1
|
Yao A, Wang Y, Yu J, Tian S, Zhan Y, Liao H, Lan J, Lin S. Fe-pillared montmorillonite functionalized chitosan/gelatin foams for efficient removal of organic pollutants by integration of adsorption and Fenton degradation. Carbohydr Polym 2023; 321:121265. [PMID: 37739494 DOI: 10.1016/j.carbpol.2023.121265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/16/2023] [Accepted: 08/04/2023] [Indexed: 09/24/2023]
Abstract
A Fe-pillared montmorillonite (Fe-MMT) functionalized bio-based foam (Fe-MMT@CS/G) was developed by using chitosan (CS) and gelatin (G) as the matrix for high-efficiency elimination of organic pollutants through the integration of adsorption and Fenton degradation. The results showed that the mechanical properties of as-obtained foam were strengthened by the addition of certain amounts of Fe-MMT. Interestingly, Fe-MMT@CS/G displayed efficient adsorption ability for charged pollutants under a wide range of pH. The adsorption processes of methyl blue (MB), methylene blue (MEB) and tetracycline hydrochloride (TCH) on Fe-MMT@CS/G were well described by the Freundlich isotherm model and pseudo-second-order kinetic model. The maximum adsorption capacities were 2208.24 mg/g for MB, 1167.52 mg/g for MEB, and 806.31 mg/g for TCH. Electrostatic interactions, hydrogen bonding and van der Waals forces probably involved the adsorption process. As expected, this foam could exhibit better removal properties toward both charged and uncharged organic pollutants through the addition of H2O2 to trigger the Fenton degradation reaction. For non-adsorbable and uncharged bisphenol A (BPA), the removal efficiency was dramatically increased from 1.20 % to 92.77 % after Fenton degradation. Additionally, it presented outstanding recyclability. These results suggest that Fe-MMT@CS/G foam is a sustainable and efficient green material for the alleviation of water pollution.
Collapse
Affiliation(s)
- Anrong Yao
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yafang Wang
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Jincheng Yu
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Siyao Tian
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yifei Zhan
- Department of Wood Technology and Wood-based Composites, Sustainable Materials and Chemistry, University of Göttingen, Göttingen, Germany
| | - Hongjiang Liao
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Jianwu Lan
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China.
| | - Shaojian Lin
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Grassi P, Georgin J, S P Franco D, Sá ÍMGL, Lins PVS, Foletto EL, Jahn SL, Meili L, Rangabhashiyam S. Removal of dyes from water using Citrullus lanatus seed powder in continuous and discontinuous systems. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:82-97. [PMID: 37345434 DOI: 10.1080/15226514.2023.2225615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The objective of this study is to develop a low-cost biosorbent using residual seeds of the Citrullus lanatus fruit for the removal of cationic dyes. Physicochemical parameters such as pH, adsorbent mass, contact time, and temperature were evaluated for their effects on dye removal. The biosorbent is composed of lignin and cellulose, exhibiting a highly heterogeneous surface with randomly distributed cavities and bulges. The adsorption of both dyes was most effective at natural pH with a dosage of 0.8 g L-1. Equilibrium was reached within 120 min, regardless of concentration, indicating rapid kinetics. The Elovich model and pseudo-second-order kinetics were observed for crystal violet and basic fuchsin dye, respectively. The Langmuir model fitted well with the equilibrium data of both dyes. However, the increased temperature had a negative impact on dye adsorption. The biosorbent also demonstrated satisfactory performance (R = 43%) against a synthetic mixture of dyes and inorganic salts, with a small mass transfer zone. The adsorption capacities for crystal violet and basic fuchsin dye were 48.13 mg g-1 and 44.26 mg g-1, respectively. Thermodynamic studies confirmed an exothermic nature of adsorption. Overall, this low-cost biosorbent showed potential for the removal of dyes from aqueous solutions.
