1
|
Ding Y, Hu Y, Zhao Y, Li Y, Huang Z, Chakir S, Xu Y, Sun D, Liu S, Wang H, Wang X. Plasma Tailoring of NH 2-MIL-53 with Enhanced Fluorescence Emission for Simultaneous Detection of Multiple Heavy Metals in Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62497-62508. [PMID: 39498892 DOI: 10.1021/acsami.4c09330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Indium, copper, and mercury are important raw materials in the electronics industry and often coexist in factory wastewater. Therefore, the development of a highly sensitive and selective method for the simultaneous detection of these heavy metal ions is of great significance for water quality monitoring and environmental protection. Herein, we report a NH2-MIL-53 fluorescent probe for the simultaneous detection of trace In3+, Cu2+, and Hg2+ in water. After a low-temperature NH3 plasma tailoring treatment for grafting electron-donor amine groups, the obtained NH2-MIL-53-M exhibited enhanced fluorescence emission intensity (∼6 times) coupled with selective adsorption of In3+, Cu2+, and Hg2+. This quenched the NH2-MIL-53-M fluorescence and allowed to significantly increase the selectivity and sensitivity for detection of In3+, Cu2+, and Hg2+. The fluorescence quenching constant (Ksv) values were 2.23 × 105, 1.00 × 105, and 2.74 × 104 M-1, while the limit of detection (LODs) values were 0.06, 0.14, and 0.53 μM, for In3+, Cu2+, and Hg2+, respectively. The concentrations of In3+, Cu2+, and Hg2+ in real environmental samples could be determined by addition of appropriate masking agents, and the recoveries were within the range of 94-110%. This study not only supplied a strategy for constructing a highly sensitive and selective fluorescent probe but also established a platform for simultaneous detection of multiple heavy metal ions in water.
Collapse
Affiliation(s)
- Yu Ding
- Anhui Province International Research Center on Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China
| | - Yuyang Hu
- Anhui Province International Research Center on Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China
| | - Yangyang Zhao
- Anhui Province International Research Center on Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China
| | - Yaru Li
- Anhui Province International Research Center on Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China
| | - Ziteng Huang
- Anhui Province International Research Center on Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China
| | - Soufian Chakir
- Anhui Province International Research Center on Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China
| | - Yongfei Xu
- Anhui Construction Engineering Inspection Technology Group Co., Ltd., Hefei 230031, P. R. China
| | - Daosheng Sun
- Anhui Province International Research Center on Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China
| | - Songqin Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Xianbiao Wang
- Anhui Province International Research Center on Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China
| |
Collapse
|
2
|
He M, Zhu X, Chen Z, Wang C, Mi L, Shang Y, Zheng J, Xiang C, Song H, Liu X. Epitaxial Growth of Multicolor Lanthanide MOFs by Ultrasound for Photonic Barcodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60884-60889. [PMID: 39455411 DOI: 10.1021/acsami.4c16625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Epitaxially grown lanthanide metal-organic frameworks (Ln MOFs) exhibit multicolor and characteristic Ln emission with sharp emission bands, which are of great value in the field of information security and anti-counterfeiting. Epitaxial growth of Ln MOFs is generally achieved by solvothermal or hydrothermal methods, which suffer from challenges such as high reaction temperature and long growth time. Here, we report the fast epitaxial growth of multicolor lanthanide MOFs by an ultrasonic method at room temperature. The TbSmSQ shows a core-shell type structure with the Tb ion in the core and Sm in the shell within one crystal and exhibits the characteristic emission lines of Tb and Sm, respectively. The nonporous structure and large distance between lanthanide ions effectively avoid the influence of solvent vapor on the intensity and color of luminescence emission. Its application as photonic barcodes has been studied. This work demonstrates the feasibility of epitaxial growth of multicolor Ln MOFs by the ultrasonic method and its value for anti-counterfeiting and information security applications.
