1
|
Choi C, Choi J, Jo JS, Jeon GW, Lee KW, Park DH, Jang JW. Photoluminescence variations in organic fluorescent crystals by changing the surface energy of the substrate. J Colloid Interface Sci 2024; 663:379-386. [PMID: 38412723 DOI: 10.1016/j.jcis.2024.02.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
Organic fluorescent crystals were obtained using single-benzene-based diethyl 2,5-dihydroxyterephthalate (DDT) molecules through crystallization from a droplet of the DDT solution on an Au substrate. To control the size of the DDT crystals, the surface energy of the Au substrate was modified with air plasma treatment, producing a hydrophilic surface and a hydrophobic self-assembled monolayer (SAM) coating. The size of DDT crystals increased as the surface energy of the substrate decreased. The averaged cross-section area of the DDT crystals on the Au substrates increased in the order of the air-plasma-treated substrate (∼23.43 μm2) < pristine substrate (∼225.6 μm2) < hydrophobic SAM-coated substrate (∼2240 μm2). On the other hand, the main emission of the DDT crystals redshifted from blue to green as the crystal size increased, which is related to the aggregation of the DDT crystals. Moreover, the coffee-ring effect during the DDT crystallization was hindered by controlling the solvent evaporation conditions. As examples of the application of the proposed technique, patterned DDT crystals were obtained using selectively patterned hydrophobic and hydrophilic substrates.
Collapse
Affiliation(s)
- Chiwon Choi
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Jinho Choi
- Department of Chemical Engineering, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Sik Jo
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Gi Wan Jeon
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyu Won Lee
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Dong Hyuk Park
- Department of Chemical Engineering, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea.
| | - Jae-Won Jang
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
2
|
Ozler G, Grosshans H. Airborne virus transmission: Increased spreading due to formation of hollow particles. ENVIRONMENTAL RESEARCH 2023; 237:116953. [PMID: 37648186 DOI: 10.1016/j.envres.2023.116953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/30/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
The globally supported social distancing rules to prevent airborne transmission of COVID-19 assume small saliva droplets evaporate fast and large ones, which contain most viral copies, fall fast to the ground. However, during evaporation, solutes distribute non-uniformly within the droplets. We developed a numerical model to predict saliva droplet drying in different environments. We represent saliva droplets as a solution of NaCl mixed with water. In a hot and dry ambiance, the solutes form a shell on the droplets' surface, producing light, hollow particles. These hollow particles have a larger cross-sectional area compared to their solid counterparts and can float longer and travel farther in the air. We introduced the "hollowness factor," which serves as a measure of the ratio of the volume of a hollow particle and the volume of a solid residue formed during droplet drying. Through our investigations, we determined that under specific conditions, namely an ambient humidity level of 10% and a temperature of 40°C, the highest hollowness factor observed was 1.610. This finding indicates that in the case of hollow particle formation, the droplet nucleus expands by a factor of 1.610 compared to its original size.
Collapse
Affiliation(s)
- Gizem Ozler
- Physikalisch- Technische Bundesanstalt (PTB), Braunschweig 38116, Germany; Otto von Guericke University of Magdeburg, Institute of Aparatus and Environmental Technology, Magdeburg 39106, Germany.
| | - Holger Grosshans
- Physikalisch- Technische Bundesanstalt (PTB), Braunschweig 38116, Germany; Otto von Guericke University of Magdeburg, Institute of Aparatus and Environmental Technology, Magdeburg 39106, Germany.
