1
|
Zhuang K, Shu X, Xie W. Konjac glucomannan-based composite materials: Construction, biomedical applications, and prospects. Carbohydr Polym 2024; 344:122503. [PMID: 39218541 DOI: 10.1016/j.carbpol.2024.122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Konjac glucomannan (KGM) as an emerging natural polymer has attracted increasing interests owing to its film-forming properties, excellent gelation, non-toxic characteristics, strong adhesion, good biocompatibility, and easy biodegradability. Benefiting from these superior performances, KGM has been widely applied in the construction of multiple composite materials to further improve their intrinsic performances (e.g., mechanical strength and properties). Up to now, KGM-based composite materials have obtained widespread applications in diverse fields, especially in the field of biomedical. Therefore, a timely review of relevant research progresses is important for promoting the development of KGM-based composite materials. Innovatively, firstly, this review briefly introduced the structure properties and functions of KGMs based on the unique perspective of the biomedical field. Then, the latest advances on the preparation and properties of KGM-based composite materials (i.e., gels, microspheres, films, nanofibers, nanoparticles, etc.) were comprehensively summarized. Finally, the promising applications of KGM-based composite materials in the field of biomedical are comprehensively summarized and discussed, involving drug delivery, wound healing, tissue engineering, antibacterial, tumor treatment, etc. Impressively, the remaining challenges and opportunities in this promising field were put forward. This review can provide a reference for guiding and promoting the design and biomedical applications of KGM-based composites.
Collapse
Affiliation(s)
- Kejin Zhuang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Agro-products Processing and Quality Safety of Heilongjiang Province, Daqing, China; National Coarse Cereals Engineering Research Center, Daqing, China.
| | - Xin Shu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenjing Xie
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
2
|
Zhang D, Bu N, Zhou L, Lin L, Wen Y, Chen X, Huang L, Lin H, Mu R, Wang L, Pang J. Quercetin-loaded melanin nanoparticle mediated konjac glucomannan/polycaprolactone bilayer film with dual-mode synergistic bactericidal activity for food packaging. Int J Biol Macromol 2024; 276:133982. [PMID: 39029854 DOI: 10.1016/j.ijbiomac.2024.133982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
It is still difficult for a single antibacterial modality to realize satisfactory management of bacterial breeding in food preservation. To solve this problem, we developed a photothermal-derived dual-mode synergistic bactericidal konjac glucomannan (KGM)/polycaprolactone (PCL) bilayer film incorporated with quercetin-loaded melanin-like nanoparticles (Q@MNPs). The results showed that the mechanical properties (TS: 29.8 MPa, EAB: 43.1 %), UV shielding properties, and water resistance (WCA: 124.1°, WVP: 3.92 g mm/m2 day kPa) of KGM-Q@MNPs/PCL bilayer films were significantly improved. More importantly, KGM-Q@MNPs/PCL bilayer film presented outstanding photothermal inversion and controlled release behavior of Q triggered by near infrared (NIR) radiation, thus contributing to excellent dual-mode synergistic antibacterial properties against E. coli and S. aureus. Meanwhile, the KGM-Q@MNPs/PCL bilayer film possessed good biocompatibility and low toxicity. As a proof-of-concept application, we further verified the significant value of film for the preservation of cherry tomatoes. Since KGM-Q@MNPs/PCL bilayer film showed excellent biodegradability, this work will aid the development of sustainable antibacterial food packaging materials.
