1
|
Wafi A, Khan MM. Green synthesized ZnO and ZnO-based composites for wound healing applications. Bioprocess Biosyst Eng 2024:10.1007/s00449-024-03123-z. [PMID: 39739126 DOI: 10.1007/s00449-024-03123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
In recent years, zinc oxide nanoparticles (ZnO NPs) have gained much attention in biomedical applications because of their distinctive physicochemical features such as low toxicity and biocompatible properties. Traditional methods to produce ZnO NPs sometimes include harmful substances and considerable energy consumption, causing environmental issues and potential health risks. Nowadays, the concern of ZnO production has moved toward environmentally friendly and sustainable synthesis methods, using natural extracts or plant-based precursors. This review discusses the green synthesis of ZnO NPs utilizing various plant extracts for wound healing applications. Moreover, ZnO NPs have antibacterial characteristics, which can prevent infection, a substantial obstacle in wound healing. Their ability to maintain inflammation, proliferation, oxidative stress, and promote angiogenesis proves their critical role in wound closure. In addition, ZnO NPs can also be easily and ideally incorporated with wound dressings and scaffolds such as hydrogel, chitosan, cellulose, alginate, and other materials, due to their exceptional mechanical properties. The latest publication of green synthesis of ZnO NPs and their applications for wound healing has been discussed. Therefore, this review provides a current update of knowledge on the sustainable and biocompatible ZnO NPs for specific applications, i.e., wound healing applications. In addition, the green synthesis of ZnO NPs using plant extracts also provides a particular approach in terms of material preparation, which is different from previous review articles.
Collapse
Affiliation(s)
- Abdul Wafi
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia
- Department of Pharmacy, Faculty of Medicine and Health Science, Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| |
Collapse
|
2
|
Ciobanu SC, Predoi D, Chifiriuc MC, Iconaru SL, Predoi MV, Popa M, Rokosz K, Raaen S, Marinas IC. Salvia officinalis-Hydroxyapatite Nanocomposites with Antibacterial Properties. Polymers (Basel) 2023; 15:4484. [PMID: 38231963 PMCID: PMC10708102 DOI: 10.3390/polym15234484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
In the present study, sage-coated zinc-doped hydroxyapatite was incorporated into a dextran matrix (7ZnHAp-SD), and its physico-chemical and antimicrobial activities were investigated. A 7ZnHAp-SD nanocomposite suspension was obtained using the co-precipitation method. The stability of the nanocomposite suspension was evaluated using ultrasound measurements. The stability parameter calculated relative to double-distilled water as a reference fluid highlights the very good stability of the 7ZnHAp-SD suspension. X-ray diffraction (XRD) experiments were performed to evaluate the characteristic diffraction peak of the hydroxyapatite phase. Valuable information regarding the morphology and chemical composition of 7ZnHAp-SD was obtained via scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) studies. Fourier-transform infrared spectroscopy (FTIR) measurements were performed on the 7ZnHAp-SD suspensions in order to evaluate the functional groups present in the sample. Preliminary studies on the antimicrobial activity of 7ZnHAp-SD suspensions against the standard strains of Staphylococcus aureus 25923 ATCC, Enterococcus faecalis 29212 ATCC, Escherichia coli 25922 ATCC, and Pseudomonas aeruginosa 27853 ATCC were conducted. More than that, preliminary studies on the biocompatibility of 7ZnHAp-SD were conducted using human cervical adenocarcinoma (HeLa) cells, and their results emphasized that the 7ZnHAp-SD sample did not exhibit a toxic effect and did not induce any noticeable changes in the morphological characteristics of HeLa cells. These preliminary results showed that these nanoparticles could be possible candidates for biomedical/antimicrobial applications.
Collapse
Affiliation(s)
- Steluta Carmen Ciobanu
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania; (S.C.C.); (S.L.I.)
| | - Daniela Predoi
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania; (S.C.C.); (S.L.I.)
| | - Mariana Carmen Chifiriuc
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania;
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor Str., District 5, 060101 Bucharest, Romania; (M.P.); (I.C.M.)