Collapse
Affiliation(s)
- Meng He
- College of New Energy, Xi'an Shiyou University, 710065 Xi'an, China
| | - Xin Zhu
- College of New Energy, Xi'an Shiyou University, 710065 Xi'an, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Channa Wang
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Lijie Mi
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Yu Shang
- College of New Energy, Xi'an Shiyou University, 710065 Xi'an, China
| | - Jialu Zheng
- School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Changsheng Xiang
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Haiyang Song
- College of New Energy, Xi'an Shiyou University, 710065 Xi'an, China
| | - Xue Liu
- State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, 710049 Xi'an, China
| |
Collapse
|
3
|
Youssif MM, El-Attar HG, Małecki S, Włoch G, Czapkiewicz M, Kornaus K, Wojnicki M. Mercury Ion Selective Adsorption from Aqueous Solution Using Amino-Functionalized Magnetic Fe 2O 3/SiO 2 Nanocomposite. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4254. [PMID: 39274644 PMCID: PMC11396377 DOI: 10.3390/ma17174254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
This study focuses on the development of new amino-functionalized magnetic Fe2O3/SiO2 nanocomposites with varying silicate shell ratios (1:0.5, 1:1, and 1:2) for the efficient elimination of Hg2+ ions found in solutions. The Fe2O3/SiO2-NH2 adsorbents were characterized for their structural, surface, and magnetic properties using various techniques, including Fourier transform infrared spectrum (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Braunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), zeta-potential, and particle size measurement. We investigated the adsorption circumstances, such as pH, dosage of the adsorbent, and duration of adsorption. The pH value that yielded the best results was determined to be 5.0. The Fe2O3/SiO2-NH2 adsorbent with a silicate ratio of (1:2) exhibited the largest amount of adsorption capacity of 152.03 mg g-1. This can be attributed to its significantly large specific surface area of 100.1 m2 g-1, which surpasses that of other adsorbents. The adsorbent with amino functionalization demonstrated a strong affinity for Hg2+ ions due to the chemical interactions between the metal ions and the amino groups on the surface. The analysis of adsorption kinetics demonstrated that the adsorption outcomes adhere to the pseudo-second-order kinetic model. The study of adsorption isotherms revealed that the adsorption followed the Langmuir model, indicating that the adsorption of Hg2+ ions with the adsorbent occurred as a monomolecular layer adsorption process. Furthermore, the thermodynamic analyses revealed that the adsorption of Hg2+ ions using the adsorbent was characterized by a spontaneous and endothermic process. Additionally, the adsorbent has the ability to selectively extract mercury ions from a complex mixture of ions. The Fe2O3/SiO2-NH2 nanocomposite, which is loaded with metal, can be easily recovered from a water solution due to its magnetic properties. Moreover, it can be regenerated effortlessly through acid treatment. This study highlights the potential use of amino-functionalized Fe2O3/SiO2 magnetic nanoparticles as a highly efficient, reusable adsorbent for the removal of mercury ions from contaminated wastewater.
Collapse
Affiliation(s)
- Mahmoud M Youssif
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Heba G El-Attar
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Stanisław Małecki
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
| | - Grzegorz Włoch
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
| | - Maciej Czapkiewicz
- Faculty of Computer Science, Electronics and Telecommunications, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Kamil Kornaus
- Faculty of Materials Science and Ceramics, Department of Ceramics and Refractory Materials, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
4
|
Li W, Zhang J, Fan L, Zhao Y, Sun C, Li W, Chang Z. Construction of a novel Eu-MOF material based on different detection mechanisms and its application in sensing pollutants aniline, F - and Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124223. [PMID: 38574609 DOI: 10.1016/j.saa.2024.124223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
Aniline is an organic pollutant with carcinogenicity and teratogenicity, while F- and Hg2+ are toxic ions that are easily soluble in water. When they are released to the environment, they will pose a threat to human health. Designing a material that can simultaneously detect three types of pollutants is of great significance. In this paper, a novel rare earth metal organic framework material (Eu-MOF) with three-dimensional structure based on 1-methylimidazole-4,5-dicarboxylic acid was synthesized for the first time through solvent thermal method. It has excellent luminescent performance and can be used as a multifunctional fluorescent probe to detect aniline, F-, and Hg2+ based on photoinduced electron transfer, energy competitive absorption, and ion exchange mechanisms, with detection limits of 1.79 × 10-8, 8.13 × 10-8, and 8.83 × 10-7 M, respectively. It is worth noting that Eu-MOF can detect F- and Hg2+ in real water samples, such as lake water and green tea water, with favorable recovery rates.