Collapse
Affiliation(s)
- Di Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nitong Bu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Lizhen Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lihong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yifan Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianrui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liying Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanglong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Yin J, Li Y, Zhong W, Li K, Xu J, Zeng X, Chen H, Pang J, Wu C. Effect of konjac glucomannan-based preservation pads on quality changes in refrigerated large yellow croaker (Pseudosciaena crocea). Int J Biol Macromol 2024; 276:133752. [PMID: 38986984 DOI: 10.1016/j.ijbiomac.2024.133752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
The purpose of this study was to evaluate the preservation effects of konjac glucomannan (KGM)/oregano essential oil (OEO) Pickering emulsion-based pads (K/OPE pads) on large yellow croaker (Pseudosciaena crocea) fillets stored at 4 °C. The K/OPE pads were fabricated using a freeze-drying technique. The homogeneous distribution of the OEO Pickering emulsions in the KGM matrix was observed using scanning electron microscopy. Fourier transform infrared spectroscopy confirmed that the OEO emulsions were encapsulated in the KGM and there was hydrogen bonding interaction between them. Compared with the KGM pads, the K/OPE pad groups demonstrated enhanced antioxidant and antimicrobial properties. When the content of OPE was increased from 20 % to 40 %, the antioxidant performance of the K/OPE pads increased from 48.09 % ± 0.03 % to 86.65 % ± 0.02 % and the inhibition range of Escherichia coli and Staphylococcus aureus increased to 13.84 ± 0.81 and 16.87 ± 1.53 mm, respectively. At the same time, K/OPE pads were more effective in inhibiting the formation of total volatile alkaline nitrogen and the production of thiobarbituric acid-reactive substances, thereby helping in reducing water loss and maintaining the muscle tissue structure of fish fillets for a longer storage time. Consequently, these K/OPE40 pads extended the shelf life of the fish fillets by an additional 4 days and delayed spoilage during refrigerated storage. The findings suggest that the K/OPE pads can effectively safeguard the quality of refrigerated large yellow croaker fillets, presenting their potential as an active packaging material in the fish preservation industry.
Collapse
Affiliation(s)
- Jing Yin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yaoling Li
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Weiquan Zhong
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kehao Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jingting Xu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xingxing Zeng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongbin Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China.
| | - Jie Pang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Chunhua Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
4
|
Pandita G, de Souza CK, Gonçalves MJ, Jasińska JM, Jamróz E, Roy S. Recent progress on Pickering emulsion stabilized essential oil added biopolymer-based film for food packaging applications: A review. Int J Biol Macromol 2024; 269:132067. [PMID: 38710257 DOI: 10.1016/j.ijbiomac.2024.132067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Nowadays food safety and protection are a growing concern for food producers and food industry. The stability of food-grade materials is key in food processing and shelf life. Pickering emulsions (PEs) have gained significant attention in food regimes owing to their stability enhancement of food specimens. PE can be developed by high and low-energy methods. The use of PE in the food sector is completely safe as it uses solid biodegradable particles to stabilize the oil in water and it also acts as an excellent carrier of essential oils (EOs). EOs are useful functional ingredients, the inclusion of EOs in the packaging film or coating formulation significantly helps in the improvement of the shelf life of the packed food item. The highly volatile nature, limited solubility and ease of oxidation in light of EOs restricts their direct use in packaging. In this context, the use of PEs of EOs is suitable to overcome most of the challenges, Therefore, recently there have been many papers published on PEs of EOs including active packaging film and coatings and the obtained results are promising. The current review amalgamates these studies to inform about the chemistry of PEs followed by types of stabilizers, factors affecting the stability and different high and low-energy manufacturing methods. Finally, the review summarizes the recent advancement in PEs-added packaging film and their application in the enhancement of shelf life of food.
