1
|
Shaik TA, Lagarto JL, Baria E, Goktas M, Onoja PI, Blank KG, Pavone FS, Popp J, Krafft C, Cicchi R. Monitoring Changes in Biochemical and Biomechanical Properties of Collagenous Tissues Using Label-Free and Nondestructive Optical Imaging Techniques. Anal Chem 2021; 93:3813-3821. [PMID: 33596051 DOI: 10.1021/acs.analchem.0c04306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We demonstrate the ability of nondestructive optical imaging techniques such as second-harmonic generation (SHG), two-photon fluorescence (TPF), fluorescence lifetime imaging (FLIM), and Raman spectroscopy (RS) to monitor biochemical and mechanical alterations in tissues upon collagen degradation. Decellularized equine pericardium (EP) was treated with 50 μg/mL bacterial collagenase at 37 °C for 8, 16, 24, and 32 h. The SHG ratio (defined as the normalized ratio between SHG and TPF signals) remained unchanged for untreated EP (stored in phosphate-buffered solution (PBS)), whereas treated EP showed a trend of a decreasing SHG ratio with increasing collagen degradation. In the fluorescence domain, treated EP experienced a red-shifted emission and the fluorescence lifetime had a trend of decreasing lifetime with increasing collagen digestion. RS monitors collagen degradation, the spectra had less intense Raman bands at 814, 852, 938, 1242, and 1270 cm-1. Non-negative least-squares (NNLS) modeling quantifies collagen loss and relative increase of elastin. The Young's modulus, derived from atomic force microscope-based nanoindentation experiments, showed a rapid decrease within the first 8 h of collagen degradation, whereas more gradual changes were observed for optical modalities. We conclude that optical imaging techniques like SHG, RS, and FLIM can monitor collagen degradation in a label-free manner and coarsely access mechanical properties in a nondestructive manner.
Collapse
Affiliation(s)
- Tanveer Ahmed Shaik
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - João L Lagarto
- National Institute of Optics (INO), National Research Council (CNR), Largo E. Fermi 6, 50125 Florence, Italy.,European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Enrico Baria
- National Institute of Optics (INO), National Research Council (CNR), Largo E. Fermi 6, 50125 Florence, Italy.,European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Melis Goktas
- Mechano(bio)chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Patrick Igoche Onoja
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Kerstin G Blank
- Mechano(bio)chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Francesco S Pavone
- National Institute of Optics (INO), National Research Council (CNR), Largo E. Fermi 6, 50125 Florence, Italy.,European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Physical Chemistry, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany.,Abbe Center of Photonics, Friedrich Schiller University, Albert-Einstein-Strasse 6, 07745 Jena, Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena, Germany
| | - Riccardo Cicchi
- National Institute of Optics (INO), National Research Council (CNR), Largo E. Fermi 6, 50125 Florence, Italy.,European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Miranda A, Gómez-Varela AI, Stylianou A, Hirvonen LM, Sánchez H, De Beule PAA. How did correlative atomic force microscopy and super-resolution microscopy evolve in the quest for unravelling enigmas in biology? NANOSCALE 2021; 13:2082-2099. [PMID: 33346312 DOI: 10.1039/d0nr07203f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the invention of the Atomic Force Microscope (AFM) in 1986 and the subsequent developments in liquid imaging and cellular imaging it became possible to study the topography of cellular specimens under nearly physiological conditions with nanometric resolution. The application of AFM to biological research was further expanded with the technological advances in imaging modes where topographical data can be combined with nanomechanical measurements, offering the possibility to retrieve the biophysical properties of tissues, cells, fibrous components and biomolecules. Meanwhile, the quest for breaking the Abbe diffraction limit restricting microscopic resolution led to the development of super-resolution fluorescence microscopy techniques that brought the resolution of the light microscope comparable to the resolution obtained by AFM. The instrumental combination of AFM and optical microscopy techniques has evolved over the last decades from integration of AFM with bright-field and phase-contrast imaging techniques at first to correlative AFM and wide-field fluorescence systems and then further to the combination of AFM and fluorescence based super-resolution microscopy modalities. Motivated by the many developments made over the last decade, we provide here a review on AFM combined with super-resolution fluorescence microscopy techniques and how they can be applied for expanding our understanding of biological processes.