Collapse
Affiliation(s)
- Patricia Grassi
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC, Barranquilla, Colombia
| | - Dison S P Franco
- Department of Civil and Environmental, Universidad de la Costa, CUC, Barranquilla, Colombia
| | - Ícaro M G L Sá
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Maceió, Brazil
| | - Pollyanna V S Lins
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Maceió, Brazil
| | - Edson L Foletto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Sérgio L Jahn
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Lucas Meili
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Maceió, Brazil
| | - S Rangabhashiyam
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
3
|
Adsorption Characteristics and Electrochemical Behaviors of Congo Red onto Magnetic MgxCo(1−x)Fe2O4 Nanoparticles Prepared via the Alcohol Solution Combustion Process of Nitrate. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
4
|
Wu Q, Jiang F, Feng G, Wang S, Miao L, Jiang W, Liang J, Liu J. Nonhydrolytic sol-gel in-situ synthesis of high performance MgAl2O4/C adsorbent materials. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
5
|
High-Density Gold Nanoparticles Implanted on Mg/Fe LDH Nanoflowers Assisted Lateral Flow Immuno-Dipstick Assay for Visual Detection of Human Epididymal Protein 4. BIOSENSORS 2022; 12:bios12100797. [PMID: 36290937 PMCID: PMC9599355 DOI: 10.3390/bios12100797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 12/24/2022]
Abstract
The timelier and more accurate the diagnosis of the disease, the higher the patient’s survival rate. Human epididymal protein 4 (HE4) has great significance as a biomarker of concern for reflecting ovarian cancer. Herein, we prepared a novel optical label that can be used in lateral-flow immuno-dipstick assay (LFIA) for sensitive visual detection of HE4 by implanting hydrophobic gold nanoparticles (Au NPs) at high density in Mg/Fe LDH nanoflowers (MF NFs). MF NFs with large specific surface area, high porosity, abundant active binding sites, and stable structure were employed for the first time as templates to directly anchor Au NPs in the organic phase. After simple modification with an optimized amount of branched polyethyleneimine, not only could MF@Au NFs be dispersed in the aqueous phase, but also amino functional groups were introduced on its surface to facilitate subsequent antibody coupling steps. The limit of detection reaches 50 pM with a detection range of 50 to 1000 pM. This work initially explored how MF NFs can be used to load signal labels with ideal stability and signal amplification capabilities, which greatly improves the practicability of LFIA and highlights its important role in the field of rapid diagnostics.
Collapse
|
6
|
Damiri F, Andra S, Kommineni N, Balu SK, Bulusu R, Boseila AA, Akamo DO, Ahmad Z, Khan FS, Rahman MH, Berrada M, Cavalu S. Recent Advances in Adsorptive Nanocomposite Membranes for Heavy Metals Ion Removal from Contaminated Water: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5392. [PMID: 35955327 PMCID: PMC9369589 DOI: 10.3390/ma15155392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 05/31/2023]
Abstract
Water contamination is one of the most urgent concerns confronting the world today. Heavy metal poisoning of aquatic systems has piqued the interest of various researchers due to the high toxicity and carcinogenic consequences it has on living organisms. Due to their exceptional attributes such as strong reactivity, huge surface area, and outstanding mechanical properties, nanomaterials are being produced and employed in water treatment. In this review, recent advances in the use of nanomaterials in nanoadsorptive membrane systems for wastewater treatment and heavy metal removal are extensively discussed. These materials include carbon-based nanostructures, metal nanoparticles, metal oxide nanoparticles, nanocomposites, and layered double hydroxide-based compounds. Furthermore, the relevant properties of the nanostructures and the implications on their performance for water treatment and contamination removal are highlighted. The hydrophilicity, pore size, skin thickness, porosity, and surface roughness of these nanostructures can help the water permeability of the nanoadsorptive membrane. Other properties such as surface charge modification and mechanical strength can improve the metal adsorption effectiveness of nanoadsorptive membranes during wastewater treatment. Various nanocomposite membrane fabrication techniques are also reviewed. This study is important because it gives important information on the roles of nanomaterials and nanostructures in heavy metal removal and wastewater treatment.