Collapse
Affiliation(s)
- Ghumika Pandita
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | | | | | - Joanna Maria Jasińska
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland; Department of Product Packaging, Cracow University of Economics, Rakowicka 27, PL-31-510 Kraków, Poland
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
5
|
Adame MY, Shi C, Li C, Aziz T, Alharbi M, Cui H, Lin L. Fabrication and characterization of pullulan/tapioca starch-based antibacterial films incorporated with Litsea cubeba essential oil for meat preservation. Int J Biol Macromol 2024; 268:131775. [PMID: 38657922 DOI: 10.1016/j.ijbiomac.2024.131775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Active packaging is a novel technology that utilizes active materials to interact with products and the environment, improving food shelf life. The purpose of this work was to fabricate a multifunctional film using Litsea cubeba essential oil (LC-EO) (1 %, 3 %, 5 %, and 7 %) as the active ingredient and pullulan(P)/tapioca starch (TS) as the carrier material. Adding essential oil improves the films properties, such as barrier ability, anti-oxidant, and antibacterial activity. However, tensile strength (TS) and elongation at break (EAB) were slightly reduced from 28.94 MPa to 11.29 MPa and 15.36 % to 12.19 %. The developed PTS3% films showed the best performance in mechanical properties, especially EAB (14.26 %), WVP (3.26 %) and OP (3.13 %), respectively. The inhibitory zone diameters in the agar-well diffusion test were 18.59 mm for Staphylococcus aureus and 17.32 mm for Escherichia coli. Further study was conducted to compare the preservation effects of film with low-density polyethylene bag (LDPE) on chilled beef. Remarkably, PTS3% film decreased the bacterial population in beef meat while maintaining the pH, color, texture, and TBARS levels within an acceptable range for ten days of storage at 4 °C rather than in a low-density polyethylene bag. The outcomes indicated the potential of PTS3% films in food packaging applications.
Collapse
Affiliation(s)
- Mawardi Yusufe Adame
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ce Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Tariq Aziz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| |
Collapse
|
6
|
Uşurelu CD, Frone AN, Oprică GM, Raduly MF, Ghiurea M, Neblea EI, Nicolae CA, Filip X, Teodorescu M, Panaitescu DM. Preparation and functionalization of cellulose nanofibers using a naturally occurring acid and their application in stabilizing linseed oil/water Pickering emulsions. Int J Biol Macromol 2024; 262:129884. [PMID: 38336328 DOI: 10.1016/j.ijbiomac.2024.129884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Finding efficient and environmental-friendly methods to produce and chemically modify cellulose nanofibers (CNFs) remains a challenge. In this study, lactic acid (LA) treatment followed by microfluidization was employed for the isolation and functionalization of CNFs. Small amounts of HCl (0.01, 0.1, and 0.2 M) were used alongside LA to intensify cellulose hydrolysis. FTIR spectroscopy and solid-state 13C NMR confirmed the successful functionalization of CNFs with lactyl groups during isolation, while SEM, AFM, and rheological tests revealed that the addition of HCl governed the fibers' sizes and morphology. Notably, the treatment with LA and 0.2 M HCl resulted in a more efficient defibrillation, yielding smaller nanofibers sizes (62 nm) as compared to the treatment with LA or HCl alone (90 and 108 nm, respectively). The aqueous suspension of CNFs treated with LA and 0.2 M HCl showed the highest viscosity and storage modulus. LA-modified CNFs were tested as stabilizers for linseed oil/water (50/50 v/v) emulsions. Owing to the lactyl groups grafted on their surface and higher aspect ratio, CNFs produced with 0.1 and 0.2 M HCl led to emulsions with increased stability (a creaming index increase of only 3 % and 1 %, respectively, in 30 days) and smaller droplets sizes of 23.4 ± 1.2 and 35.5 ± 0.5 μm, respectively. The results showed that LA-modified CNFs are promising stabilizers for Pickering emulsions.