Collapse
Affiliation(s)
- Adelaide Miranda
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal.
| | - Ana I Gómez-Varela
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal. and Department of Applied Physics, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain.
| | - Andreas Stylianou
- Cancer Biophysics Laboratory, University of Cyprus, Nicosia, Cyprus and School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Liisa M Hirvonen
- Centre for Microscopy, Characterisation and Analysis (CMCA), The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Humberto Sánchez
- Faculty of Applied Sciences, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Pieter A A De Beule
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal.
| |
Collapse
|
3
|
Alunda BO, Lee YJ. Review: Cantilever-Based Sensors for High Speed Atomic Force Microscopy. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4784. [PMID: 32854193 PMCID: PMC7506678 DOI: 10.3390/s20174784] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
This review critically summarizes the recent advances of the microcantilever-based force sensors for atomic force microscope (AFM) applications. They are one the most common mechanical spring-mass systems and are extremely sensitive to changes in the resonant frequency, thus finding numerous applications especially for molecular sensing. Specifically, we comment on the latest progress in research on the deflection detection systems, fabrication, coating and functionalization of the microcantilevers and their application as bio- and chemical sensors. A trend on the recent breakthroughs on the study of biological samples using high-speed atomic force microscope is also reported in this review.
Collapse
Affiliation(s)
- Bernard Ouma Alunda
- School of Mines and Engineering, Taita Taveta University, P.O. Box 635-80300 Voi, Kenya;
| | - Yong Joong Lee
- School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
4
|
Perinbam K, Chacko JV, Kannan A, Digman MA, Siryaporn A. A Shift in Central Metabolism Accompanies Virulence Activation in Pseudomonas aeruginosa. mBio 2020; 11:e02730-18. [PMID: 32156820 PMCID: PMC7064766 DOI: 10.1128/mbio.02730-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/28/2020] [Indexed: 01/24/2023] Open
Abstract
The availability of energy has significant impact on cell physiology. However, the role of cellular metabolism in bacterial pathogenesis is not understood. We investigated the dynamics of central metabolism during virulence induction by surface sensing and quorum sensing in early-stage biofilms of the multidrug-resistant bacterium Pseudomonas aeruginosa We established a metabolic profile for P. aeruginosa using fluorescence lifetime imaging microscopy (FLIM), which reports the activity of NADH in live cells. We identified a critical growth transition period during which virulence is activated. We performed FLIM measurements and direct measurements of NADH and NAD+ concentrations during this period. Here, planktonic (low-virulence) and surface-attached (virulence-activated) populations diverged into distinct metabolic states, with the surface-attached population exhibiting FLIM lifetimes that were associated with lower levels of enzyme-bound NADH and decreasing total NAD(H) production. We inhibited virulence by perturbing central metabolism using citrate and pyruvate, which further decreased the enzyme-bound NADH fraction and total NAD(H) production and suggested the involvement of the glyoxylate pathway in virulence activation in surface-attached populations. In addition, we induced virulence at an earlier time using the electron transport chain oxidase inhibitor antimycin A. Our results demonstrate the use of FLIM to noninvasively measure NADH dynamics in biofilms and suggest a model in which a metabolic rearrangement accompanies the virulence activation period.IMPORTANCE The rise of antibiotic resistance requires the development of new strategies to combat bacterial infection and pathogenesis. A major direction has been the development of drugs that broadly target virulence. However, few targets have been identified due to the species-specific nature of many virulence regulators. The lack of a virulence regulator that is conserved across species has presented a further challenge to the development of therapeutics. Here, we identify that NADH activity has an important role in the induction of virulence in the pathogen P. aeruginosa This finding, coupled with the ubiquity of NADH in bacterial pathogens, opens up the possibility of targeting enzymes that process NADH as a potential broad antivirulence approach.
