delineates the synthesis of hydrogel films comprised of carboxymethyl tamarind kernel gum (CMTKG), poly (vinyl alcohol) (PVA), and guar gum (GG) using glutaraldehyde (GL) as cross-linker. The hydrogel films were evaluated in terms of equilibrium swelling ratio (ESR), moisture content, thickness, wetting analysis, thermal, and mechanical analysis. The tensile strength value lies in the range of 95.80 to 149.07 MPa while elongation at break value lies in the range of 1.51 to 5.20 %. The FTIR spectroscopy confirmed the presence of hydrogen bonding between CMTKG, PVA, and GG components of hydrogel film. FE-SEM micrographs indicated the rough surfaces of hydrogel film. TGA-DTA analysis confirmed that the thermal stability of hydrogel film was found to be increased by incorporating the ciprofloxacin (CFX) drug into the hydrogel matrix. CFX was embedded in the best-swelled hydrogel film and in-vitro drug release behavior was studied at alkaline pH 7.4 phosphate buffer solution. It was found that the maximum drug release was to be 73 % after 24 h at pH 7.4. Moreover, the release data was fitted in various kinetic models such as the First-order, Higuchi, and Korsmeyer-Peppas models. The best-fitted Korsmeyer-Peppas model suggested that the release of the drug follows Fickian diffusion and the value of diffusion exponent (n) was determined to be 0.38. The cytocompatibility of the hydrogel film was analyzed by MTT assay while the antibacterial behavior of the hydrogel film against E. coli and S. aureus showed clear zone of inhibition area. Thus, the overall results indicated that CMTKG/PVA/GG hydrogel film have potential to be used in the biomedical applications.
Collapse
Affiliation(s)
- Indu Rani
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| | - Sudhir G Warkar
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India.
| | - Anil Kumar
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India.
| |
Collapse
|
2
|
Suman DK, Pal K, Mohanty B, Erva RR. Novel nutraceutical delivery system utilizing a bigel formulated with sesame oil, kokum butter, and pectin. Food Sci Biotechnol 2024; 33:3067-3082. [PMID: 39220304 PMCID: PMC11364833 DOI: 10.1007/s10068-024-01559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/09/2024] [Accepted: 03/11/2024] [Indexed: 09/04/2024] Open
Abstract
This study delineates biobased foods. Curcumin (CRU) delivery modules were studied using pectin gel, Sesame oil (SO), and Kokum butter (KB) oleogel (OG). SB1, the control, has 10% OG. The pectin gel between 10 and 50% oleogel were emulsified by 2.5% tween 80. Surface, physical, chemical, and physiochemical properties of prepared bigels were examined. Microscopic studies show biphasic feature. With OG content, FTIR shows hydrogen bonding increasing and decreasing. XRD confirmed gel amorphousness. Stress relaxation indicated 10% control bigel had considerably less strength. Bigel impedance factors increased considerably with OG content, according to impedance profiles. The moisture study found that replacing hydro phase with OG phase in formulations reduced moisture content from 10 to 50%. Less CRU released from 20 to 50% bigel matrices than 10% during in vitro studies. Acidic pH hindered polymer relaxation, altering release behaviour. Overall, the bigels were studied and shown to regulate oral CRU administration. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01559-3.
Collapse
Affiliation(s)
- Dheerendra Kumar Suman
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh India
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Biswaranjan Mohanty
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Odisha India
| | - Rajeswara Reddy Erva
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh India
| |
Collapse
|
3
|
Habibullah S, Swain R, Nandi S, Das M, Rout T, Mohanty B, Mallick S. Nanocrystalline cellulose as a reinforcing agent for poly (vinyl alcohol)/ gellan-gum-based composite film for moxifloxacin ocular delivery. Int J Biol Macromol 2024; 270:132302. [PMID: 38744357 DOI: 10.1016/j.ijbiomac.2024.132302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Nanocrystalline cellulose (NCC) is a star material in drug delivery applications due to its good biocompatibility, large specific surface area, high tensile strength (TS), and high hydrophilicity. Poly(Vinyl Alcohol)/Gellan-gum-based innovative composite film has been prepared using nanocrystalline cellulose (PVA/GG/NCC) as a strengthening agent for ocular delivery of moxifloxacin (MOX) via solvent casting method. Impedance analysis was studied using the capacitive sensing technique for examining new capacitance nature of the nanocomposite MOX film. Antimicrobial properties of films were evaluated using Pseudomonas aeruginosa and Staphylococcus aureus as gram-negative and gram-positive bacteria respectively by disc diffusion technique. XRD revealed the characteristic peak of NCC and the amorphous form of the drug. Sustained in vitro release and enhanced corneal permeation of drug were noticed in the presence of NCC. Polymer matrix enhanced the mechanical properties (tensile strength 22.05 to 28.41 MPa) and impedance behavior (resistance 59.23 to 213.23 Ω) in the film due to the presence of NCC rather than its absence (16.78 MPa and 39.03 Ω respectively). Occurrence of NCC brought about good antimicrobial behavior (both gram-positive and gram-negative) of the film. NCC incorporated poly(vinyl alcohol)/gellan-gum-based composite film exhibited increased mechanical properties and impedance behavior for improved ocular delivery of moxifloxacin.