Collapse
Affiliation(s)
- Cătălina-Diana Uşurelu
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Adriana Nicoleta Frone
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Gabriela-Mădălina Oprică
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Monica Florentina Raduly
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Marius Ghiurea
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Elena Iulia Neblea
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Cristian-Andi Nicolae
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Xenia Filip
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Mircea Teodorescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Denis Mihaela Panaitescu
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| |
Collapse
|
7
|
Riahi Z, Khan A, Rhim JW, Shin GH, Kim JT. Sustainable packaging film based on cellulose nanofibres/pullulan impregnated with zinc-doped carbon dots derived from avocado peel to extend the shelf life of chicken and tofu. Int J Biol Macromol 2024; 258:129302. [PMID: 38262822 DOI: 10.1016/j.ijbiomac.2024.129302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
A cellulose nanofiber (CNF)/pullulan (PUL) based multifunctional composite film was developed for active packaging applications by incorporating Zn-doped avocado-derived carbon dots (Zn-ACDs). The incorporation of Zn-ACDs improved the interfacial compatibility and produced a dense cross-sectional structure of the composite films. The Zn-ACDs added film showed no significant difference in water vapor permeability and surface hydrophilicity compared to the neat CNF/PUL film, but the tensile strength and elongation at break increased by ~45.4 % and ~64.1 %, respectively. The addition of 5 wt% Zn-ACDs to the CNF/PUL matrix resulted in 100.0 % UV blocking properties, excellent antioxidant activity (100.0 % for ABTS and 68.0 % for DPPH), and complete eradication of foodborne pathogens such as Listeria monocytogenes ATCC 15313 and Escherichia coli O157:H7 after 3 h of exposure. The CNF/PUL composite film with Zn-ACDs applied to the active packaging of chicken and tofu significantly reduced the total growth of aerobic microorganisms without significantly changing the actual color of the packaged chicken and tofu for 9 days at 10°C. This study demonstrates that CNF/PUL composite films with Zn-ACDs are a sustainable and environmentally friendly option for protecting food from microbial contamination.
Collapse
Affiliation(s)
- Zohreh Riahi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ajahar Khan
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
8
|
Huang L, Liao R, Bu N, Zhang D, Pang J, Mu R. Electrospun Konjac Glucomannan/Polyvinyl Alcohol Long Polymeric Filaments Incorporated with Tea Polyphenols for Food Preservations. Foods 2024; 13:284. [PMID: 38254585 PMCID: PMC10814646 DOI: 10.3390/foods13020284] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
In this study, nanofiber films were prepared by electrospinning technology with polyvinyl alcohol (PVA) and konjac glucomannan (KGM) as raw materials. Tea polyphenols (TPs) were incorporated in the above matrix, which increased physicochemical (thermal and mechanical characteristics) and antibacterial properties of the nanofiber films. The release behavior of phenolic compounds from PVA/KGM-TPs nanofiber films was determined in different food simulants; antioxidant and antibacterial activity of the films were also evaluated. The results showed that the addition of KGM increased the physical and chemical properties of the films. The tensile strength (TS) and elongation at break (EB) increased from 5.40 ± 0.33 to 10.62 ± 0.34 and from 7.24 ± 0.32 to 18.10 ± 0.91, respectively. PVA/KGM-TPs nanofiber films performed controlled release of TPs, with final release of 49.17% in 3% acetic acid, 43.6% in 10% ethanol, and 59.42% in 95% ethanol. The nanofiber films showed good antioxidation properties, with the free radical scavenging rate increasing from 1.33% to 25.61%, and good antibacterial properties with inhibition zones against E. coli and S. aureus of 24.33 ± 0.47 mm and 34.33 ± 0.94 mm, respectively. In addition, the as-prepared films showed significant preservation performance for raw bananas at 25 °C.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China (R.L.); (D.Z.); (J.P.)
| |
Collapse
|
9
|
Zhang Q, Kong B, Liu H, Du X, Sun F, Xia X. Nanoscale Pickering emulsion food preservative films/coatings: Compositions, preparations, influencing factors, and applications. Compr Rev Food Sci Food Saf 2024; 23:e13279. [PMID: 38284612 DOI: 10.1111/1541-4337.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/18/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024]
Abstract
Pickering emulsion (PE) technology effectively addresses the issues of poor compatibility and low retention of hydrophobic active ingredients in food packaging. Nonetheless, it is important to recognize that each stage of the preparation process for PE films/coatings (PEFCs) can significantly influence their functional properties. With the fundamental considerations of environmental friendliness and human safety, this review extensively explores the potential of raw materials for PEFC and introduces the preparation methods of nanoparticles, emulsification technology, and film-forming techniques. The critical factors that impact the performance of PEFC during the preparation process are analyzed to enhance food preservation effectiveness. Moreover, the latest advancements in PE packaging across diverse food applications are summarized, along with prospects for innovative food packaging materials. Finally, the preservation mechanism and application safety have been systematically elucidated. The study revealed that the PEFCs provide structural flexibility, where designable nanoparticles offer unique functional properties for intelligent control over active ingredient release. The selection of the dispersed and continuous phases, along with component proportions, can be customized for specific food characteristics and storage conditions. By employing suitable preparation and emulsification techniques, the stability of the emulsion can be improved, thereby enhancing the effectiveness of the films/coatings in preserving food. Including additional substances broadens the functionality of degradable materials. The PE packaging technology provides a safe and innovative solution for extending the shelf life and enhancing the quality of food products by protecting and releasing active components.
