1
|
Daskalopoulou E, Hunt P, Elgar CE, Yang M, Abbott AP, Hartley JM. Overcoming passivation through improved mass transport in dense ionic fluids. Faraday Discuss 2024; 253:329-342. [PMID: 39007290 DOI: 10.1039/d4fd00030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Deep Eutectic Solvents (DESs) have recently been shown to be part of a dense ionic fluid continuum between ionic liquids and concentrated aqueous brines. Charge transport was shown to be governed by fluidity, with no discontinuity between molar conductivity and fluidity irrespective of cation, charge density or ionic radius. By adjusting the activity of water and chloride ions, mass transport, speciation and reactivity can be altered. It has been shown that while brines provide a high chloride content at a lower viscosity than DESs, unlike DESs, brines are unable to prevent metal passivation due to their high water content. This results in the possibility to impart a level of selectivity towards metal dissolution (or passivation) when processing mixed metal materials. Forced convection can be used to avoid the issue of slow mass transport in viscous media, and the use of jets or targeted ultrasound are effective methods for overcoming this issue. High-powered ultrasound was applied to copper, cobalt, and aluminium electrodes undergoing anodic dissolution, and linear sweep voltammetry showed a linear current-voltage response at potentials anodic of the oxidation potential under sonication, with total charge passed being 5 to 134 times greater than under silent conditions. Application of ultrasound to silver and nickel electrodes displayed an initial linear current-voltage response, but the increased water content of the brines resulted in passivation. Mass transport throughout the bulk solution is governed by the forced convection imparted by the ultrasound and ionic species must only migrate across the electrical double layer. It is shown that the anodic dissolution of a range of metals classically expected to passivate, e.g. aluminium, can be significantly accelerated under insonation conditions.
Collapse
Affiliation(s)
| | - Philip Hunt
- School of Chemistry, University of Leicester, LE1 7RH, UK.
| | | | - Minjun Yang
- School of Chemistry, University of Leicester, LE1 7RH, UK.
| | | | | |
Collapse
|
2
|
Sun Y, Zhang Z, Liu Q, Ren L, Wang J. In vitro evaluation of the biocompatibility and bioactivity of a SLM-fabricated NiTi alloy with superior tensile property. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:52. [PMID: 39177838 PMCID: PMC11343964 DOI: 10.1007/s10856-024-06822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Because nickel-titanium (NiTi) alloys have unique functions, such as superelasticity, shape memory, and hysteresis similar to bone in the loading-unloading cycles of their recoverable deformations. They likely offer good bone integration, a low loosening rate, individual customization, and ease of insertion. Due to the poor processability of NITI, traditional methods cannot manufacture NiTi products with complex shapes. Orthopedic NiTi implants need to show an adequate fracture elongation of at least 8%. Additive manufacturing can be used to prepare NiTi implants with complex structures and tunable porosity. However, as previously reported, additively manufactured NiTi alloys could only exhibit a maximum tensile fracture strain of 7%. In new reports, a selective laser melting (SLM)-NiTi alloy has shown greater tensile strain (15.6%). Nevertheless, due to the unique microstructure of additive manufacturing NiTi that differs from traditional NITI, the biocompatibility of SLM-NITI manufactured by this new process requires further evaluation In this study, the effects of the improved NiTi alloy on bone marrow mesenchymal stem cell (BMSC) proliferation, adhesion, and cell viability were investigated via in vitro studies. A commercial Ti-6Al-4V alloy was studied side-by-side for comparison. Like the Ti-6Al-4V alloy, the SLM-NiTi alloy exhibited low cytotoxicity toward BMSCs and similar effect on cell adhesion or cell viability. This study demonstrates that the new SLM-NiTi alloy, which has exhibited improved mechanical properties, also displays excellent biocompatibility. Therefore, this alloy may be a superior implant material in biomedical implantation.