- Biological Sciences Division, The Romanian Academy, 25, Calea Victoriei, 010071 Bucharest, Romania
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania; (S.C.C.); (S.L.I.)
| | - Mihai Valentin Predoi
- Department of Mechanics, University Politehnica of Bucharest, BN 002, 313 Splaiul Independentei, Sector 6, 060042 Bucharest, Romania;
| | - Marcela Popa
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor Str., District 5, 060101 Bucharest, Romania; (M.P.); (I.C.M.)
- Biological Sciences Division, The Romanian Academy, 25, Calea Victoriei, 010071 Bucharest, Romania
| | - Krzysztof Rokosz
- Faculty of Electronics and Computer Science, Koszalin University of Technology, Sniadeckich 2, PL 75-453 Koszalin, Poland;
| | - Steinar Raaen
- Department of Physics, Norwegian University of Science and Technology (NTNU), Realfagbygget E3-124 Høgskoleringen 5, NO 7491 Trondheim, Norway;
| | - Ioana Cristina Marinas
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor Str., District 5, 060101 Bucharest, Romania; (M.P.); (I.C.M.)
| |
Collapse
|
3
|
Qi J, Wang Z, Wen X, Tan W, Yuan Y, Yue T. Nanosilver Embedded in a Magnetosome Nanoflower to Enhance Antibacterial Activity for Wound Dressing Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48882-48891. [PMID: 37823552 DOI: 10.1021/acsami.3c08483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The natural biofilm on magnetosomes obtained from the biomineralization of magnetotactic bacteria, which replaced a complex chemical modification process on the surface of Fe3O4, can be used as the organic component and copper(II) ions as the inorganic component to form organic-inorganic nanoflowers in phosphate systems. Characterization by scanning electron microscopy, Fourier transform infrared spectroscopy, and vibrating-sample magnetometry proved that magnetic nanoflowers loaded with silver ions (Ag/MN-Cu×NFs) were successfully fabricated. In vitro antibacterial experiments demonstrated that Ag/MN-Cu×NFs displayed strong antibacterial effects against Escherichia coli and Staphylococcus aureus, with minimum inhibitory concentrations of 10 and 80 μg/mL, respectively. Ag/MN-Cu×NFs, which possessed good biocompatibility as confirmed by cytotoxicity and hemolysis tests, were able to promote wound healing in the face of bacterial infection in vivo without causing toxicity to major organs. Therefore, magnetosomes as a natural carrier have great application potential in the synthesis of multifunctional magnetosomes by direct hybridization with a target substance.
Collapse
Affiliation(s)
- Jianrui Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zewei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xin Wen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Weiteng Tan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
4
|
Marques MP, Mendonça L, Neves BG, Varela C, Oliveira P, Cabral C. Exploring Iberian Peninsula Lamiaceae as Potential Therapeutic Approaches in Wound Healing. Pharmaceuticals (Basel) 2023; 16:ph16030347. [PMID: 36986446 PMCID: PMC10056130 DOI: 10.3390/ph16030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Skin tissue has a crucial role in protecting the human body from external harmful agents, preventing wounds that frequently demand proper healing approaches. The ethnobotanical knowledge of specific regions with further investigation on their medicinal plants has been paramount to create new and effective therapeutical agents, including for dermatological purposes. This review attempts, for the first time, to investigate the traditional applications of Lamiaceae medicinal plants that are already used by local communities in the Iberian Peninsula in wound healing. Henceforward, Iberian ethnobotanical surveys were reviewed, and the information about the traditional wound healing practices of Lamiaceae was comprehensively summarized. Afterwards, the scientific validation of each Lamiaceae species was exhaustively checked. From this, eight out of twenty-nine Lamiaceae medicinal plants were highlighted by their wound-related pharmacological evidence and are in-depth presented in this review. We suggest that future studies should focus on the isolation and identification of the active molecules of these Lamiaceae, followed by robust clinical trials that may confirm the security and effectiveness of such natural-based approaches. This will in turn pave the way for more reliable wound healing treatments.