Collapse
Affiliation(s)
- Quanyu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
10
|
Bu N, Zhou N, Cao G, Mu R, Pang J, Ma C, Wang L. Konjac glucomannan/carboxymethyl chitosan film embedding gliadin/casein nanoparticles for grape preservation. Int J Biol Macromol 2023; 249:126131. [PMID: 37543273 DOI: 10.1016/j.ijbiomac.2023.126131] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Constructing biopolymer-based packaging films with fantastic water resistance and mechanical properties for food preservation is highly desirable and challenging. In this work, Gliadin/Casein nanoparticles (GCNPs) were prepared by pH-driven method and embedded into konjac glucomannan/carboxymethyl chitosan (KC) film matrix to improve the water resistance and mechanical properties of KC film. Gliadin and Casein showed good compatibility and co-assembled to form compact GCNPs clusters through hydrogen bonding and hydrophobic interaction verified by FT-IR spectroscopy, and fluorescence spectroscopy. The particle size and zeta potential of GCNPs was 269.7 nm and -7.6 mV, respectively. The effect of GCNPs on the mechanics, water barrier, thermal stability, and UV-shielding of KC-GCNPs film was investigated. SEM images revealed that GCNPs uniformly distributed into KC film matrix and significantly improved the mechanics (tensile strength: 75.6 MPa, elongation at breaking: 36.7 %), water barrier ability (water contact angle: 91.3°, water vapor permeability: 0.994 g mm/m2 day kPa, water solubility: 52.0 %), thermal stability and UV blocking property of KC-GCNPs film. Furthermore, KC-GCNPs film could also be applied to extend the shelf life of grapes. This paper demonstrated the great potential of GCNPs as functional nanofillers in enhancing the physicochemical properties of KC film.
Collapse
Affiliation(s)
- Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ning Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoyu Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Ma
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Reis CA, Gomes A, do Amaral Sobral PJ. Films Based on Biopolymers Incorporated with Active Compounds Encapsulated in Emulsions: Properties and Potential Applications-A Review. Foods 2023; 12:3602. [PMID: 37835255 PMCID: PMC10573032 DOI: 10.3390/foods12193602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The rising consumer demand for safer, healthier, and fresher-like food has led to the emergence of new concepts in food packaging. In addition, the growing concern about environmental issues has increased the search for materials derived from non-petroleum sources and biodegradable options. Thus, active films based on biopolymers loaded with natural active compounds have great potential to be used as food packaging. However, several lipophilic active compounds are difficult to incorporate into aqueous film-forming solutions based on polysaccharides or proteins, and the hydrophilic active compounds require protection against oxidation. One way to incorporate these active compounds into film matrices is to encapsulate them in emulsions, such as microemulsions, nanoemulsions, Pickering emulsions, or double emulsions. However, emulsion characteristics can influence the properties of active films, such as mechanical, barrier, and optical properties. This review addresses the advantages of using emulsions to encapsulate active compounds before their incorporation into biopolymeric matrices, the main characteristics of these emulsions (emulsion type, droplet size, and emulsifier nature), and their influence on active film properties. Furthermore, we review the recent applications of the emulsion-charged active films in food systems.