Collapse
Affiliation(s)
- Yu Sun
- Department of Orthopaedics, The second Hospital of Jilin University, Changchun, 130021, PR China
| | - Zhihui Zhang
- The Key Laboratory of Bionic Engineering of Ministry of Education and the College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, PR China
| | - Qingping Liu
- The Key Laboratory of Bionic Engineering of Ministry of Education and the College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, PR China
| | - Luquan Ren
- The Key Laboratory of Bionic Engineering of Ministry of Education and the College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, PR China
| | - Jincheng Wang
- Department of Orthopaedics, The second Hospital of Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
3
|
Kołkowska A, Michalska J, Zieliński R, Simka W. Electrochemical Polishing of Ti and Ti 6Al 4V Alloy in Non-Aqueous Solution of Sulfuric Acid. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2832. [PMID: 38930203 PMCID: PMC11205115 DOI: 10.3390/ma17122832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
This paper reports the results of our study on electrochemical polishing of titanium and a Ti-based alloy using non-aqueous electrolyte. It was shown that electropolishing ensured the removal of surface defects, thereby providing surface smoothing and decreasing surface roughness. The research was conducted using samples made of titanium and Ti6Al4V alloy, as well as implant system elements: implant analog, multiunit, and healing screw. Electropolishing was carried out under a constant voltage (10-15 V) with a specified current density. The electrolyte used contained methanol and sulfuric acid. The modified surface was subjected to a thorough analysis regarding its surface morphology, chemical composition, and physicochemical properties. Scanning electron microscope images and profilometer tests of roughness confirmed significantly smoother surfaces after electropolishing. The surface profile analysis of processed samples also yielded satisfactory results, showing less imperfections than before modification. The EDX spectra showed that electropolishing does not have significant influence on the chemical composition of the samples.
Collapse
Affiliation(s)
- Agata Kołkowska
- Department of Inorganic Chemistry, Analytical Chemistry, and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (A.K.); (J.M.)
- Chemistry Students Research Society, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Joanna Michalska
- Department of Inorganic Chemistry, Analytical Chemistry, and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (A.K.); (J.M.)
| | - Rafał Zieliński
- Stomatologia na Ksiezym Mlynie, 16D Tymienieckiego, 90-365 Lodz, Poland;
| | - Wojciech Simka
- Department of Inorganic Chemistry, Analytical Chemistry, and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (A.K.); (J.M.)
| |
Collapse
|
4
|
Duan X, Yang Y, Zhang T, Zhu B, Wei G, Li H. Research progress of metal biomaterials with potential applications as cardiovascular stents and their surface treatment methods to improve biocompatibility. Heliyon 2024; 10:e25515. [PMID: 38375258 PMCID: PMC10875388 DOI: 10.1016/j.heliyon.2024.e25515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Facing the growing issue of cardiovascular diseases, metallic materials with higher tensile strength and fatigue resistance play an important role in treating diseases. This review lists the advantages and drawbacks of commonly used medical metallic materials for vascular stents. To avoid post-procedural threats such as thrombosis and in-stent restenosis, surface treatments, and coating methods have been used to further improve the biocompatibility of these materials. Surface treatments including laser, plasma treatment, polishing, oxidization, and fluorination can improve biocompatibility by modifying the surface charges, surface morphology, and surface properties of the material. Coating methods based on polymer coatings, carbon-based coatings, and drug-functional coatings can regulate the surface properties, and also serve as an effective barrier to the interaction of metallic biomaterial surfaces with biomolecules, which can be used to improve corrosion resistance and stability, as well as improve their biocompatibility. Biocompatibility serves as the most fundamental property of cardiovascular stents, and maintaining the excellent and stable biocompatibility of cardiovascular stent surfaces is a current research bottleneck. Few reviews have been published on metallic biomaterials as cardiovascular stents and their surface treatments. For the purpose of advancing research on cardiovascular stents, common metal biomaterials, surface treatment methods, and coating methods to improve biocompatibility and comprehensive properties of the materials are described in this review. Finally, we suggest future directions for stent development, including continuously improving the durability and stability of permanent stents, accelerating the development of biodegradable stents, and strengthening feedback to improve the safety and reliability of cardiovascular stents.