Collapse
Affiliation(s)
- Sk Habibullah
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Rakesh Swain
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Souvik Nandi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Mouli Das
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Tanmaya Rout
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, 754202 Cuttack, Odisha, India
| | - Biswaranjan Mohanty
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, 754202 Cuttack, Odisha, India.
| | - Subrata Mallick
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
4
|
Raj V, Lee S. State-of-the-art progress on tamarind seed polysaccharide (Tamarindus indica) and its diverse potential applications, a review with insight. Carbohydr Polym 2024; 331:121847. [PMID: 38388032 DOI: 10.1016/j.carbpol.2024.121847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
Tamarind seed polysaccharide (TSP) is a biocompatible, non-ionic polymer with antioxidant properties. Its uses include drug delivery, food industry, and wastewater treatment. TSP has various hydroxy functional groups, one of the most favorable sites for graft copolymerization of different monomers. Hence, various chemical methods for TSP modification were developed to satisfy increasing industrial demand. Of particular interest in scientific community are the methods of graft copolymerization because of their ability to alter the physicochemical properties of TSP, including pH sensitivity and the swelling index, leading to improvements in the adsorption efficiency of hazardous heavy metals and dyes from wastewater effluents. Moreover, in recent years, TSP has been used for controlled drug delivery applications due to its unique advantages of high viscosity, broad pH tolerance, non-carcinogenicity, mucoadhesive properties, biocompatibility, and high drug entrapment capacity. In light of the plethora of literature on the topic, a comprehensive review of TSP-based graft copolymers and unmodified and modified TSP important applications is necessary. Therefore, this review comprehensively highlights several synthetic strategies for TSP-grafted copolymers and discusses unmodified and modified TSP potential applications, including cutting-edge pharmaceutical, environmental applications, etc. In brief, its many advantages make TSP-based polysaccharide a promising material for applications in various industries.
Collapse
Affiliation(s)
- Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Chan K, Zinchenko A. Functional upcycling of waste PET plastic to the hybrid magnetic microparticles adsorbent for cesium removal. CHEMOSPHERE 2024; 354:141725. [PMID: 38492679 DOI: 10.1016/j.chemosphere.2024.141725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Accumulation of mismanaged plastic in the environment and the appearance of emerging plastic-derived pollutants such as microplastics strongly demand technologies for waste plastic utilization. In this study, polyethylene terephthalate (PET) from waste plastic bottles was directly utilized to prepare a matrix of an adsorbent for cesium (Cs+) removal. The organic matrix of PET-derived oligomers obtained by aminolysis depolymerization was impregnated with bentonite clay and magnetite nanoparticles (Fe3O4 NPs), playing the roles as a major adsorptive medium for Cs+ removal and as a functional component to primarily provide efficient separation of the hybrid adsorbent from aqueous system, respectively. The obtained hybrid composite microparticles were next tested as an adsorbent for the removal of Cs+ cation from aqueous solutions. The adsorption process was characterized by fast kinetics reaching ca. 60% of the equilibrium adsorption capacity within 5 min and the maximum adsorption capacity toward Cs+ was found to be 26.8 mg/g. The adsorption process was primarily dominated by the cationic exchange in bentonite, which was not significantly affected by the admixture of the competing mono- and divalent cations (Na+, K+, and Mg2+). The proposed approach here exploits the sustainable utilization scenario of plastic waste-derived material to template complex multifunctional nanocomposites that can find applications for pollution cleaning and environmental remediation.
Collapse
Affiliation(s)
- Kayee Chan
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Anatoly Zinchenko
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
6
|
Sun R, Lv Z, Wang Y, Gu Y, Sun Y, Zeng X, Gao Z, Zhao X, Yuan Y, Yue T. Preparation and characterization of pectin-alginate-based microbeads reinforced by nano montmorillonite filler for probiotics encapsulation: Improving viability and colonic colonization. Int J Biol Macromol 2024; 264:130543. [PMID: 38432271 DOI: 10.1016/j.ijbiomac.2024.130543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Hydrogel microbeads can be used to enhance the stability of probiotics during gastrointestinal delivery and storage. In this study, the pectin-alginate hydrogel was enhanced by adding montmorillonite filler to produce microbeads for encapsulating Lactobacillus kefiranofaciens (LK). Results showed that the viscosity of biopolymer solutions with 1 % (PAMT1) and 3 % (PAMT3) montmorillonite addition was suitable for producing regular-shaped microbeads. A layered cross-linked network was formed on the surface of PAMT3 microbeads through electrostatic interaction between pectin-alginate and montmorillonite filler, and the surrounding LK with adsorbed montmorillonite was encapsulated inside the microbeads. PAMT3 microbeads reduced the loss of viability of LK when passing through the gastric acid environment, and facilitated the slow release of LK in the intestine and colonic colonization. The maximum decrease in viability among all filler groups was 1.21 log CFU/g after two weeks of storage, while PAMT3 freeze-drying microbeads only decreased by 0.46 log CFU/g, indicating that the gel layer synergized with the adsorbed layer to provide dual protection for probiotics. Therefore, filler-reinforced microbeads are a promising bulk encapsulation carrier with great potential for the protection and delivery of probiotics and can be developed as food additives for dairy products.