Collapse
Affiliation(s)
- Camily Aparecida Reis
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
| | - Andresa Gomes
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, SP, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, SP, Brazil
| |
Collapse
|
12
|
Xu F, Yun D, Huang X, Sun B, Tang C, Liu J. Preparation, Characterization, and Application of pH-Response Color-Changeable Films Based on Pullulan, Cooked Amaranth ( Amaranthus tricolor L.) Juice, and Bergamot Essential Oil. Foods 2023; 12:2779. [PMID: 37509872 PMCID: PMC10379735 DOI: 10.3390/foods12142779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Pullulan-based smart packaging films were prepared by mixing cooked amaranth juice and bergamot essential oil. The impact of cooked amaranth juice and bergamot essential oil on the color-changeability, structural characterization, and barrier, antioxidant, mechanical and thermal properties of pullulan-based films was determined. Results showed the cooked amaranth juice contained pH-response color-changing betacyanins. The pullulan films containing cooked amaranth juice were color-changeable in pH 9-12 buffers and in ammonia vapor. The color-changeable property of betacyanins in cooked amaranth juice was unaffected by bergamot essential oils. The inner structure of pullulan films was greatly affected by cooked amaranth juice, forming big and ordered humps in film cross-sections. The crystallinity of pullulan films was improved by the combined addition of cooked amaranth juice and bergamot essential oil. Among the films, the pullulan film containing cooked amaranth juice and 6% bergamot essential oil showed the highest UV-vis light barrier property, antioxidant activity, and tensile strength; while the pullulan film containing cooked amaranth juice and 4% bergamot essential oil showed the highest oxygen barrier property and thermal stability. Moreover, the pullulan films containing cooked amaranth juice were able to monitor the freshness of shrimp by presenting color changes from reddish purple to dark red.
Collapse
Affiliation(s)
- Fengfeng Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Dawei Yun
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaoqian Huang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Bixue Sun
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
13
|
da S Ferreira G, da Silva DJ, Souza AG, Yudice EDC, de Campos IB, Col RD, Mourão A, Martinho HS, Rosa DS. Eco-friendly and effective antimicrobial Melaleuca alternifolia essential oil Pickering emulsions stabilized with cellulose nanofibrils against bacteria and SARS-CoV-2. Int J Biol Macromol 2023:125228. [PMID: 37290544 DOI: 10.1016/j.ijbiomac.2023.125228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/23/2023] [Accepted: 06/03/2023] [Indexed: 06/10/2023]
Abstract
Melaleuca alternifolia essential oil (MaEO) is a green antimicrobial agent suitable for confection eco-friendly disinfectants to substitute conventional chemical disinfectants commonly formulated with toxic substances that cause dangerous environmental impacts. In this contribution, MaEO-in-water Pickering emulsions were successfully stabilized with cellulose nanofibrils (CNFs) by a simple mixing procedure. MaEO and the emulsions presented antimicrobial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Moreover, MaEO deactivated the SARS-CoV-2 virions immediately. FT-Raman and FTIR spectroscopies indicate that the CNF stabilizes the MaEO droplets in water by the dipole-induced-dipole interactions and hydrogen bonds. The factorial design of experiments (DoE) indicates that CNF content and mixing time have significant effects on preventing the MaEO droplets' coalescence during 30-day shelf life. The bacteria inhibition zone assays show that the most stable emulsions showed antimicrobial activity comparable to commercial disinfectant agents such as hypochlorite. The MaEO/water stabilized-CNF emulsion is a promissory natural disinfectant with antibacterial activity against these bacteria strains, including the capability to damage the spike proteins at the SARS-CoV-2 particle surface after 15 min of direct contact when the MaEO concentration is 30 % v/v.
