1
|
Lin L, Xiao S, Wang C, Huang M, Xu L, Huang Y. Nanosheet BiOBr Modified Rock Wool Composites for High Efficient Oil/Water Separation and Simultaneous Dye Degradation by Activating Peroxymonosulfate. Molecules 2024; 29:3185. [PMID: 38999137 PMCID: PMC11243219 DOI: 10.3390/molecules29133185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
The development of superlyophobic materials in liquid systems, enabling synchronous oil/water separation and dye removal from water, is highly desirable. In this study, we employed a novel superwetting array-like BiOBr nanosheets anchored on waste rock wool (RW) fibers through a simple neutralization alcoholysis method. The resulting BiOBr/RW fibers exhibited superoleophilic and superhydrophilic properties in air but demonstrated underwater superoleophobic and underoil superhydrophobic characteristics. Utilizing its dual superlyophobicity, the fiber layer demonstrated high separation efficiencies and flux velocity for oil/water mixtures by prewetting under a gravity-driven mechanism. Additionally, the novel BiOBr/RW fibers also exhibited excellent dual superlyophobicity and effective separation for immiscible oil/oil systems. Furthermore, the BiOBr/RW fibers could serve as a filter to continuously separate oil/water mixtures with high flux velocity and removal rates (>93.9%) for water-soluble dye rhodamine B (RhB) simultaneously by directly activating peroxymonosulfate (PMS) in cyclic experiments. More importantly, the mechanism of simultaneous oil/water separation and RhB degradation was proposed based on the reactive oxygen species (ROS) quenching experiments and electron paramagnetic resonance (EPR) analysis. Considering the simple modified process and the waste RW as raw material, this work may open up innovative, economical, and environmentally friendly avenues for the effective treatment of wastewater contaminated with oil and water-soluble pollutants.
Collapse
Affiliation(s)
- Li Lin
- School of Material and Chemical Engineering, Hunan City University, Yiyang 413000, China
- Key Laboratory of Low Carbon and Environmental Functional Materials of College of Hunan Province, Yiyang 413000, China
| | - Si Xiao
- School of Material and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Chuxuan Wang
- School of Material and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Manhong Huang
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ling Xu
- School of Material and Chemical Engineering, Hunan City University, Yiyang 413000, China
- Key Laboratory of Low Carbon and Environmental Functional Materials of College of Hunan Province, Yiyang 413000, China
| | - Yi Huang
- School of Material and Chemical Engineering, Hunan City University, Yiyang 413000, China
- Key Laboratory of Low Carbon and Environmental Functional Materials of College of Hunan Province, Yiyang 413000, China
| |
Collapse
|
2
|
Wu Y, Lu G, Xu P, Zhang TC, He H, Yuan S. Hierarchical Ni-Mn LDHs@CuC 2O 4 Nanosheet Arrays-Modified Copper Mesh: A Dual-Functional Material for Enhancing Oil/Water Separation and Supercapacitors. Int J Mol Sci 2023; 24:14085. [PMID: 37762387 PMCID: PMC10531716 DOI: 10.3390/ijms241814085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The pursuit of superhydrophilic materials with hierarchical structures has garnered significant attention across diverse application domains. In this study, we have successfully crafted Ni-Mn LDHs@CuC2O4 nanosheet arrays on a copper mesh (CM) through a synergistic process involving chemical oxidation and hydrothermal deposition. Initially, CuC2O4 nanosheets were synthesized on the copper mesh, closely followed by the growth of Ni-Mn LDHs nanosheets, culminating in the establishment of a multi-tiered surface architecture with exceptional superhydrophilicity and remarkable underwater superoleophobicity. The resultant Ni-Mn LDHs@CuC2O4 CM membrane showcased an unparalleled amalgamation of traits, including superhydrophilicity, underwater superoleophobicity, and the ability to harness photocatalytic forces for self-cleaning actions, making it an advanced oil-water separation membrane. The membrane's performance was impressive, manifesting in a remarkable water flux range (70 kL·m-2·h-1) and an efficient oil separation capability for both oil/water mixture and surfactant-stabilized emulsions (below 60 ppm). Moreover, the innate superhydrophilic characteristics of the membrane rendered it a prime candidate for deployment as a supercapacitor cathode material. Evidenced by a capacitance of 5080 mF·cm-2 at a current density of 6 mA cm-2 in a 6 M KOH electrolyte, the membrane's potential extended beyond oil-water separation. This work not only introduces a cutting-edge oil-water separation membrane and supercapacitor electrode but also offers a promising blueprint for the deliberate engineering of hierarchical structure arrays to cater to a spectrum of related applications.