Collapse
Affiliation(s)
- Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| | - Swetha Andra
- Department of Chemistry, Rajalakshmi Institute of Technology, Chennai 600124, Tamil Nadu, India
| | | | - Satheesh Kumar Balu
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Raviteja Bulusu
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Amira A. Boseila
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR), Cairo 12611, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Sinai 41636, Egypt
| | - Damilola O. Akamo
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
7
|
Ge J, Lian L, Wang X, Cao X, Gao W, Lou D. Coating layered double hydroxides with carbon dots for highly efficient removal of multiple dyes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127613. [PMID: 34750003 DOI: 10.1016/j.jhazmat.2021.127613] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/15/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Layered double hydroxides (LDHs) and layered double oxides (LDOs) are desirable adsorption materials for printing and wastewater treatment owing to their outstanding anion exchange abilities, abundant active sites, and eco-friendly nature. In this study, a versatile LDO hybrid coated with carbon dots (CDs@MgAl-LDO) was constructed by modifying sodium dodecylbenzene sulfonate on the surface of MgAl-LDH as a carbon precursor, followed by ligand carbonization and hydrotalcite dehydration at 450 °C under N2 flow. CDs@MgAl-LDO displayed a hexagonal lamellar architecture with a plate lateral size of approximately 500 nm. It had a higher BET specific surface area (28.61 m2/g) than MgAl-LDO (11.48 m2/g). X-ray diffraction analysis revealed that CDs@MgAl-LDO maintained the "memory effect" of LDOs and could retrieve the original structure when dispersed in water. Moreover, the modified carbon dots change the intrinsically hydrophilic nature of LDOs and help to improve the affinity for organic contaminants, including both cationic and anionic dyes. The adsorption of dyes on CDs@MgAl-LDO followed a pseudo-second-order kinetic model with correlation coefficients (R2) ranging from 0.9901 to 0.9911 and exhibited Freundlich-type heterogeneous adsorption. It showed superior adsorption performance for three dyes, with the maximum adsorption capacity of 3628.9-5174.1 mg/g, thereby outperforming previously reported LDH-based adsorbents. This work developed a facile approach for preparing new carbon dots-LDH hybrids for the highly efficient removal of multiple dyes.
Collapse
Affiliation(s)
- Jiahui Ge
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, No. 45 Chengde Street, Jilin 132022, PR China
| | - Lili Lian
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, No. 45 Chengde Street, Jilin 132022, PR China.
| | - Xiyue Wang
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, No. 45 Chengde Street, Jilin 132022, PR China
| | - Xueling Cao
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, No. 45 Chengde Street, Jilin 132022, PR China
| | - Wenxiu Gao
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, No. 45 Chengde Street, Jilin 132022, PR China
| | - Dawei Lou
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, No. 45 Chengde Street, Jilin 132022, PR China.
| |
Collapse
|
8
|
Sha Z, Fan J, Lu J, He H, Hong B, Fei X, Zhu M. In‐Situ
Stabilizing Nano‐Ag onto Nonwoven Fabrics via a Mussel‐Inspired Approach for Continuous‐Flow Catalysis Reduction of Organic Dyes. ChemistrySelect 2022. [DOI: 10.1002/slct.202103585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhou Sha
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University 2999 North Renmin Road Shanghai 201620 China
| | - Jiahui Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University 2999 North Renmin Road Shanghai 201620 China
| | - Jian Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University 2999 North Renmin Road Shanghai 201620 China
| | - Huan He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University 2999 North Renmin Road Shanghai 201620 China
| | - Bo Hong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University 2999 North Renmin Road Shanghai 201620 China
| | - Xiang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University 2999 North Renmin Road Shanghai 201620 China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University 2999 North Renmin Road Shanghai 201620 China
| |
Collapse
|
9
|
Hien VX, Dong VT, Vuong DD, Chien ND. From Microurchins to V 2O 5 Nanowalls: Improved Synthesis through Vanadium Powder and Fast, Selective Adsorption of Methylene Blue. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:264-274. [PMID: 34958226 DOI: 10.1021/acs.langmuir.1c02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Research on synthesizing micro- and nanosized materials directly from metals has attracted considerable attention because of its simplicity, ability to synthesize in large quantities, and high uniformity. This study proposes a simple method to synthesize high-uniformity or high-density V2O5 microurchins and nanowalls directly from vanadium powder. Remarkably, the synthesis condition of 60 °C for 1 h is considered to be an optimal condition to convert metals into micro- or nano-oxides. The as-synthesized V2O5 nanowalls can adsorb nearly 90% of methylene blue in the dark in 3 min. The adsorption selectivity of these samples with several pigments is investigated.
Collapse
Affiliation(s)
- Vu Xuan Hien
- School of Engineering Physics, Hanoi University of Science and Technology, 01 Dai Co Viet Street, Hanoi, 100000, Vietnam
| | - Vu Thanh Dong
- School of Engineering Physics, Hanoi University of Science and Technology, 01 Dai Co Viet Street, Hanoi, 100000, Vietnam
| | - Dang Duc Vuong
- School of Engineering Physics, Hanoi University of Science and Technology, 01 Dai Co Viet Street, Hanoi, 100000, Vietnam
| | - Nguyen Duc Chien
- School of Engineering Physics, Hanoi University of Science and Technology, 01 Dai Co Viet Street, Hanoi, 100000, Vietnam
| |
Collapse
|
10
|
Lu JJ, Liang JJ, Lin HY, Liu QQ, Cui ZW, Wang XL. Four Anderson-type [TeMo 6O 24] 6−-based metal–organic complexes with a new bis(pyrimidine)-bis(amide): multifunctional electrochemical and adsorption performances. CrystEngComm 2022. [DOI: 10.1039/d2ce00504b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Four isostructural Anderson-type POM-based metal–organic complexes derived from a new bis(pyrimidine)-bis(amide) ligand were synthesized, showing multifunctional electrochemical sensing activities and good adsorption performances for organic dyes.