Collapse
Affiliation(s)
- Kumar Perinbam
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California, USA
| | - Jenu V Chacko
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - Anerudh Kannan
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California, USA
| | - Michelle A Digman
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - Albert Siryaporn
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
5
|
Poudel C, Mela I, Kaminski CF. High-throughput, multi-parametric, and correlative fluorescence lifetime imaging. Methods Appl Fluoresc 2020; 8:024005. [PMID: 32028271 PMCID: PMC8208541 DOI: 10.1088/2050-6120/ab7364] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/18/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
In this review, we discuss methods and advancements in fluorescence lifetime imaging microscopy that permit measurements to be performed at faster speed and higher resolution than previously possible. We review fast single-photon timing technologies and the use of parallelized detection schemes to enable high-throughput and high content imaging applications. We appraise different technological implementations of fluorescence lifetime imaging, primarily in the time-domain. We also review combinations of fluorescence lifetime with other imaging modalities to capture multi-dimensional and correlative information from a single sample. Throughout the review, we focus on applications in biomedical research. We conclude with a critical outlook on current challenges and future opportunities in this rapidly developing field.
Collapse
Affiliation(s)
- Chetan Poudel
- Department of Chemical Engineering and Biotechnology,
Philippa Fawcett Drive, University of
Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Ioanna Mela
- Department of Chemical Engineering and Biotechnology,
Philippa Fawcett Drive, University of
Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology,
Philippa Fawcett Drive, University of
Cambridge, Cambridge CB3 0AS, United
Kingdom
| |
Collapse
|
6
|
Simultaneous co-localized super-resolution fluorescence microscopy and atomic force microscopy: combined SIM and AFM platform for the life sciences. Sci Rep 2020; 10:1122. [PMID: 31980680 PMCID: PMC6981207 DOI: 10.1038/s41598-020-57885-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/07/2020] [Indexed: 01/05/2023] Open
Abstract
Correlating data from different microscopy techniques holds the potential to discover new facets of signaling events in cellular biology. Here we report for the first time a hardware set-up capable of achieving simultaneous co-localized imaging of spatially correlated far-field super-resolution fluorescence microscopy and atomic force microscopy, a feat only obtained until now by fluorescence microscopy set-ups with spatial resolution restricted by the Abbe diffraction limit. We detail system integration and demonstrate system performance using sub-resolution fluorescent beads and applied to a test sample consisting of human bone osteosarcoma epithelial cells, with plasma membrane transporter 1 (MCT1) tagged with an enhanced green fluorescent protein (EGFP) at the N-terminal.
Collapse
|
7
|
Visser MJ, Pretorius E. Atomic Force Microscopy: The Characterisation of Amyloid Protein Structure in Pathology. Curr Top Med Chem 2020; 19:2958-2973. [DOI: 10.2174/1568026619666191121143240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/28/2022]
Abstract
:
Proteins are versatile macromolecules that perform a variety of functions and participate in
virtually all cellular processes. The functionality of a protein greatly depends on its structure and alterations
may result in the development of diseases. Most well-known of these are protein misfolding disorders,
which include Alzheimer’s and Parkinson’s diseases as well as type 2 diabetes mellitus, where
soluble proteins transition into insoluble amyloid fibrils. Atomic Force Microscopy (AFM) is capable of
providing a topographical map of the protein and/or its aggregates, as well as probing the nanomechanical
properties of a sample. Moreover, AFM requires relatively simple sample preparation, which presents
the possibility of combining this technique with other research modalities, such as confocal laser
scanning microscopy, Raman spectroscopy and stimulated emission depletion microscopy. In this review,
the basic principles of AFM are discussed, followed by a brief overview of how it has been applied
in biological research. Finally, we focus specifically on its use as a characterisation method to
study protein structure at the nanoscale in pathophysiological conditions, considering both molecules
implicated in disease pathogenesis and the plasma protein fibrinogen. In conclusion, AFM is a userfriendly
tool that supplies multi-parametric data, rendering it a most valuable technique.