Collapse
Affiliation(s)
- Mário P. Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Laura Mendonça
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Beatriz G. Neves
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carla Varela
- Chemical Process Engineering and Forest Products (CIEPQPF), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo Oliveira
- Centro de Neurociências e Biologia Celular (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
| | - Célia Cabral
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
5
|
Qi J, Zhang J, Jia H, Guo X, Yue Y, Yuan Y, Yue T. Synthesis of silver/Fe 3O 4@chitosan@polyvinyl alcohol magnetic nanoparticles as an antibacterial agent for accelerating wound healing. Int J Biol Macromol 2022; 221:1404-1414. [PMID: 36089089 DOI: 10.1016/j.ijbiomac.2022.09.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022]
Abstract
Bacterial infection causes wound inflammation and slows wound healing, posing a great threat to human health, which needs to explore more antibacterial nanobiomaterials to promote wound healing. Therefore, this study was conducted to develop low-cost silver/Fe3O4@Chitosan@polyvinyl alcohol (Ag/Fe3O4@CS@PVA) via a one-pot method to promote healing in bacteria-infected wounds. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier-transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM) confirmed that Ag/Fe3O4@CS@PVA was successfully prepared. In vitro antibacterial experiments demonstrated strong antibacterial activity of Ag/Fe3O4@CS@PVA against Escherichia coli and Staphylococcus aureus. The Ag/Fe3O4@CS@PVA destroyed the bacterial cell membrane or internal structure, thus resulting in cell death for antibacterial effects. Cytotoxicity and hemolysis rate tests showed that Ag/Fe3O4@CS@PVA posed fine biocompatibility. In addition, in vivo assays confirmed that Ag/Fe3O4@CS@PVA not only promoted the healing of wound infection caused by bacteria, but also had no toxic effect on mouse organs. Therefore, the low-cost Ag/Fe3O4@CS@PVA nanocomposites have great potential in controlling 'bacterial' pathogen.
Collapse
Affiliation(s)
- Jianrui Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.
| | - Jie Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.
| | - Hang Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.
| | - Xinyuan Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yuan Yue
- Xi'an GaoXin No.1 High School, Xi'an 710119, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; College of Food Science and Techonology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
6
|
Rani Raju N, Silina E, Stupin V, Manturova N, Chidambaram SB, Achar RR. Multifunctional and Smart Wound Dressings—A Review on Recent Research Advancements in Skin Regenerative Medicine. Pharmaceutics 2022; 14:pharmaceutics14081574. [PMID: 36015200 PMCID: PMC9414988 DOI: 10.3390/pharmaceutics14081574] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
The healing of wounds is a dynamic function that necessitates coordination among multiple cell types and an optimal extracellular milieu. Much of the research focused on finding new techniques to improve and manage dermal injuries, chronic injuries, burn injuries, and sepsis, which are frequent medical concerns. A new research strategy involves developing multifunctional dressings to aid innate healing and combat numerous issues that trouble incompletely healed injuries, such as extreme inflammation, ischemic damage, scarring, and wound infection. Natural origin-based compounds offer distinct characteristics, such as excellent biocompatibility, cost-effectiveness, and low toxicity. Researchers have developed biopolymer-based wound dressings with drugs, biomacromolecules, and cells that are cytocompatible, hemostatic, initiate skin rejuvenation and rapid healing, and possess anti-inflammatory and antimicrobial activity. The main goal would be to mimic characteristics of fetal tissue regeneration in the adult healing phase, including complete hair and glandular restoration without delay or scarring. Emerging treatments based on biomaterials, nanoparticles, and biomimetic proteases have the keys to improving wound care and will be a vital addition to the therapeutic toolkit for slow-healing wounds. This study focuses on recent discoveries of several dressings that have undergone extensive pre-clinical development or are now undergoing fundamental research.