Collapse
Affiliation(s)
- Wenqing Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jingyue Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Linhan Fan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yun Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Changyan Sun
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Wenjun Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhidong Chang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
5
|
Lian X, Chang R, Huang G, Peng Y, Wang K, Zhang J, Yao B, Niu H. Multicolor Fluorescent Inks Based on Lanthanide Hybrid Organogels for Anticounterfeiting and Logic Circuit Design. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6133-6142. [PMID: 38272837 DOI: 10.1021/acsami.3c17793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
With the rapid development of information technology, the encrypted storage of information is becoming increasingly important for human life. The luminescent materials with a color-changed response under physical or chemical stimuli are crucial for information coding and anticounterfeiting. However, traditional fluorescent materials usually face problems such as a lack of tunable fluorescence, insufficient surface-adaptive adhesion, and strict synthesis conditions, hindering their practical applications. Herein, a series of luminescent lanthanide hybrid organogels (Ln-MOGs) were rapidly synthesized using a simple method at room temperature through the coordination between lanthanide ions and 2,6-pyridinedicarboxylic acid and 5-aminoisophthalic acid. And the multicolor fluorescent inks were also prepared based on the Ln-MOG and hyaluronic acid, with the advantages of being easy to write, color-adjustable, and water-responsive discoloration, which has been applied to paper-based anticounterfeiting technology. Inspired by the responsiveness of the fluorescent inks to water, we designed a logic system that can realize single-input logic operations (NOT and PASS1) and double-input logic operations (NAND, AND, OR, NOR, XOR). The encryption of a binary code can be actualized utilizing different luminescent response modes based on the logic circuit system. By adjusting the energy sensitization and luminescence mechanism of lanthanide ions in the gel structure, the information reading and writing ability of the fluorescent inks were verified, which has great potential in the field of multicolor pattern anticounterfeiting and information encryption.
Collapse
Affiliation(s)
- Xiao Lian
- Key Laboratory of Functional Inorganic Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Rui Chang
- Key Laboratory of Functional Inorganic Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Gang Huang
- Key Laboratory of Functional Inorganic Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Yanqiu Peng
- Key Laboratory of Functional Inorganic Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Kaixuan Wang
- School of Materials Science & Engineering, Anhui University, Hefei 230601, China
| | - Juzhou Zhang
- China National Center for Quality Supervision and Test of Agricultural-Avocation Processed Food, Anhui Provincial Institute for Food and Drug Test, Hefei 230051, China
| | - Bangben Yao
- Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, China
| | - Helin Niu
- Key Laboratory of Functional Inorganic Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
6
|
Zhang C, Lu K, Li L, Lei W, Xia M, Wang F. A water-stabilized Tb-MOF can be used as a sensitive and selective fluorescence sensor for the detection of oxytetracycline hydrochloride. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123379. [PMID: 37729814 DOI: 10.1016/j.saa.2023.123379] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/06/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Oxytetracycline hydrochloride (OTC) is a commonly used over-the-counter antibiotic, valued for its potent antibacterial properties. However, the inappropriate and excessive use of OTC can result in the accumulation of the drug in both the environment and human body, causing significant harm to ecosystems and human health. Therefore, the development of a fast and sensitive method for detecting OTC is of great significance. Lanthanide metal-organic frameworks (LnMOFs) can effectively excite lanthanide metals to emit long-lifetime, narrow and stable fluorescence based on the antenna effect, but their application in fluorescence sensing is rarely reported. In this work, a strongly fluorescent material Tb-MOF was synthesized by a facile solvothermal method using 1,2,4,5-phenylenetetracarboxylic acid (H4btec) and 1,10-phenanthroline (1,10-phen) as organic ligands and lanthanide metal Tb as the luminescent center. Tb-MOF is a stable material in water and shows excellent linearity with OTC in the concentration range of 0 ∼ 70 μM, with low detection limit (0.12 μM) and luminescence color transition from bright green to dark green during the detection process. X-ray diffraction, UV-vis absorption and fluorescence lifetime analyses revealed that the fluorescence quenching of Tb-MOF by OTC is caused by the inner filter effect in static quenching. Test strips for OTC detection were successfully prepared using Tb-MOF. These strips are not only low cost and easy to prepare but can also be used as portable sensing devices that can be easily distinguished by the naked eye during OTC testing. This study not only presents a fluorescent probe for the detection of OTC in water but also offers a practical method for converting fluorescent luminescent materials into functional devices for OTC detection.