Collapse
Affiliation(s)
- Maria J.E. Visser
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| |
Collapse
|
8
|
Shcheslavskiy VI, Shirmanova MV, Jelzow A, Becker W. Multiparametric Time-Correlated Single Photon Counting Luminescence Microscopy. BIOCHEMISTRY (MOSCOW) 2019; 84:S51-S68. [PMID: 31213195 DOI: 10.1134/s0006297919140049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Classic time-correlated single photon counting (TCSPC) technique involves detection of single photons of a periodic optical signal, registration of the photon arrival time in respect to the reference pulse, and construction of photon distribution with regard to the detection times. This technique achieves extremely high time resolution and near-ideal detection efficiency. Modern TCSPC is multi-dimensional, i.e., in addition to the photon arrival time relative to the excitation pulse, spatial coordinates within the image area, wavelength, time from the start of the experiment, and many other parameters are determined for each photon. Hence, the multi-dimensional TCSPC allows generation of photon distributions over these parameters. This review describes both classic and multi-dimensional types of TCSPC microscopy and their application for fluorescence lifetime imaging in different areas of biological studies.
Collapse
Affiliation(s)
- V I Shcheslavskiy
- Becker&Hickl GmbH, Berlin, 12277, Germany. .,Privolzhskiy Medical Research University, Nizhny Novgorod, 603005, Russia
| | - M V Shirmanova
- Privolzhskiy Medical Research University, Nizhny Novgorod, 603005, Russia
| | - A Jelzow
- Becker&Hickl GmbH, Berlin, 12277, Germany
| | - W Becker
- Becker&Hickl GmbH, Berlin, 12277, Germany
| |
Collapse
|
9
|
Time-Resolved Imaging of Bacterial Surfaces Using Atomic Force Microscopy. Methods Mol Biol 2018. [PMID: 29956245 DOI: 10.1007/978-1-4939-8591-3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Time-resolved atomic force microscopy (AFM) offers countless new modes by which to study bacterial cell physiology on relevant time scales, from mere milliseconds to hours and days on end. In addition, time-lapse AFM acts as a complementary tool to optical fluorescence microscopy (OFM), for which the combination offers a correlative link between the physical manifestation of bacterial phenotypes and molecular mechanisms obeying those principles. Herein we describe the essential materials and methods necessary for conducting time-resolved AFM and dual AFM/OFM experiments on bacteria.
Collapse
|
10
|
Liu Q, Wu J, Lim ZY, Aggarwal A, Yang H, Wang S. Evaluation of the metabolic response of Escherichia coli to electrolysed water by 1 H NMR spectroscopy. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.01.066] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
James SA, Hilal N, Wright CJ. Atomic force microscopy studies of bioprocess engineering surfaces - imaging, interactions and mechanical properties mediating bacterial adhesion. Biotechnol J 2017; 12. [PMID: 28488793 DOI: 10.1002/biot.201600698] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
The detrimental effect of bacterial biofilms on process engineering surfaces is well documented. Thus, interest in the early stages of bacterial biofilm formation; in particular bacterial adhesion and the production of anti-fouling coatings has grown exponentially as a field. During this time, Atomic force microscopy (AFM) has emerged as a critical tool for the evaluation of bacterial adhesion. Due to its versatility AFM offers not only insight into the topographical landscape and mechanical properties of the engineering surfaces, but elucidates, through direct quantification the topographical and biomechnical properties of the foulants The aim of this review is to collate the current research on bacterial adhesion, both theoretical and practical, and outline how AFM as a technique is uniquely equipped to provide further insight into the nanoscale world at the bioprocess engineering surface.