Collapse
Affiliation(s)
- Greiciele da S Ferreira
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP 09210-210 Santo André, SP, Brazil
| | - Daniel J da Silva
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP 09210-210 Santo André, SP, Brazil
| | - Alana G Souza
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP 09210-210 Santo André, SP, Brazil
| | - Eliana D C Yudice
- Adolfo Lutz Institute, Santo André Regional Center, Av. Ramiro Colleoni, 240, CEP 09040-160 Santo André, SP, Brazil
| | - Ivana B de Campos
- Adolfo Lutz Institute, Santo André Regional Center, Av. Ramiro Colleoni, 240, CEP 09040-160 Santo André, SP, Brazil
| | - Rute Dal Col
- Adolfo Lutz Institute, Santo André Regional Center, Av. Ramiro Colleoni, 240, CEP 09040-160 Santo André, SP, Brazil
| | - Andre Mourão
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP 09210-210 Santo André, SP, Brazil
| | - Herculano S Martinho
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP 09210-210 Santo André, SP, Brazil
| | - Derval S Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados, 5001, CEP 09210-210 Santo André, SP, Brazil.
| |
Collapse
|
14
|
Huang L, Lin H, Bu N, Pang J, Mu R. Robust microfluidic construction of polyvinyl pyrrolidone microfibers incorporated with W/O emulsions stabilized by amphiphilic konjac glucomannan. Int J Biol Macromol 2023; 241:124563. [PMID: 37100333 DOI: 10.1016/j.ijbiomac.2023.124563] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
In this work, we prepared polyvinyl pyrrolidone (PVP) microfibers incorporated water-in-oil (W/O) emulsions. The W/O emulsions were fabricated by hexadecyl konjac glucomannan (HKGM, emulsifier), corn oil (oil phase) and purple corn anthocyanins (PCAs, water phase). The structures and functions of emulsions and microfibers were characterized by confocal laser scanning (CLSM) and scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), Raman and nuclear magnetic resonance (NMR) spectroscopy. The results showed that W/O emulsions exhibited good storage stability for 30 d. Microfibers presented ordered and uniform arrays. Compared with pure PVP microfiber films, the addition of W/O emulsions with PCAs improved the water resistance (WVP from 1.28 to 0.76 g mm/m2 day kPa), mechanical strength (Elongation at break from 18.35 % to 49.83 %), antioxidation (free radical scavenging rate from 2.58 % to 16.37 %), and antibacterial activity (inhibition zone against E. coli: 27.33 mm and inhibition zone against S. aureus: 28.33 mm) of microfiber films. Results showed that microfiber film exhibited controlled release of PCAs in W/O emulsions, and about 32 % of the PCAs were released from the microfiber film after 340 min. The as-prepared microfiber films exhibited potential applications for food packaging.
Collapse
Affiliation(s)
- Liying Huang
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Huanglong Lin
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Nitong Bu
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jie Pang
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ruojun Mu
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
15
|
Ran R, Zheng T, Tang P, Xiong Y, Yang C, Gu M, Li G. Antioxidant and antimicrobial collagen films incorporating Pickering emulsions of cinnamon essential oil for pork preservation. Food Chem 2023; 420:136108. [PMID: 37060665 DOI: 10.1016/j.foodchem.2023.136108] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/05/2023] [Accepted: 04/02/2023] [Indexed: 04/17/2023]
Abstract
Cinnamon essential oil (CEO)-based Pickering emulsions were prepared using chitosan (CS) and soy protein isolate (SPI) colloid particles as stabilizers and genipin as cross-linker. Pickering emulsions have smaller particle sizes, higher stability, and encapsulation efficiency at a CS:SPI ratio of 1:4. The Pickering emulsion-modified collagen films showed enhanced thermal stability, UV-blocking properties, and water resistance. In addition, the antioxidant (DPPH scavenging activity, 18.35%-50.59%) and antimicrobial activities (inhibition zone, Escherichia coli, 0-1.85 cm; Staphylococcus aureus, 0-1.57 cm; Pseudomonas fluorescens, 0-1.34 cm) of the films were improved due to the sustained release of CEO, with the release kinetics following the Fickian diffusion of the Ritger-Peppas model. When the functionalized film was used for pork preservation, a four-day extension of shelf life was observed. Collectively, our findings suggest that Pickering emulsions provide great potential for the application of collagen film in pork preservation.