Collapse
Affiliation(s)
- Rui Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhongyi Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanyuan Gu
- Chemical Engineering with Biotechnology, Imperial College London, SW7 2BX, United Kingdom
| | - Yuhan Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuejun Zeng
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xubo Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
7
|
Ji S, Wang W, Huang Y, Xia Q. Tamarind seed polysaccharide-guar gum buccal films loaded with resveratrol-bovine serum albumin nanoparticles: Preparation, characterization, and mucoadhesiveness assessment. Int J Biol Macromol 2024; 262:130078. [PMID: 38340914 DOI: 10.1016/j.ijbiomac.2024.130078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Mucoadhesive films based on tamarind seed polysaccharide and guar gum (TSP-GG) were formulated for buccal delivery of resveratrol. Resveratrol-bovine serum albumin nanoparticles (Res-BSA) were prepared and dispersed in TSP-GG to improve its buccal mucoadhesiveness. The impregnation of Res-BSA induced the dense internal structures of TSP-GG and improved its strength and rigidity. Structural characterization showed that resveratrol existed in an amorphous state in the films containing Res-BSA, and hydrogen bonding was formed between Res-BSA and the film matrices. The films containing Res-BSA exhibited good uniformity in thickness, weight, and resveratrol content, and their surface pH was near neutral, ranging between 6.78 and 7.09. Increasing Res-BSA content reduced the water contact angle of TSP-GG (from 75.9° to 59.6°). The swelling and erosion studies indicated the favorable hydration capacity and erosion resistance of the films containing Res-BSA. Additionally, the addition of Res-BSA imparted enhanced ex vivo mucoadhesive force, in the range of 1.53 N to 1.98 N, and extended ex vivo residence time, between 17.9 h and 18.9 h, to TSP-GG. The current study implied that the composite systems of TSP-GG and Res-BSA may be a novel platform for buccal mucosal delivery of resveratrol.
Collapse
Affiliation(s)
- Suping Ji
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Wenjuan Wang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Yulin Huang
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210096, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China.
| |
Collapse
|
8
|
Tanwar M, Gupta RK, Rani A. Natural gums and their derivatives based hydrogels: in biomedical, environment, agriculture, and food industry. Crit Rev Biotechnol 2024; 44:275-301. [PMID: 36683015 DOI: 10.1080/07388551.2022.2157702] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 01/24/2023]
Abstract
The hydrogels based on natural gums and chemically derivatized natural gums have great interest in pharmaceutical, food, cosmetics, and environmental remediation, due to their: economic viability, sustainability, nontoxicity, biodegradability, and biocompatibility. Since these natural gems are from plants, microorganisms, and seaweeds, they offer a great opportunity to chemically derivatize and modify into novel, innovative biomaterials as scaffolds for tissue engineering and drug delivery. Derivatization improves swelling properties, thereby developing interest in agriculture and separating technologies. This review highlights the work done over the past three and a half decades and the possibility of developing novel materials and technologies in a cost-effective and sustainable manner. This review has compiled various natural gums, their source, chemical composition, and chemically derivatized gums, various methods to synthesize hydrogel, and their applications in biomedical, food and agriculture, textile, cosmetics, water purification, remediation, and separation fields.
Collapse
Affiliation(s)
- Meenakshi Tanwar
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Archna Rani
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
9
|
Balakrishnan B, Sarojini BK, Kodoth AK, Dayananda BS, Venkatesha R. Fabrication and characterization of tamarind seed gum based novel hydrogel for the targeted delivery of omeprazole magnesium. Int J Biol Macromol 2024; 258:128758. [PMID: 38103480 DOI: 10.1016/j.ijbiomac.2023.128758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
The tamarind seed gum based novel hydrogel was fabricated by varying concentration of polymer, monomer and crosslinker for the targeted delivery of omeprazole magnesium at stomach pH of 1.5. The free radical graft copolymerization of 2-acrylamido-2-methyl propane sulfonic acid with tamarind seed gum backbone resulted in hydrogel. The formation of sulfonic acid pendant groups in hydrogel was observed by the existence of an infrared absorption band at 1152 cm-1 for SO group. The conversion to semicrystalline nature on incorporation of drug evidenced by powder X-ray diffraction studies with peaks at 2θ = 20.4° 31.5° and 52.2°. The scanning electron microscopy images showed bigger voids which narrowed down for drug loaded matrix, supported by the presence of a peak for magnesium in the energy dispersive X-ray spectroscopy. The greatest swelling was observed at pH 7 with second-order rate constant 1.5371 (g/g)/min and drug release was found to be 97.85 ± 1 % over 1200 min at pH 1.5. The drug release transport was found combination of diffusion and erosion of polymer chain to be super case II diffusion and Hill equation model was good fit. The hydrogel drug conjugate found to be non-toxic at tested concentrations (17 mg/50 mg) on in-vivo testing in Drosophila model.