Collapse
Affiliation(s)
- Ciyang Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Keren Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Linrui Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
7
|
Zhang C, Wu Y, Hong X, Lei W, Xia M, Wang F. Double-emitting lanthanide metal-organic frameworks composed of Eu/Tb doping and ratiometric fluorescence detection of nitrofurazone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123326. [PMID: 37683436 DOI: 10.1016/j.saa.2023.123326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/06/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Lanthanide metal-organic frameworks (LnMOFs) have substantial potential in luminescence due to their unique antenna effect. Nevertheless, the single emission is susceptible to pseudo-signals caused by external environmental conditions, which significantly threaten the accurate measurement of the concentration. In this case, we prepared a dual-emission fluorescent probe {EuxTb1-x(NH2-BDC)3(DMF)4·2DMF}∞ (NH2-BDC = Diaminoterephthalic acid, DMF = N,N-dimethylformamide). The stable dual-emission signal provides a superior signal output for detecting nitrofurazone (NFZ), which is detected by the probe with excellent fluorescence for 0-10 μM NFZ. In the investigation of the detection mechanism, it is speculated that NFZ incorporates with probe to generate a novel complex. Furthermore, The UV absorption curves of the novel complexes and NFZ overlap extensively with those of the probe. The addition of NFZ attenuates the characteristic luminescence of Eu and Tb by competing for the absorption of the excitation light of the probe. The probe has exhibits rapid response, excellent sensitivity, visual detection and a meagre detection limit (LOD = 0.013 μM) for the detection of NFZ. This work not only broadens the application of LnMOFs in the field of ratiometric detection but also provides a favorable fluorescent probe for the quantitative detection of NFZ.
Collapse
Affiliation(s)
- Ciyang Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yi Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xianyong Hong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
8
|
Cheng X, Luo T, Chu F, Feng B, Zhong S, Chen F, Dong J, Zeng W. Simultaneous detection and removal of mercury (II) using multifunctional fluorescent materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167070. [PMID: 37714350 DOI: 10.1016/j.scitotenv.2023.167070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Environmental problems caused by mercury ions are increasing due to growing industrialization, poor enforcement, and inefficient pollutant treatment. Therefore, detecting and removing mercury from the ecological chain is of utmost significance. Currently, a wide range of small molecules and nanomaterials have made remarkable progress in the detection, detoxification, adsorption, and removal of mercury. In this review, we summarized the recent advances in the design and construction of multifunctional materials, detailed their sensing and removing mechanisms, and discussed with emphasis the advantages and disadvantages of different types of sensors. Finally, we elucidated the problems and challenges of current multifunctional materials and further pointed out the direction for the future development of related materials. This review is expected to provide a guideline for researchers to establish a robust strategy for the detection and removal of mercury ionsin the environment.
Collapse
Affiliation(s)
- Xiang Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Ting Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Feiyi Chu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Shibo Zhong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China.
| |
Collapse
|
9
|
Li J, Lin G, Tan F, Fu L, Zeng B, Wang S, Hu T, Zhang L. Selective adsorption of mercury ion from water by a novel functionalized magnetic Ti based metal-organic framework composite. J Colloid Interface Sci 2023; 651:659-668. [PMID: 37562307 DOI: 10.1016/j.jcis.2023.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
In the context of industrialization and severe wastewater pollution, mercury ions pose a major threat due to their high toxicity. However, traditional adsorbents and common metal-organic framework (MOF) materials have limited effectiveness. This study focuses on combining magnetic materials with functionalized titanium-based MOF composite (SNN-MIL-125(Ti)@Fe3O4) to improve mercury ion adsorption. Through comprehensive characterization and analysis, the adsorption performance and mechanism of the material were studied. The optimal adsorption of the material was achieved at pH 5, exhibiting a pseudo-second-order adsorption model and the Hill theoretical capacity of 668.98 mg/g. Hill and Tempkin models confirmed the presence of chemical and physical adsorption sites on the material surface. Thermodynamic experiments showed a spontaneous endothermic process. Despite the presence of interfering ions, the material exhibited high selectivity for mercury ions. After four cycles, adsorption performance decreased by only 8%, indicating excellent reusability. Nitrogen- and sulfur-containing functional groups played a key role in mercury ion adsorption. In conclusion, SNN-MIL-125(Ti)@Fe3O4, as a magnetic MOF adsorption material, showed potential for effective remediation of mercury-contaminated wastewater. This study contributes to the development of efficient adsorption materials and enhances the understanding of their mechanism.