Collapse
Affiliation(s)
- Ruimin Ran
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Tingting Zheng
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Pingping Tang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Yongming Xiong
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Changkai Yang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Min Gu
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Guoying Li
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
16
|
Yi C, Yuan T, Xiao H, Ren H, Zhai H. Hydrophobic-modified cellulose nanofibrils (CNFs) /chitosan/zein coating for enhancing multi-barrier properties of heat-sealable food packaging materials. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
17
|
Wang Y, Ni X, Wen M, Lou S, Xiao W, Gao Z. Preparation of antioxidant konjac glucomannan-based films enriched with Ocimum gratissimum L. essential oil Pickering emulsion and its effect on walnuts preservation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
18
|
Tavassoli M, Khezerlou A, Bangar SP, Bakhshizadeh M, Haghi PB, Moghaddam TN, Ehsani A. Functionality developments of Pickering emulsion in food packaging: Principles, applications, and future perspectives. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
da S. Ferreira G, da Silva DJ, Rosa DS. Super stable Melaleuca alternifolia essential oil Pickering emulsions stabilized with cellulose nanofibrils: Rheological aspects. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Bu N, Sun R, Huang L, Lin H, Pang J, Wang L, Mu R. Chitosan films with tunable droplet size of Pickering emulsions stabilized by amphiphilic konjac glucomannan network. Int J Biol Macromol 2022; 220:1072-1083. [PMID: 36037908 DOI: 10.1016/j.ijbiomac.2022.08.157] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/05/2022]
Abstract
In this work, chitosan (CS) emulsion films were prepared with grapefruit essential oil (GEO) Pickering emulsions (OGEOs) stabilized by amphiphilic octenyl succinic anhydride (OSA) konjac glucomannan (OSA-KGM) network. The droplet size of emulsion was regulated by altering oil content in OGEOs (10 %, 20 %, 30 % and 40 %, w/w). The structural and physicochemical properties of CS films with tunable emulsion droplets (OGEOs) were investigated. The droplet size of OGEOs increased with the increasing content of GEO. FT-IR revealed that the formation of CS-OGEOs films was attributed to hydrogen bonding. CS-OGEOs films with large droplets presented smoother surface, enhanced water resistance, UV-shielding property, mechanical properties, but increased water vapor permeability (WVP) compared with CS-OGEOs films with small droplets. In addition, CS-OGEOs films with large droplets also presented compact film structure, controlled release of GEO, high efficiency of DPPH free radical scavenging and antibacterial activity. To sum up, incorporation of emulsion droplets was a good strategy for improving the structural and physicochemical properties of CS films.
Collapse
Affiliation(s)
- Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Runzhi Sun
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liying Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanglong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lin Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China.
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
21
|
Development of pH-responsive konjac glucomannan/pullulan films incorporated with acai berry extract to monitor fish freshness. Int J Biol Macromol 2022; 219:897-906. [PMID: 35963350 DOI: 10.1016/j.ijbiomac.2022.08.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/22/2022]
Abstract
In this work, konjac glucomannan (KGM)-based film reinforced with pullulan (PL) and acai berry extract (ABE) was developed by solvent casting method. The as-prepared films performed pH-sensitive properties, which can be potentially applied for fish freshness detection. Rheology, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) were used to characterize chemical structure and morphology of ABE-loaded KGM/PL (KP) films (KP-ABE). FT-IR spectrum indicated that hydrogen bond dominated the formation of KP-ABE films. Adding PL contributed to enhanced mechanical properties of KGM film with increased tensile strength (TS) from 21.25 to 50.27 MPa and elongation at break (EAB) from 10.64 to 19.19 %. Incorporating ABE upgraded flexibility, UV-shielding, thermostability, water barrier (decreased Water vapor permeability (WVP) from 2.07 to 1.67 g·mm/m2·day kPa), antioxidant, and antibacterial ability of KP films, but weakened TS. In addition, KP-ABE films can reflect fish freshness in real time through color variability. Therefore, KP-ABE films exhibited potential applications in intelligent food packaging materials.
Collapse
|