Collapse
Affiliation(s)
- Bhavya Balakrishnan
- Department of Industrial Chemistry, Mangalore University, Mangalagangotri 574199, Karnataka, India
| | | | - Arun Krishna Kodoth
- Department of Industrial Chemistry, Mangalore University, Mangalagangotri 574199, Karnataka, India
| | | | - Ranjitha Venkatesha
- Department of Chemistry, Mangalore University, Mangalagangotri 574199, Karnataka, India
| |
Collapse
|
10
|
Mubarak Aldawsari H, Kotta S, Asfour HZ, Vattamkandathil S, Abdelkhalek Elfaky M, Ashri LY, Badr-Eldin SM. Development and evaluation of quercetin enriched bentonite-reinforced starch-gelatin based bioplastic with antimicrobial property. Saudi Pharm J 2023; 31:101861. [PMID: 38028210 PMCID: PMC10663916 DOI: 10.1016/j.jsps.2023.101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Nowadays novel bio-based materials have been widely employed in food and pharmaceutical industry because of their wide acceptability by the consumers rather than the synthetic materials nevertheless, they possess poor mechanical properties. Reinforcement of biopolymers with intercalation of mineral clays can improve their physicochemical properties; so that such biocomposites possess superior barrier and mechanical properties as well as stability and drug loading efficacy. Thus, this research aimed at formulating quercetin loaded bentonite-reinforced starch-gelatin based novel bioplastic with diverse applicability. The methodology of the study included Box Behnken optimization as well as physical, structural, mechanical and antimicrobial properties evaluation of the proposed reinforced bioplastics. Amount of starch, bentonite and glycerin were the independent variables while the tensile strength, swelling index and elongation percentage were studied as dependent variables. The optimized bioplastic film showed excellent physicochemical and morphological characteristics and also for efficient percentage drug content. The antimicrobial activity showed the highest activity against Escherichia coli followed by Pseudomonas aeruginosa and Staphylococcus aureus. Scanning electron microscopy (SEM) revealed the non-homogenous nature of the film. Generally, the results revealed that quercetin loaded bentonite-reinforced starch-gelatin based could be used as ecological friendly active food packaging as well as pharmaceutical application with significant antimicrobial properties.
Collapse
Affiliation(s)
- Hibah Mubarak Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hani Z. Asfour
- Department of Microbiology and Medical Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Mahmoud Abdelkhalek Elfaky
- Department of Natural products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lubna Y. Ashri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt
| |
Collapse
|
11
|
Jlassi K, Al Ejji M, Ahmed AK, Mutahir H, Sliem MH, Abdullah AM, Chehimi MM, Krupa I. A carbon dot-based clay nanocomposite for efficient heavy metal removal. NANOSCALE ADVANCES 2023; 5:4224-4232. [PMID: 37560431 PMCID: PMC10408590 DOI: 10.1039/d3na00334e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/16/2023] [Indexed: 08/11/2023]
Abstract
Carbon dots and their derivatives with fascinating photoluminescence properties have recently attracted tremendous scientific attention. This work describes the preparation of novel fluorescent bentonite clay (B), modified with carbon dot nanomaterials (CDs), and its usage as a lead removal platform. The CDs were prepared using a hydrothermal method from graphitic waste which served as the carbon source material. The as-obtained CDs were found to be fluorescent, being spherical in shape, positively charged, and smaller than 5 nm. Encouraged by their structure and photoluminescence features, they were used as surface modifiers to make fluorescent bentonite nanocomposites. Bentonite was used as a negatively charged model of aluminosilicate and reacted with the positively charged CDs. XRD, FTIR, XPS, and fluorescence analysis were used to characterize the prepared materials. The results indicate that the CDs intercalated inside the bentonite matrix were stable with excellent optical properties over time. They were finally used as an efficient hybrid platform for lead removal with a removal efficiency of 95% under light conditions, at room temperature, in an alkaline medium, and after only 10 min of reaction, compared to 70% under dark conditions. The pseudo-second-order kinetics and Langmuir isotherm models were better fitted to describe the adsorption process. The maximum adsorption capacity was equal to 400 mg g-1 toward Pb(ii) removal, at room temperature and pH = 8, under light conditions. To summarize, we have designed UV light stimuli responsive carbon dot-intercalated clay with high Pb(ii) adsorption capacity and long-term stability.