Collapse
Affiliation(s)
- Jing Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Guo Lin
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| | - Fangguan Tan
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Likang Fu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Biao Zeng
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Shixing Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Tu Hu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Libo Zhang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| |
Collapse
|
10
|
Liu S, Liu W, Sun Y, Liu W. Construction of High Quantum Yield Lanthanide Luminescent MOF Platform by In Situ Doping and Its Temperature Sensing Performance. Inorg Chem 2023. [PMID: 37307418 DOI: 10.1021/acs.inorgchem.3c00498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lanthanide luminescent MOF materials show excellent luminescent properties. However, obtaining lanthanide luminescent MOFs with high quantum yield is a challenging research. A novel bismuth-based metal-organic framework [Bi(SIP)(DMF)2] was constructed by solvothermal method, utilizing 5-sulfoisophthalic acid monosodium salt (NaH2SIP) and Bi(NO3)3·5H2O. Thereafter, doped MOFs (Ln-Bi-SIP, Ln = Eu, Tb, Sm, Dy, Yb, Nd, Er) with different luminescent properties have been obtained by in situ doping with different lanthanide metal ions, among which Eu-Bi-SIP, Tb-Bi-SIP, Sm-Bi-SIP, and Dy-Bi-SIP have high quantum yield. What is special is that the doping amount of Ln3+ ions is very low, and the doped MOF can achieve high luminescence quantum yields. EuTb-Bi-SIP obtained by Eu3+/Tb3+ codoping and Dy-Bi-SIP exhibit good temperature sensing performance over a wide temperature range with the maximum sensitivity Sr of 1.6%·K-1 (433 K) and 2.6%·K-1, respectively (133 K), while the cycling experiments also show good repeatability in the assay temperature range. Finally, considering the practical application value, EuTb-Bi-SIP was blended with an organic polymer poly(methyl methacrylate) (PMMA) to produce a thin film, which shows different color changes at different temperatures.
Collapse
Affiliation(s)
- Shiying Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, China
| | - Wei Liu
- Institute of National Nuclear Industry, Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 Lanzhou, China
| | - Yiliang Sun
- Institute of National Nuclear Industry, Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 Lanzhou, China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, China
| |
Collapse
|
11
|
Wang S, Wu H, Luo J, Han X, Liu M, Liu L. A multifunctional cucurbit[6]uril-based supramolecular assembly for fluorescence sensing of TNP and Ba 2+ and information encryption. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122835. [PMID: 37209472 DOI: 10.1016/j.saa.2023.122835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
Both nitroaromatic compounds (NACs) and heavy metal ions are accumulative high-risk environmental pollutants, so high-sensitivity detection of these environment pollutants is necessary. In this work, a cucurbit[6]uril (CB[6]) based luminescent supramolecular assembly [Na2K2(CB[6])2(DMF)2(ANS)(H2O)4](1) (CB[6] = cucurbit[6]uril, ANS2- = 8-Aminonaphthalene-1,3,6-trisulfonic acid ion) has been synthesized under solvothermal conditions, using ANS2- as a structural inducer. Performance studies have shown that 1 exhibits excellent chemical stability and easy regeneration ability. It can highly selective sensing of 2,4,6-trinitrophenol (TNP) through fluorescence quenching with a strong quenching constant (Ksv = 2.58 × 104 M-1). Additionally, the fluorescence emission of 1 can be effectively enhanced with Ba2+ in aqueous solution (Ksv = 5.57 × 103 M-1). More impressively, Ba2+@1 was successfully used as anti-counterfeiting fluorescent ink functional material with strong information encryption function. This work illustrates the application prospects of luminescent CB[6]-based supramolecular assembly in environmental pollutants detection and information anti-counterfeiting for the first time, which extends the multifunctional application scope of CB[6]-based supramolecular assembly.