Collapse
Affiliation(s)
- Jun-Jun Lu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Ju-Ju Liang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Hong-Yan Lin
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Qian-Qian Liu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Zi-Wei Cui
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiu-Li Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
11
|
Senguttuvan S, Janaki V, Senthilkumar P, Kamala-Kannan S. Polypyrrole/zeolite composite - A nanoadsorbent for reactive dyes removal from synthetic solution. CHEMOSPHERE 2022; 287:132164. [PMID: 34509762 DOI: 10.1016/j.chemosphere.2021.132164] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 05/26/2023]
Abstract
Synthetic dyes are among the common pollutants in the ecosystem. In the present study, polypyrrole/zeolite (PPy/Ze) nanocomposite was prepared and subsequently assessed for the removal of Reactive blue (RB) and Reactive red (RR) from synthetic solution. The polymeric PPy/Ze composite was synthesized by chemical oxidation of pyrrole in the presence of zeolite. Electron microscopic images (transmission and scanning) indicate that PPy/Ze nanocomposite was spherical in shape with an average size of 40-80 nm. The characteristic pyrrole and zeolite Fourier transform infrared spectrum peaks (1542 cm-1, 1463 cm-1, 1156 cm-1, 1054 cm-1, 879 cm-1 and 756 cm-1) in the nanocomposite confirmed zeolite integration with polypyrrole. Experimental variables such as PPy/Ze nanocomposite dose, initial RB and RR concentration, reaction temperature and pH were optimized. The PPy/Ze nanocomposite adsorbed 86.2% of RB and 88.3% of RR from synthetic solution at optimal conditions (pH 9, initial RR or RB concentration, 75 mg/l; PPy/Ze dose, 1.8 g/l; and temperature, 50 °C). Freundlich isotherm model and pseudo-second-order kinetics showed better fit for both RB and RR removal from synthetic solution. X-ray diffractogram confirmed the amorphous nature of PPy/Ze nanocomposite and that it was not altered even after dye adsorption. Adsorption-desorption studies showed that the composite has satisfactory adsorption potential for four cycles. The results show that the PPy/Ze nanocomposite could be used for the removal of dyes from wastewaters.
Collapse
Affiliation(s)
- S Senguttuvan
- Department of Environmental Science, School of Energy and Environmental Sciences, Periyar University, Salem, 636011, Tamil Nadu, India
| | - V Janaki
- PG and Research Department of Chemistry, Sri Sarada College for Women, Salem, 636016, Tamil Nadu, India
| | - P Senthilkumar
- Department of Environmental Science, School of Energy and Environmental Sciences, Periyar University, Salem, 636011, Tamil Nadu, India.
| | - S Kamala-Kannan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, South Korea.
| |
Collapse
|
12
|
Lei Y, Hao Y, Cheng H, Ma J, Qin Y, Kong Y, Komarneni S. Degradation of Orange II by Fe2O3 and CeO2 nanocomposite when assisted by NaHSO3. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Alguacil FJ, López FA. Organic Dyes versus Adsorption Processing. Molecules 2021; 26:5440. [PMID: 34576914 PMCID: PMC8469008 DOI: 10.3390/molecules26185440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Even in the first quarter of the XXI century, the presence of organic dyes in wastewaters was a normal occurrence in a series of countries. As these compounds are toxic, their removal from these waters is a necessity. Among the separation technologies, adsorption processing appeared as one of the most widely used to reach this goal. The present work reviewed the most recent approaches (first half of the 2021 year) regarding the use of a variety of adsorbents in the removal of a variety of organic dyes of different natures.
Collapse
Affiliation(s)
| | - Félix A. López
- National Center for Metallurgical Researcher (CENIM), Spanish National Research Council (CSIC), Avda. Gregorio del Amo 8, 28040 Madrid, Spain;
| |
Collapse
|