Collapse
Affiliation(s)
- Nithya Rani Raju
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Ekaterina Silina
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Street 8, 119991 Moscow, Russia;
| | - Victor Stupin
- Department of Hospital Surgery No 1, N.I. Pirogov Russian National Research Medical University (RNRMU), Ostrovityanova Street 1, 117997 Moscow, Russia;
| | - Natalia Manturova
- Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technologies, N.I. Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997 Moscow, Russia;
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
- Centre for Experimental Pharmacology and Toxicology (CPT), Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
- Correspondence: ; Tel.: +91-9535413026
| |
Collapse
|
7
|
Rahmanpour A, Farahpour MR, Shapouri R, Jafarirad S, Rahimi P. Synthesis and characterization of alumina-based nanocomposites of TiO2/Al2O3/Chitosan with antibacterial properties accelarate healing of infected excision wounds. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Balčiūnaitienė A, Liaudanskas M, Puzerytė V, Viškelis J, Janulis V, Viškelis P, Griškonis E, Jankauskaitė V. Eucalyptus globulus and Salvia officinalis Extracts Mediated Green Synthesis of Silver Nanoparticles and Their Application as an Antioxidant and Antimicrobial Agent. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11081085. [PMID: 35448813 PMCID: PMC9026162 DOI: 10.3390/plants11081085] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 05/15/2023]
Abstract
Silver nanoparticles (AgNPs) biosynthesized using plant extracts as reducing and capping agents show multiple possibilities for solving various biological problems. The aim of this study was to expand the boundaries of AgNPs using a novel low toxicity and production cost phytochemical method for the biosynthesis of nanoparticles from Eucalyptus globulus and Salvia officinalis aqueous leaf extracts. Biosynthesized AgNPs were characterized by various methods (ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FTIR) spectroscopy with horizontal attenuated total reflectance (HART), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS)). The determined antioxidative and antimicrobial activity of plant extracts was compared with the activity of the AgNPs. The UV-vis spectral analysis demonstrated the absorption peaks at 408 and 438 nm, which confirmed the synthesis of stable AgNPs from E. globulus and S. officinalis, respectively. FTIR-HART results suggested strong capping of phytochemicals on AgNPs. TEM results show mainly spherical-shaped AgNPs, whose size distribution depends on the plant leaf extract type; the smaller AgNPs were obtained with E. globulus extract (with size range of 17.5 ± 5.89 nm compared to 34.3 ± 7.76 nm from S. officinalis AgNPs). The in vitro antioxidant activity evaluated by radical scavenging assays and the reduction activity method clearly demonstrated that both the plant extracts and AgNPs showed prominent antioxidant properties. In addition, AgNPs show much stronger antimicrobial activity against broad spectrum of Gram-negative and Gram-positive bacteria strains than the plant extracts used for their synthesis.
Collapse
Affiliation(s)
- Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (V.P.); (J.V.); (P.V.)
- Correspondence: ; Tel.: +37-060-289-485
| | - Mindaugas Liaudanskas
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Science, 44307 Kaunas, Lithuania; (M.L.); (V.J.)
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Science, 50166 Kaunas, Lithuania
| | - Viktorija Puzerytė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (V.P.); (J.V.); (P.V.)
| | - Jonas Viškelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (V.P.); (J.V.); (P.V.)
| | - Valdimaras Janulis
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Science, 44307 Kaunas, Lithuania; (M.L.); (V.J.)
| | - Pranas Viškelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (V.P.); (J.V.); (P.V.)
| | - Egidijus Griškonis
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, 50254 Kaunas, Lithuania;
| | - Virginija Jankauskaitė
- Department of Production Engineering, Kaunas University of Technology, 51424 Kaunas, Lithuania;
| |
Collapse
|
9
|
Farhangi ghaleh joughi N, Reza Farahpour M, Mohammadi M, Jafarirad S, Mahmazi S. Investigation on the antibacterial properties and rapid infected wound healing activity of Silver/Laterite/Chitosan nanocomposites. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|