Collapse
Affiliation(s)
- Shuo Wang
- School of Chemistry and Life Science, Advanced Institute of materials Science, Changchun University of Technology, Changchun 130012, PR China
| | - Haijiao Wu
- School of Chemistry and Life Science, Advanced Institute of materials Science, Changchun University of Technology, Changchun 130012, PR China
| | - Jieqian Luo
- School of Chemistry and Life Science, Advanced Institute of materials Science, Changchun University of Technology, Changchun 130012, PR China
| | - Xiaodong Han
- School of Chemistry and Life Science, Advanced Institute of materials Science, Changchun University of Technology, Changchun 130012, PR China
| | - Mei Liu
- School of Chemistry and Life Science, Advanced Institute of materials Science, Changchun University of Technology, Changchun 130012, PR China
| | - Lihui Liu
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, PR China.
| |
Collapse
|
12
|
Cao XQ, Wu WP, Li Q, Zheng TF, Chen YQ, Chen JL, Liu SJ, Wen HR. Selective recognition of Hg 2+ ions in aqueous solution by a Cd II-based metal-organic framework with good stability and vacant coordination sites. Dalton Trans 2023; 52:652-658. [PMID: 36537347 DOI: 10.1039/d2dt03386k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
A novel water-stable CdII-based metal-organic framework, namely {[Cd(BIBT)(TDC)]·2H2O}n (JXUST-28, BIBT = 4,7-bi(1H-imidazol-1-yl)benzo-[2,1,3]thiadiazole and H2TDC = 2,5-thiophenedicarboxylic acid), was synthesized using a mixed-ligand strategy. Structural analysis demonstrates that JXUST-28 exhibits a two-dimensional layer structure with 4-connected sql topology. Intriguingly, JXUST-28 presents good stability in boiling water (at least 5 days), common organic solvents and aqueous solutions with different pH values of 2-12 (more than 24 hours). Furthermore, fluorescence experiments revealed that JXUST-28 could sense Hg2+ ions in aqueous solution via a quenching effect with a detection limit of 0.097 μM. Meanwhile, JXUST-28 can also be regenerated at least 5 times to detect Hg2+ ions. In addition, light-emitting diode lamps, luminescent films, and test papers of JXUST-28 have been successfully developed for practical applications.
Collapse
Affiliation(s)
- Xiao-Qin Cao
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Wei-Peng Wu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Qiang Li
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Yong-Qiang Chen
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, Shanxi Province, P.R. China.
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| |
Collapse
|
13
|
Recent advances in removal of toxic elements from water using MOFs: A critical review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Analogize of metal-organic frameworks (MOFs) adsorbents functional sites for Hg2+ ions removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Zhao XY, Wang J, Yang QS, Fu DL, Jiang DK. A hydrostable samarium(III)-MOF sensor for the sensitive and selective detection of tryptophan based on a "dual antenna effect". ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3994-4000. [PMID: 34528942 DOI: 10.1039/d1ay01050f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tryptophan (Trp) is one of the essential amino acids, which plays important roles in biological systems and the normal growth of human beings, and it is of great significance to be able to detect Trp in a rapid, efficient, and sensitive way. Herein, a 3D network metal-organic framework ([Sm2(BTEC)1.5(H2O)8]·6H2O) with excellent thermal and water stability was synthesized by a hydrothermal method. Interestingly, it could discriminate Trp from other natural amino acids in aqueous solution through a significant fluorescence enhancement effect, and showed high detection sensitivity (LOD = 330 nM) and outstanding anti-interference ability. The sensor system was successfully applied to the detection of Trp in practical samples, so it was expected to be a sensitive and efficient Trp sensor. In addition, the sensing mechanism was explained in detail by a series of characterization methods combined with density functional theory (DFT). There were many coordination water molecules in the crystal structure of the complex. Based on the small steric hindrance and molecular structure of water molecules, it provided the possibility for coordination interaction between Trp and Sm3+. On the other hand, the triplet energy level (T1) of Trp matched with the 4G5/2 vibrational energy level of Sm3+, so Trp could be used as the second "antenna molecule" besides 1,2,4,5-benzenetetracarboxylic acid (H4BTEC). Therefore, it effectively broadened the way for Sm-MOF to absorb excitation light.
Collapse
Affiliation(s)
- Xiao-Yang Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China.
| | - Jia Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China.
| | - Qi-Shan Yang
- College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China.
| | - Dong-Lei Fu
- College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China.
| | - Dao-Kuan Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China.
| |
Collapse
|