| |
Collapse
|
3
|
Dieplinger J, Moser C, König G, Pinto JT, Paudel A. Investigation of the Impact of Saccharides on the Relative Activity of Trypsin and Catalase after Droplet and Spray Drying. Pharmaceutics 2023; 15:2504. [PMID: 37896264 PMCID: PMC10609839 DOI: 10.3390/pharmaceutics15102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
While using saccharides as stabilizers for therapeutic protein drying is common, the mechanisms underlying the stabilization during drying remain largely unexplored. Herein, we investigated the effect of different saccharides, trehalose dihydrate (TD), dextran (DEX), and hydroxypropyl β-cyclodextrins (low substitution-HP and high substitution-HPB), on the relative activities of the enzymes trypsin and catalase during miniaturized drying (MD) or spray drying (SD). For trypsin, the presence of saccharides, especially HP, was beneficial, as it significantly improved the enzyme activity following MD. The HPB preserved trypsin's activity during MD and SD. Adding saccharides during MD did not show a notable improvement in catalase activities. Increasing TD was beneficial during the SD of catalase, as indicated by significantly increased activity. Molecular docking and molecular dynamics simulations oftrypsin with HP or HPB revealed the influence of their substitution on the binding affinity for the enzyme. A higher affinity of HP to bind trypsin and itself was observed during simulations. Experimentally, activity reduction was mainly observed during MD, attributable to the higher droplet temperature during MD than during SD. The activities from the experiments and aggregation propensity from molecular modeling helped elucidate the impact of the size of protein and saccharides on preserving the activity during drying.
Collapse
Affiliation(s)
- Johanna Dieplinger
- Research Center for Pharmaceutical Engineering GmbH, 8010 Graz, Austria; (J.D.); (G.K.)
- Institute of Process and Particle Engineering, Technical University of Graz, 8010 Graz, Austria;
| | - Christina Moser
- Research Center for Pharmaceutical Engineering GmbH, 8010 Graz, Austria; (J.D.); (G.K.)
| | - Gerhard König
- Research Center for Pharmaceutical Engineering GmbH, 8010 Graz, Austria; (J.D.); (G.K.)
| | - Joana T. Pinto
- Institute of Process and Particle Engineering, Technical University of Graz, 8010 Graz, Austria;
| | - Amrit Paudel
- Research Center for Pharmaceutical Engineering GmbH, 8010 Graz, Austria; (J.D.); (G.K.)
- Institute of Process and Particle Engineering, Technical University of Graz, 8010 Graz, Austria;
| |
Collapse
|
4
|
Dieplinger J, Pinto JT, Dekner M, Brachtl G, Paudel A. Impact of Different Saccharides on the In-Process Stability of a Protein Drug During Evaporative Drying: From Sessile Droplet Drying to Lab-Scale Spray Drying. Pharm Res 2023; 40:1283-1298. [PMID: 37012535 DOI: 10.1007/s11095-023-03498-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/05/2023] [Indexed: 04/05/2023]
Abstract
OBJECTIVES Solid biopharmaceutical products can circumvent lower temperature storage and transport and increase remote access with lower carbon emissions and energy consumption. Saccharides are known stabilizers in a solid protein produced via lyophilization and spray drying (SD). Thus, it is essential to understand the interactions between saccharides and proteins and the stabilization mechanism. METHODS A miniaturized single droplet drying (MD) method was developed to understand how different saccharides stabilize proteins during drying. We applied our MD to different aqueous saccharide-protein systems and transferred our findings to SD. RESULTS The poly- and oligosaccharides tend to destabilize the protein during drying. The oligosaccharide, Hydroxypropyl β-cyclodextrin (HPβCD) shows high aggregation at a high saccharide-to-protein molar ratio (S/P ratio) during MD, and the finding is supported by nanoDSF results. The polysaccharide, Dextran (DEX) leads to larger particles, whereas HPBCD leads to smaller particles. Furthermore, DEX is not able to stabilize the protein at higher S/P ratios either. In contrast, the disaccharide Trehalose Dihydrate (TD) does not increase or induce protein aggregation during the drying of the formulation. It can preserve the protein's secondary structure during drying, already at low concentrations. CONCLUSION During the drying of S/P formulations containing the saccharides TD and DEX, the MD approach could anticipate the in-process (in) stability of protein X at laboratory-scale SD. In contrast, for the systems with HPβCD, the results obtained by SD were contradictory to MD. This underlines that depending on the drying operation, careful consideration needs to be applied to the selection of saccharides and their ratios.
Collapse
Affiliation(s)
- Johanna Dieplinger
- Research Center for Pharmaceutical Engineering GmbH, Graz, Austria
- Institute of Process and Particle Engineering, Technical University of Graz, Graz, Austria
| | - Joana T Pinto
- Research Center for Pharmaceutical Engineering GmbH, Graz, Austria
| | | | | | - Amrit Paudel
- Research Center for Pharmaceutical Engineering GmbH, Graz, Austria.