Collapse
Affiliation(s)
- Khouloud Jlassi
- Center for Advanced Materials, Qatar University P.O. Box 2713 Doha Qatar
| | - Maryam Al Ejji
- Center for Advanced Materials, Qatar University P.O. Box 2713 Doha Qatar
| | | | - Hafsa Mutahir
- Department of Chemical Engineering, College of Engineering, Qatar University Doha 2713 Qatar
| | - Mostafa H Sliem
- Center for Advanced Materials, Qatar University P.O. Box 2713 Doha Qatar
| | | | - Mohamed M Chehimi
- Université de Paris, ITODYS, UMR CNRS 7086 15 rue JA de Baïf 75013 Paris France
| | - Igor Krupa
- Center for Advanced Materials, Qatar University P.O. Box 2713 Doha Qatar
| |
Collapse
|
12
|
Diem LN, Torgbo S, Banerjee I, Pal K, Sukatta U, Rugthaworn P, Sukyai P. Sugarcane Bagasse-Derived Cellulose Nanocrystal/Polyvinyl Alcohol/Gum Tragacanth Composite Film Incorporated with Betel Leaf Extract as a Versatile Biomaterial for Wound Dressing. Int J Biomater 2023; 2023:9630168. [PMID: 37485045 PMCID: PMC10359141 DOI: 10.1155/2023/9630168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/25/2023] Open
Abstract
In this study, nanocomposite film was fabricated using cellulose nanocrystals (CNCs) as nanofiller in a polymer matrix of polyvinyl alcohol (PVA) and gum tragacanth (GT) via solution casting. CNCs were extracted from sugarcane bagasse using a steam explosion technique followed by acid hydrolysis. Initial analysis of CNCs by transmission electron microscopy (TEM) showed nanosized particles of 104 nm in length and 7 nm in width. Physical and chemical characteristics of neat PVA, PVA/GT, and PVA/GT/CNC films with varying concentrations of CNCs (from 2% to 10%) were analyzed by the scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectrometry, mechanical test, and swelling test. The SEM analysis showed cluster formation of CNCs in the polymer matrix at high concentration. The developed films were transparent. FTIR spectrometry analysis confirmed the chemical functional groups of the various components in the film. The presence of GT and CNCs in the polymer matrix improved the characteristics of films as evident in the prolonged stability for 7 days and increased mechanical properties. The highest elastic modulus of 1526.11 ± 31.86 MPa and tensile strength of 80.39 MPa were recorded in PVA/GT/CNC2 film. The swelling ability, however, decreased from 260% to 230%. Cytotoxicity analysis of the PVA/GT/CNC film showed that it is nontoxic to mouse fibroblast cells L929 with 95% cell viability. Films loaded with betel leaf extract exhibited excellent antibacterial activities against Staphylococcus aureus DMST 8840 and Pseudomonas aeruginosa TISTR 781 with 28.20 ± 0.84 mm and 23.60 ± 0.55 mm inhibition zones, respectively. These results demonstrate that PVA/GT/CNC loaded with the betel leaf extract could act as promising and versatile wound dressings to protect the wound surface from infection and dehydration.
Collapse
Affiliation(s)
- Luong Ngoc Diem
- Cellulose for Future Materials and Technologies Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Selorm Torgbo
- Cellulose for Future Materials and Technologies Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Indranil Banerjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH-65 Karwar, Jodhpur 342037, India
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Udomlak Sukatta
- Kasetsart Agriculture and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok 10900, Thailand
| | - Prapassorn Rugthaworn
- Kasetsart Agriculture and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok 10900, Thailand
| | - Prakit Sukyai
- Cellulose for Future Materials and Technologies Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
13
|
Dhal S, Pal A, Gramza-Michalowska A, Kim D, Mohanty B, Sagiri SS, Pal K. Formulation and Characterization of Emulgel-Based Jelly Candy: A Preliminary Study on Nutraceutical Delivery. Gels 2023; 9:466. [PMID: 37367137 DOI: 10.3390/gels9060466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
The development of consumer-friendly nutraceutical dosage forms is highly important for greater acceptance. In this work, such dosage forms were prepared based on structured emulsions (emulgels), where the olive oil phase was filled within the pectin-based jelly candy. The emulgel-based candies were designed as bi-modal carriers, where oil-soluble curcumin and water-soluble riboflavin were incorporated as the model nutraceuticals. Initially, emulsions were prepared by homogenizing varied concentrations (10% to 30% (w/w)) of olive oil in a 5% (w/w) pectin solution that contained sucrose and citric acid. Herein, pectin acted as a structuring agent-cum-stabilizer. Physico-chemical properties of the developed formulations were thoroughly analyzed. These studies revealed that olive oil interferes with the formation of polymer networks of pectin and the crystallization properties of sugar in candies. This was confirmed by performing FTIR spectroscopy and DSC studies. In vitro disintegration studies showed an insignificant difference in the disintegration behavior of candies, although olive oil concentration was varied. Riboflavin and curcumin were then incorporated into the jelly candy formulations to analyze whether the developed formulations could deliver both hydrophilic and hydrophobic nutraceutical agents. We found that the developed jelly candy formulations were capable of delivering both types of nutraceutical agents. The outcome of the present study may open new directions for designing and developing oral nutraceutical dosage forms.