Collapse
Affiliation(s)
- Xuejia Duan
- College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang 310018, China
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Yumeng Yang
- College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Benfeng Zhu
- College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Guoying Wei
- College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| |
Collapse
|
5
|
Joshua RJN, Raj SA, Hameed Sultan MT, Łukaszewicz A, Józwik J, Oksiuta Z, Dziedzic K, Tofil A, Shahar FS. Powder Bed Fusion 3D Printing in Precision Manufacturing for Biomedical Applications: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:769. [PMID: 38591985 PMCID: PMC10856375 DOI: 10.3390/ma17030769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 04/10/2024]
Abstract
Precision manufacturing requirements are the key to ensuring the quality and reliability of biomedical implants. The powder bed fusion (PBF) technique offers a promising solution, enabling the creation of complex, patient-specific implants with a high degree of precision. This technology is revolutionizing the biomedical industry, paving the way for a new era of personalized medicine. This review explores and details powder bed fusion 3D printing and its application in the biomedical field. It begins with an introduction to the powder bed fusion 3D-printing technology and its various classifications. Later, it analyzes the numerous fields in which powder bed fusion 3D printing has been successfully deployed where precision components are required, including the fabrication of personalized implants and scaffolds for tissue engineering. This review also discusses the potential advantages and limitations for using the powder bed fusion 3D-printing technology in terms of precision, customization, and cost effectiveness. In addition, it highlights the current challenges and prospects of the powder bed fusion 3D-printing technology. This work offers valuable insights for researchers engaged in the field, aiming to contribute to the advancement of the powder bed fusion 3D-printing technology in the context of precision manufacturing for biomedical applications.
Collapse
Affiliation(s)
- Rajan John Nekin Joshua
- Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India;
| | - Sakthivel Aravind Raj
- Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India;
| | - Mohamed Thariq Hameed Sultan
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Aerospace Malaysia Innovation Centre (944751-A), Prime Minister’s Department, MIGHT Partnership Hub, Jalan Impact, Cyberjaya 63000, Selangor, Malaysia
| | - Andrzej Łukaszewicz
- Institute of Mechanical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland;
| | - Jerzy Józwik
- Department of Production Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
- Institute of Technical Sciences and Aviation, University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland;
| | - Zbigniew Oksiuta
- Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland;
| | - Krzysztof Dziedzic
- Institute of Computer Science, Electrical Engineering and Computer Science Faculty, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
| | - Arkadiusz Tofil
- Institute of Technical Sciences and Aviation, University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland;
| | - Farah Syazwani Shahar
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
6
|
Prabhune A, Dey R. Green and sustainable solvents of the future: Deep eutectic solvents. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
7
|
Deep inside of the mechanism of electrochemical surface etching of α+β Ti6Al4V alloy in room-temperature deep eutectic solvent Ethaline. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Zaki S, Zhang N, Gilchrist MD. Electropolishing and Shaping of Micro-Scale Metallic Features. MICROMACHINES 2022; 13:468. [PMID: 35334760 PMCID: PMC8955333 DOI: 10.3390/mi13030468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Abstract
Electropolishing (EP) is most widely used as a metal finishing process. It is a non-contact electrochemical process that can clean, passivate, deburr, brighten, and improve the biocompatibility of surfaces. However, there is clear potential for it to be used to shape and form the topology of micro-scale surface features, such as those found on the micro-applications of additively manufactured (AM) parts, transmission electron microscopy (TEM) samples, micro-electromechanical systems (MEMs), biomedical stents, and artificial implants. This review focuses on the fundamental principles of electrochemical polishing, the associated process parameters (voltage, current density, electrolytes, electrode gap, and time), and the increasing demand for using environmentally sustainable electrolytes and micro-scale applications. A summary of other micro-fabrication processes, including micro-milling, micro-electric discharge machining (EDM), laser polishing/ablation, lithography (LIGA), electrochemical etching (MacEtch), and reactive ion etching (RIE), are discussed and compared with EP. However, those processes have tool size, stress, wear, and structural integrity limitations for micro-structures. Hence, electropolishing offers two-fold benefits of material removal from the metal, resulting in a smooth and bright surface, along with the ability to shape/form micro-scale features, which makes the process particularly attractive for precision engineering applications.zx3.
Collapse
Affiliation(s)
| | - Nan Zhang
- Center of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;
| | - Michael D. Gilchrist
- Center of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;
| |
Collapse
|
9
|
Abstract
Electropolishing of metal surfaces is a benign alternative to mechanical treatment. Ionic liquids are considered as green electrolytes for the electropolishing of metals. They demonstrate a number of advantages in comparison with acid aqueous solutions and other methods of producing smooth or mirror-like surfaces that are required by diverse applications (medical instruments, special equipment, implants and prostheses, etc.). A wide window of electrochemical stability, recyclability, stability and tunability are just a few benefits provided by ionic liquids in the title application. An overview of the literature data on electropolishing of such metals as Ti, Ni, Pt, Cu, Al, U, Sn, Ag, Nb, stainless steel and other alloys in ionic liquids is presented.
Collapse
|