Collapse
Affiliation(s)
- Yue Wu
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China (P.X.); (H.H.)
| | - Guangyuan Lu
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China (P.X.); (H.H.)
| | - Ping Xu
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China (P.X.); (H.H.)
| | - Tian C. Zhang
- Civil & Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, NE 68182-0178, USA;
| | - Huaqiang He
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China (P.X.); (H.H.)
| | - Shaojun Yuan
- Low-Carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China (P.X.); (H.H.)
| |
Collapse
|
3
|
Wang W, Kang Y, Cui C, Lv X, Wang Z, Wang B, Tan Y, Jiao S, Pang G. Fabrication of underliquid dual superlyophobic membrane via anchoring polyethersulfone nanoparticles on Zn-Ni-Co layered double hydroxide (LDH) nanowires with stainless steel mesh as supporter. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Liu C, Wei H, Gao Y, Wang N, Yuan X, Chi Z, Zhao G, Song S, Song J, Jin X. Application of CoMn/CoFe layered double hydroxide based on metal-organic frameworks template to activate peroxymonosulfate for 2,4-dichlorophenol degradation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3871-3890. [PMID: 34928849 DOI: 10.2166/wst.2021.482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) have unique properties and stable structures, which have been widely used as templates/precursors to prepare well developed pore structure and high specific surface area materials. In this article, an innovative and facile method of crystal reorganization was designed by using MOFs as sacrificial templates to prepare a layered double hydroxide (LDH) nano-layer sheet structure through a pseudomorphic conversion process under alkaline conditions. The obtained CoMn-LDH and CoFe-LDH catalysts broke the ligand of MOFs and reorganized the structure on the basis of retaining a high specific surface area and a large number of pores, which had higher specific surface area and well developed pore structure compared with LDH catalysts prepared by traditional methods, and thus provide more active sites to activate peroxymonosulfate (PMS). Due to the unique framework structure of MOFs, the MOF-derived CoMn-LDH and CoFe-LDH catalysts could provide more active sites to activate PMS, and achieve a 2,4-dichlorophenol degradation of 99.3% and 99.2% within 20 minutes, respectively. In addition the two LDH catalysts displayed excellent degradation performance for bisphenol A, ciprofloxacin and 2,4-dichlorophenoxyacetic acid (2,4-D). X-ray photoelectron spectroscopy indicated that the valence state transformation of metal elements participated in PMS activation. Electron paramagnetic resonance manifested that sulfate radical (SO4•-) and singlet oxygen (1O2) were the main species for degrading pollutants. In addition, after the three-cycle experiment, the CoMn-LDH and CoFe-LDH catalysts also showed long-term stability with a slight activity decrease in the third cycle. The phytotoxicity assessment determined by the germination of mung beans proved that PMS activation by MOF-derived LDH catalysts can basically eliminate the phytotoxicity of a 2,4-D solution. This research not only developed high-activity LDH catalysts for PMS activation, but also expanded the environmental applications of MOF derivants.
Collapse
Affiliation(s)
- Chenyu Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Haitong Wei
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Yanhui Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Ning Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Xiaoying Yuan
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Zhilong Chi
- Kyiv College at Qilu University of Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Kyiv National University of Technologies and Design, Kyiv 01011, Ukraine
| | - Guangli Zhao
- Kyiv College at Qilu University of Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Kyiv National University of Technologies and Design, Kyiv 01011, Ukraine
| | - Shuguang Song
- School of Transportation Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jianjun Song
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| | - Xinghui Jin
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China E-mail:
| |
Collapse
|