Collapse
Affiliation(s)
- Somali Dhal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Anupam Pal
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack 754202, India
| | - Anna Gramza-Michalowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Doman Kim
- Graduate School of International Agricultural Technology, Seoul National University, Gangwon-do, Seoul 25354, Republic of Korea
| | - Biswaranjan Mohanty
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack 754202, India
| | - Sai S Sagiri
- Agro-Nanotechnology and Advanced Materials Research Center, Department of Food Science, Agricultural Research Organization, The Volcani Institute, Rishon Lezion 7505101, Israel
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| |
Collapse
|
14
|
Ji S, Sun R, Wang W, Xia Q. Preparation, characterization, and evaluation of tamarind seed polysaccharide-carboxymethylcellulose buccal films loaded with soybean peptides-chitosan nanoparticles. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
15
|
Rahmani D, Azari Torbat N, Boddohi S. Synthesis and characterization of pH-responsive PCL-PVA polymersome for dual delivery to breast cancer cells. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
16
|
Saraiva MM, Campelo MDS, Câmara Neto JF, Lima ABN, Silva GDA, Dias ATDFF, Ricardo NMPS, Kaplan DL, Ribeiro MENP. Alginate/polyvinyl alcohol films for wound healing: Advantages and challenges. J Biomed Mater Res B Appl Biomater 2023; 111:220-233. [PMID: 35959858 DOI: 10.1002/jbm.b.35146] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
The skin is the largest organ in the human body and its physical integrity must be maintained for body homeostasis and to prevent the entry of pathogenic microorganisms. Sodium alginate (SA) and polyvinyl alcohol (PVA) are two polymers widely used in films for wound dressing applications. Furthermore, blends between SA and PVA improve physical, mechanical and biological properties of the final wound healing material when compared to the individual polymers. Different drugs have been incorporated into SA/PVA-based films to improve wound healing activity. It is noteworthy that SA/PVA films can be crosslinked with Ca2+ or other agents, which improves physicochemical and biological properties. Thus, SA/PVA associations are promising for the biomedical field, as a potential alternative for wound treatment. This review focuses on the main techniques for obtaining SA/PVA films, their physical-chemical characterization, drug incorporation, and the advantages and challenges of these films for wound healing.
Collapse
Affiliation(s)
- Matheus Morais Saraiva
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - Matheus da Silva Campelo
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - João Francisco Câmara Neto
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - Ana Beatriz Nogueira Lima
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - George de Almeida Silva
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - Andre Tavares de Freitas Figueredo Dias
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - Nágila Maria Pontes Silva Ricardo
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Maria Elenir Nobre Pinho Ribeiro
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
17
|
Dhar AK, Himu HA, Bhattacharjee M, Mostufa MG, Parvin F. Insights on applications of bentonite clays for the removal of dyes and heavy metals from wastewater: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5440-5474. [PMID: 36418828 DOI: 10.1007/s11356-022-24277-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
In recent decades, increased industrial, agricultural, and domestic activities have resulted in the release of various pollutants into the aquatic systems, which require a reliable and environmentally friendly method to remove them. Adsorption is one of the most cost-effective and sustainable wastewater treatment techniques. A plethora of low-cost bio-based adsorbents have been developed worldwide so far to supplant activated carbon and its high processing costs. Bentonite clays (BCs), whether in natural or modified form, have gained enormous potential in wastewater treatment and have been used successfully as a novel and cost-effective bio-sorbent for removing organic and inorganic pollutants from the liquid suspension. It has become a sustainable solution for wastewater treatment due to its variety of surface and structural properties, superior chemical stability, high capacity for cation exchange, elevated surface area due to its layered structure, non-toxicity, abundance, low cost, and high adsorption capacity compared to other clays. This review encompasses comprehensive literature about various modification techniques and adsorption mechanisms of BCs concerning dyes and heavy metal removal from wastewater. A critical overview of different parameters for optimizing adsorption capacity and regeneration via the desorption technique has also been presented here. Finally, a conclusion has been drawn with some future research recommendations based on technological challenges encountered in industrializing these materials.
