1
|
Mahfud R. Molecular Dynamics Computational Study of Sustainable Green Surfactant for Application in Chemical Enhanced Oil Recovery. ACS OMEGA 2024; 9:27177-27191. [PMID: 38947786 PMCID: PMC11209909 DOI: 10.1021/acsomega.4c01332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Green surfactant (GS) flooding, an environmentally friendly chemical Enhanced Oil Recovery (cEOR) method, is explored in this molecular dynamics (MD) simulation study. This study evaluates the ability of (S)-2-dodecanamido-aminobutanedioic as a GS for cEOR, assessing its performance with hexane (C6), dodecane (C12), and eicosane (C20) as representative oils. In the case of the bulk system, a comprehensive molecular-level investigation provides structural details such as the radial distribution function, solvent-accessible surface area, GS adsorption dynamics, diffusivity, and emulsion stability of the GS, oil, and water systems. Also the impact of the three distinct oils on interfacial tension was examined in the existence of GS molecules. The findings reveal rapid GS molecule aggregation and adsorption on oil droplets, with various impacts on emulsion stability depending on the oil type. Additionally, GS enhances the aggregation of heavy C20 oil molecules in a water medium. The study demonstrates GS's role as an effective emulsifier, facilitating oil droplet recovery, with electrostatic interactions governing micelle formation and van der Waals interactions influencing oil droplet emulsification. These results align with prior experimental data, affirming GS's promising application potential in cEOR while prioritizing environmental sustainability.
Collapse
Affiliation(s)
- Riyad Mahfud
- International college of
engineering and management, Muscat 111, Oman
| |
Collapse
|
2
|
Chen R, Liu E, Fang Y, Gao N, Zhang M, Zhang X, Chen W, Liang C, Zhang Y, Huang Y. Naturally sourced amphiphilic peptides as paclitaxel vehicles for breast cancer treatment. BIOMATERIALS ADVANCES 2024; 159:213824. [PMID: 38490019 DOI: 10.1016/j.bioadv.2024.213824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/09/2024] [Accepted: 03/03/2024] [Indexed: 03/17/2024]
Abstract
The marketed paclitaxel (PTX) formulation Taxol relies on the application of Cremophor EL as a solubilizer. The major drawback of Taxol is its hypersensitivity reactions and a pretreatment of anti-allergic drugs is a necessity. Therefore, developing an efficient and safe delivery vehicle is a solution to increase PTX treatment outcomes with minimal adverse effects. In this work, we prepared the amphiphilic peptides (termed AmP) from soybean proteins using a facile two-step method. AmP could efficiently solubilize PTX by self-assembling into mixed micelles with D-α-tocopherol polyethylene glycol succinate (TPGS), a common pharmaceutical expedient (PTX@TPGS-AmP). The intravenously administrated PTX@TPGS-AmP exhibited a slow clearance (0.24 mL·(min·kg)-1) and an enhanced AUC (41.4 μg.h/mL), manifesting a 3.6-fold increase compared to Taxol. In a murine 4T1 tumor model, PTX@TPGS-AmP displayed a superior antitumor effect over Taxol. Importantly, safety assessment showed a high biocompatibility of AmP and an i.v. dose up to 2500 mg/kg led to no observable abnormalities in the mice. In summary, the AmP presents a new green and easily-prepared amphiphilic biomaterial, with promising potential as a pharmaceutical excipient for drug delivery.
Collapse
Affiliation(s)
- Rongli Chen
- Shenyang Pharmaceutical University, Shenyang 110016, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Ergang Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Yuefei Fang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Nan Gao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaoru Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
| | - Wanying Chen
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
| | - Chuxin Liang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yu Zhang
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yongzhuo Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China.
| |
Collapse
|
3
|
Zhang C, Cao L, Jiang Y, Huang Z, Liu G, Wei Y, Xia Q. Molecular Dynamics Simulations on the Adsorbed Monolayers of N-Dodecyl Betaine at the Air-Water Interface. Molecules 2023; 28:5580. [PMID: 37513452 PMCID: PMC10384152 DOI: 10.3390/molecules28145580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Betaine is a kind of zwitterionic surfactant with both positive and negative charge groups on the polar head, showing good surface activity and aggregation behaviors. The interfacial adsorption, structures and properties of n-dodecyl betaine (NDB) at different surface coverages at the air-water interface are studied through molecular dynamics (MD) simulations. Interactions between the polar heads and water molecules, the distribution of water molecules around polar heads, the tilt angle of the NDB molecule, polar head and tail chain with respect to the surface normal, the conformations and lengths of the tail chain, and the interfacial thickness of the NDB monolayer are analyzed. The change of surface coverage hardly affects the locations and spatial distributions of the water molecules around the polar heads. As more NDB molecules are adsorbed at the air-water interface, the number of hydrogen bonds between polar heads and water molecules slightly decreases, while the lifetimes of hydrogen bonds become larger. With the increase in surface coverage, less gauche defects along the alkyl chain and longer NDB chain are obtained. The thickness of the NDB monolayer also increases. At large surface coverages, tilted angles of the polar head, tail chain and whole NDB molecule show little change with the increase in surface area. Surface coverages can change the tendency of polar heads and the tail chain for the surface normal.
Collapse
Affiliation(s)
- Chengfeng Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Lulu Cao
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Yongkang Jiang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Zhiyao Huang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Guokui Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Yaoyao Wei
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Qiying Xia
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| |
Collapse
|
4
|
Synergism for lowering interfacial tensions between betaines and extended surfactants: the role of self-regulating molecular size. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
5
|
Sood AK, Sethi O, Aggarwal M. Evaluation of mixed micellar interactions of
C
n
BCl
and
SDBS
mixtures using dissociated Margules model and influence of different salts. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ashwani Kumar Sood
- Department of Chemistry, UGC Centre for Advanced Studies II Guru Nanak Dev University Amritsar India
| | - Omish Sethi
- Department of Chemistry, UGC Centre for Advanced Studies II Guru Nanak Dev University Amritsar India
| | | |
Collapse
|