- Institute of Process and Particle Engineering, Technical University of Graz, Graz, Austria.
| |
Collapse
|
5
|
Needles to Spheres: Evaluation of inkjet printing as a particle shape enhancement tool. Eur J Pharm Biopharm 2023; 184:92-102. [PMID: 36707008 DOI: 10.1016/j.ejpb.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Active pharmaceutical ingredients (APIs) often reveal shapes challenging to process, e.g. acicular structures, and exhibit reduced bioavailability induced by slow dissolution rate. Leveraging the API particles' surface and bulk properties offers an attractive pathway to circumvent these challenges. Inkjet printing is an attractive processing technique able to tackle these limitations already in initial stages when little material is available, while particle properties are maintained over the entire production scale. Additionally, it is applicable to a wide range of formulations and offers the possibility of co-processing with a variety of excipients to improve the API's bioavailability. This study addresses the optimization of particle shapes for processability enhancement and demonstrates the successful application of inkjet printing to engineer spherical lacosamide particles, which are usually highly acicular. By optimizing the ink formulation, adapting the substrate-liquid interface and tailoring the heat transfer to the particle, spherical particles in the vicinity of 100 µm, with improved flow properties compared to the bulk material, were produced. Furthermore, the particle size was tailored reproducibly by adjusting the deposited ink volume per cycle and the number of printing cycles. Therefore, the present study shows a novel, reliable, scalable and economical strategy to overcome challenging particle morphologies by co-processing an API with suitable excipients.
Collapse
|
6
|
Development of a Workflow to Engineer Tailored Microparticles Via Inkjet Printing. Pharm Res 2023; 40:281-294. [PMID: 36380170 DOI: 10.1007/s11095-022-03426-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE New drug development and delivery approaches result in an ever-increasing demand for tailored microparticles with defined sizes and structures. Inkjet printing technologies could be promising new processes to engineer particles with defined characteristics, as they are created to precisely deliver liquid droplets with high uniformity. METHODS D-mannitol was used as a model compound alone or co-processed with the pore former agent ammonium bicarbonate, and the polymer polyethylene glycol 200. Firstly, a drop shape analyzer was used to characterize and understand ink/substrate interactions, evaporation, and solidification kinetics. Consequently, the process was transferred to a laboratory-scale inkjet printer and the resulting particles collected, characterized and compared to others obtained via an industrial standard technique. RESULTS The droplet shape analysis allowed to understand how 3D structures are formed and helped define the formulation and process parameters for inkjet printing. By adjusting the drop number and process waveform, spherical particles with a mean size of approximately 100 µm were obtained. The addition of pore former and polymer allowed to tailor the crystallization kinetics, resulting in particles with a different surface (i.e., spike-like surface) and bulk (e.g. porous and non-porous) structure. CONCLUSION The workflow described enabled the production of 3D structures via inkjet printing, demonstrating that this technique can be a promising approach to engineer microparticles.