Collapse
Affiliation(s)
- Avik Kumar Dhar
- Department of Textiles, Merchandising, and Interiors, University of Georgia, 321 Dawson Hall, 305 Sanford Drive, Athens, GA-30602, USA.
| | - Humayra Akhter Himu
- Department of Environmental Science & Engineering, Bangladesh University of Textiles, Tejgaon, Dhaka-1208, Bangladesh
| | - Maitry Bhattacharjee
- Department of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA-30602, USA
| | - Md Golam Mostufa
- Department of Textile Engineering, Shyamoli Textile Engineering College, Dhaka, 1207, Bangladesh
| | - Fahmida Parvin
- Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| |
Collapse
|
18
|
Oun AA, Shin GH, Rhim JW, Kim JT. Recent advances in polyvinyl alcohol-based composite films and their applications in food packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Rawooth M, Habibullah SK, Qureshi D, Bharti D, Pal A, Mohanty B, Jarzębski M, Smułek W, Pal K. Effect of Tamarind Gum on the Properties of Phase-Separated Poly(vinyl alcohol) Films. Polymers (Basel) 2022; 14:polym14142793. [PMID: 35890569 PMCID: PMC9318724 DOI: 10.3390/polym14142793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
The current study aims to evaluate the effect of tamarind gum (TG) on the optical, mechanical, and drug release potential of poly(vinyl alcohol) (PVA)-based films. This involves preparing PVA-TG composite films with different concentrations of TG through a simple solvent casting method. The addition of TG has enhanced the phase separation and aggregation of PVA within the films, and it becomes greater with the increase in TG concentration. Brightfield and polarized light micrographs have revealed that aggregation is favored by forming crystalline domains at the PVA-TG interface. The interconnected network of PVA-TG aggregates influenced the swelling and drying properties of the films. Using Peleg’s analysis, the mechanical behavior of films was determined by their stress relaxation profiles. The addition of TG has made no significant changes to the firmness and viscoelastic properties of films. However, long-durational relaxation times indicated that the interconnected network might break down in films with higher TG concentration, suggesting their brittleness. The controlled release of ciprofloxacin in HCl solution (0.5% (w/v)) appears to decrease with the increase in TG concentration. In fact, TG has inversely affected the impedance and altered the ionic conductivity within the films. This seems to have directly influenced the drug release from the films as the mechanism was found to be non-Fickian diffusion (based on Korsmeyer–Peepas and Peppas–Sahlin kinetic models). The antimicrobial study using Escherichia coli was carried out to evaluate the activity of the drug-loaded films. The study proves that TG can modulate the properties of PVA films and has the potential to fine-tune the controlled release of drugs from composite films.
Collapse
Affiliation(s)
- Madhusmita Rawooth
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India; (M.R.); (D.Q.); (D.B.)
| | - SK Habibullah
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack 754202, Odisha, India; (S.H.); (A.P.)
| | - Dilshad Qureshi
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India; (M.R.); (D.Q.); (D.B.)
| | - Deepti Bharti
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India; (M.R.); (D.Q.); (D.B.)
| | - Ankit Pal
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack 754202, Odisha, India; (S.H.); (A.P.)
| | - Biswaranjan Mohanty
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack 754202, Odisha, India; (S.H.); (A.P.)
- Correspondence: (B.M.); (M.J.); (K.P.)
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznan, Poland
- Correspondence: (B.M.); (M.J.); (K.P.)
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-695 Poznan, Poland;
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India; (M.R.); (D.Q.); (D.B.)
- Correspondence: (B.M.); (M.J.); (K.P.)
| |
Collapse
|
20
|
Nagaraja K, Rao KM, Rao KK, Han SS. Dual responsive tamarind gum-co-poly(N-isopropyl acrylamide-co-ethylene glycol vinyl ether) hydrogel: A promising device for colon specific anti-cancer drug delivery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Shahrousvand M, Hajikhani M, Nazari L, Aghelinejad A, Shahrousvand M, Irani M, Rostami A. Preparation of colloidal nanoparticles PVA-PHEMA from hydrolysis of copolymers of PVAc-PHEMA as anticancer drug carriers. NANOTECHNOLOGY 2022; 33:275603. [PMID: 35320784 DOI: 10.1088/1361-6528/ac6089] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The novel pH-responsive polymer nanoparticles have been widely used for drug delivery and cancer therapy. The pH-sensitive nanoparticles include chemical structures that can accept or donate protons in response to an environmental pH change. Polybases which mostly contain alkaline groups such as amines and hydroxy, accept protons at low pH and are neutral at higher pH values. This study aimed to prepare pH-sensitive colloidal amphiphilic poly(vinyl alcohol-2-hydroxyethyl methacrylate) (PVA-PHEMA) copolymers in cancer therapy applications. For this purpose, poly(vinyl acetate-2-hydroxyethyl methacrylate) (PVAc-PHEMA) copolymer nanoparticles were synthesized in different polymerization medium fractions from water and methanol and different monomer feed concentration. Then acetate groups were hydrolyzed, and the PHEMA-PVA nanoparticles were synthesized. The nanoparticles were further characterized using dynamic light scattering, Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis to identify the structural and morphological changes. The Methotrexate (MTX) was loaded into the nanoparticles, and drug release kinetics were evaluated. The results confirmed that PHEMA-PVA copolymeric nanoparticles could be favorably used in cancer therapy.
Collapse
Affiliation(s)
- Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, PO Box 43841-119, Guilan, Rezvanshar, Iran
- Burn and Regenerative Medicine Research center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohsen Hajikhani
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, PO Box 43841-119, Guilan, Rezvanshar, Iran
| | - Leila Nazari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Amitis Aghelinejad
- Polymer Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Shahrousvand
- Polymer Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Irani
- Department of Pharmaceutics, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Amir Rostami
- Department of Chemical Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, 75169-13817, Iran
| |
Collapse
|
22
|
Kim J, Hlaing SP, Lee J, Saparbayeva A, Kim S, Hwang DS, Lee EH, Yoon IS, Yun H, Kim MS, Moon HR, Jung Y, Yoo JW. Exfoliated bentonite/alginate nanocomposite hydrogel enhances intestinal delivery of probiotics by resistance to gastric pH and on-demand disintegration. Carbohydr Polym 2021; 272:118462. [PMID: 34420722 DOI: 10.1016/j.carbpol.2021.118462] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022]
Abstract
In this study, we developed Lactobacillus rhamnosus GG (LGG)-encapsulating exfoliated bentonite/alginate nanocomposite hydrogels for protecting probiotics by delaying gastric fluid penetration into the nanocomposite and their on-demand release in the intestine. The pore size of the bentonite/alginate nanocomposite hydrogels (BA15) was two-fold smaller than that of alginate hydrogel (BA00). Following gastric pH challenge, the survival of LGG in BA15 decreased by only 1.43 log CFU/g as compared to the 6.25 log CFU/g decrease in alginate (BA00). Further, the internal pH of BA15 decreased more gradually than that of BA00. After oral administration in mice, BA15 maintained shape integrity during gastric passage, followed by appropriate disintegration within the target intestinal area. Additionally, a fecal recovery experiment in mice showed that the viable counts of LGG in BA15 were six-fold higher than those in BA00. The findings suggest the exfoliated bentonite/alginate nanocomposite hydrogel as a promising platform for intestinal delivery of probiotics.
Collapse
Affiliation(s)
- Jihyun Kim
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Shwe Phyu Hlaing
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | | | - Sangsik Kim
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ 85721, United States
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Eun Hee Lee
- College of Pharmacy, Korea University, Sejong 30019, South Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
23
|
Wu H, Li J, Wu Y, Gao H, Guan Y. High-Performanced Hemicellulose Based Organic-Inorganic Films with Polyethyleneimine. Polymers (Basel) 2021; 13:3777. [PMID: 34771333 PMCID: PMC8587527 DOI: 10.3390/polym13213777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
For the high-value utilization of hemicellulose-based composite films, the poor film-forming and mechanical properties of hemicellulose-based composite films must be surmounted crucially. Based on this, hemicellulose-based organic-inorganic composite films with good mechanical properties were prepared from quaternized hemicelluloses (QH), bentonite, and polyethyleneimine (PEI). The QH/PEI/bentonite composite films were prepared by vacuum filtration, and the properties of the composite film were investigated. The results showed that the QH was inserted into bentonite nanosheets through hydrogen bonding and electrostatic interactions. PEI was cross-linked with hemicellulose by hydroxyl groups, electrostatically attracted by the bentonite flake layers. The mechanical properties of the composite films were significantly increased by the incorporation of PEI. When the PEI content was 20%, the tensile stress of the composite film was increased by 155.18%, and the maximum tensile stress was reached 80.52 MPa. The composite films had strong UV absorption ability with the transmittance was almost 0 in the UV region from 200 to 300 nm. The thermal property of composite film was also improved, and the residual mass increased by three times compared to QH. These results provide a theoretical basis for the use of hemicellulose-based composite films in packaging applications.
Collapse
Affiliation(s)
- Han Wu
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; (H.W.); (J.L.); (Y.W.)
| | - Jing Li
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; (H.W.); (J.L.); (Y.W.)
| | - Yule Wu
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; (H.W.); (J.L.); (Y.W.)
| | - Hui Gao
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; (H.W.); (J.L.); (Y.W.)
| | - Ying Guan
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; (H.W.); (J.L.); (Y.W.)
- Biomass Molecular Engineering Center, Anhui Agricultural University, Heifei 230036, China
| |
Collapse
|
24
|
Qureshi D, Pattanaik S, Mohanty B, Anis A, Kulikouskaya V, Hileuskaya K, Agabekov V, Sarkar P, Maji S, Pal K. Preparation of novel poly(vinyl alcohol)/chitosan lactate-based phase-separated composite films for UV-shielding and drug delivery applications. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03653-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|