Collapse
|
7
|
Chatterjee S, Murallidharan JS, Bhardwaj R. Size-Dependent Dried Colloidal Deposit and Particle Sorting via Saturated Alcohol Vapor-Mediated Sessile Droplet Spreading. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6128-6147. [PMID: 35507639 DOI: 10.1021/acs.langmuir.2c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We experimentally and theoretically investigate a distinct problem of spreading, evaporation, and the associated dried deposits of a colloidal particle-laden aqueous sessile droplet on a surface in a saturated alcohol vapor environment. In particular, the effect of particle size on monodispersed suspensions and efficient self-sorting of bidispersed particles have been investigated. The alcohol vapor diffuses toward the droplet's curved liquid-vapor interface from the far field. The incoming vapor mass flux profile assumes a nonuniform pattern across the interface. The alcohol vapor molecules are adsorbed at the liquid-vapor interface, which eventually leads to absorption into the droplet's liquid phase due to the miscibility. This phenomenon triggers a liquid-vapor interfacial tension gradient and causes a reduction in the global surface tension of the droplet. This results in a solutal Marangoni flow recirculation and spontaneous droplet spreading. The interplay between these phenomena gives rise to a complex internal fluid flow within the droplet, resulting in a significantly modified and strongly particle-size-dependent dried colloidal deposit. While the smaller particles form a multiple ring pattern, larger particles form a single ring, and additional "patchwise" deposits emerge. High-speed visualization of the internal liquid-flow revealed that initially, a ring forms at the first location of the contact line. Concurrently, the Marangoni flow recirculation drives a collection of particles at the liquid-vapor interface to form clusters. Thereafter, as the droplet spreads, the smaller particles in the cluster exhibit a "jetlike" outward flow, forming multiple ring patterns. In contrast, the larger particles tend to coalesce together in the cluster, forming the "patchwise" deposits. The widely different response of the different-sized particles to the internal fluid flow enables an efficient sorting of the smaller particles at the contact line from bidispersed suspensions. We corroborate the measurements with theoretical and numerical models wherever possible.
Collapse
Affiliation(s)
- Sanghamitro Chatterjee
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | - Rajneesh Bhardwaj
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
8
|
Deka N, Saha S, Dash S. Evaporation-induced convective transport in confined saline droplets. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Dewangan JK, Basu N, Chowdhury M. Cationic surfactant-directed structural control of NaCl crystals from evaporating sessile droplets. SOFT MATTER 2021; 18:62-79. [PMID: 34878487 DOI: 10.1039/d1sm01357b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report morphological regulation of NaCl (sodium chloride) crystals through the evaporative crystallisation process of microdroplets containing a cationic surfactant CTAB (cetyltrimethylammonium bromide). Various fascinating evaporative salt morphologies are observed using different combinations of salt (CNaCl) and surfactant (CCTAB) concentrations. Each observed morphology is carefully explained by the interplaying physical phenomena, such as crystallisation, micellisation, evaporative dewetting, and surface adsorption of anionic couneterions. Salt morphologies are investigated for low (CNaCl = 0.1 (M)), intermediate (CNaCl = 0.5 (M)) and high (CNaCl = 2 (M)) concentrations, whereas surfactant concentrations are varied four orders of magnitudes (from 0.0001 (M) to 0.1 (M)). Interestingly, we observe a threshold in CCTAB at 0.001 (M), beyond which the peripheral rings of dried deposits are found to be composed of CTAB for CNaCl = 0.1 (M), while the same is seen to be made up of NaCl for CNaCl = 2 (M). We have explained the morphological evolution by the process of competitive surface adsorption phenomenon between Cl- and Br- counter ions. Such a detailed study of saline droplet crystallisation in the presence of a cationic surfactant underpins the fundamental understanding of the crystallisation process. In addition, it may further impact application sectors where crystallisation of saline solution plays an important role, especially in the presence of additives.
Collapse
Affiliation(s)
- Jayant K Dewangan
- Lab of Soft Interfaces, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Nandita Basu
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Mithun Chowdhury
- Lab of Soft Interfaces, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
10
|
Oscillatory Reversible Osmotic Growth of Sessile Saline Droplets on a Floating Polydimethylsiloxane Membrane. FLUIDS 2021. [DOI: 10.3390/fluids6070232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report a cyclic growth/retraction phenomena observed for saline droplets placed on a cured poly (dimethylsiloxane) (PDMS) membrane with a thickness of 7.8 ± 0.1 µm floating on a pure water surface. Osmotic mass transport across the micro-scaled floating PDMS membrane provided the growth of the sessile saline droplets followed by evaporation of the droplets. NaCl crystals were observed in the vicinity of the triple line at the evaporation stage. The observed growth/retraction cycle was reversible. A model of the osmotic mass transfer across the cured PDMS membrane is suggested and verified. The first stage of the osmotic growth of saline droplets is well-approximated by the universal linear relationship, whose slope is independent of the initial radius of the droplet. The suggested physical model qualitatively explains the time evolution of the droplet size. The reported process demonstrates a potential for use in industrial desalination.
Collapse
|