Collapse
Affiliation(s)
- Sean A James
- Biomaterials, Biofouling and Biofilms Engineering Laboratory (B3EL, System and Process Engineering Center, College of Engineering, Swansea University, Fabian Way, Swansea, SA1 8EN, UK
| | - Nidal Hilal
- Centre for Water Advanced Technologies and Environmental Research (CWATER), College of Engineering, Swansea University, Fabian Way, Swansea, SA1 8EN, UK
| | - Chris J Wright
- Biomaterials, Biofouling and Biofilms Engineering Laboratory (B3EL, System and Process Engineering Center, College of Engineering, Swansea University, Fabian Way, Swansea, SA1 8EN, UK
| |
Collapse
|
12
|
Using hydrogels in microscopy: A tutorial. Micron 2016; 84:7-16. [DOI: 10.1016/j.micron.2016.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 01/13/2023]
|
13
|
|
14
|
Becker W. Fluorescence lifetime imaging by multi-dimensional time correlated single photon counting. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.medpho.2015.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Farooq S, Wahab AT, Fozing CDA, Rahman AU, Choudhary MI. Artonin I inhibits multidrug resistance in Staphylococcus aureus and potentiates the action of inactive antibiotics in vitro. J Appl Microbiol 2014; 117:996-1011. [PMID: 24996035 DOI: 10.1111/jam.12595] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 11/27/2022]
Abstract
AIMS The emergence of multidrug-resistant (MDR) Staphylococcus aureus is a challenge for the treatment of infections. We report here the antimicrobial activity of artonin I against MDR Staph. aureus, its mechanism of reversal of resistance and synergistic effects by combinational therapy. METHODS AND RESULTS Artonin I, a flavonoid obtained from Morus mesozygia Stapf., inhibited the bacterial efflux pump and induced depolarization of the cell membrane. To study the dose-dependent production of reactive oxygen species in MDR cells by artonin I, lucigenin chemiluminescence assay was employed. Reversal of multidrug resistance by artonin I, in combination with antibiotics, was measured by a fractional inhibitory concentration index assay. The effect of artonin I on ultrastructural features was studied by microscopy. Artonin I increased the penetration of ethidium bromide by blocking the efflux mechanism. It also helped anionic probe DiBAC4 (3) to bind with the lipid-rich cellular components by causing depolarization of the cell membrane. Artonin I reversed multidrug resistance and increased the susceptibility of existing antibiotics by lowering their minimum inhibitory concentrations (MICs). CONCLUSIONS Artonin I was identified both as a new antibacterial agent and a helper molecule to potentiate the action of otherwise inactive antibiotics. SIGNIFICANCE AND IMPACT OF THE STUDY Artonin I can be developed as potential antimicrobial and resistance reversal agent.
Collapse
Affiliation(s)
- S Farooq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | | | | | | |
Collapse
|
16
|
Kuyukina MS, Korshunova IO, Rubtsova EV, Ivshina IB. Methods of microorganism immobilization for dynamic atomic-force studies (review). APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683814010086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
He Y, Lu M, Lu HP. Single-molecule photon stamping FRET spectroscopy study of enzymatic conformational dynamics. Phys Chem Chem Phys 2013; 15:770-5. [PMID: 23085845 PMCID: PMC3657739 DOI: 10.1039/c2cp42944f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescence resonant energy transfer (FRET) from a donor to an acceptor via transition dipole-dipole interactions decreases the donor's fluorescent lifetime. The donor's fluorescent lifetime decreases as the FRET efficiency increases, following the equation: E(FRET) = 1 - τ(DA)/τ(D), where τ(D) and τ(DA) are the donor fluorescence lifetime without FRET and with FRET. Accordingly, the FRET time trajectories associated with single-molecule conformational dynamics can be recorded by measuring the donor's lifetime fluctuations. In this article, we report our work on the use of a Cy3/Cy5-labeled enzyme, HPPK to demonstrate probing single-molecule conformational dynamics in an enzymatic reaction by measuring single-molecule FRET donor lifetime time trajectories. Compared with single-molecule fluorescence intensity-based FRET measurements, single-molecule lifetime-based FRET measurements are independent of fluorescence intensity. The latter has an advantage in terms of eliminating the analysis background noise from the acceptor fluorescence detection leak through noise, excitation light intensity noise, or light scattering noise due to local environmental factors, for example, in a AFM-tip correlated single-molecule FRET measurements. Furthermore, lifetime-based FRET also supports simultaneous single-molecule fluorescence anisotropy.
Collapse
Affiliation(s)
- Yufan He
- Bowling Green State University, Center for Photochemical Sciences, Department of Chemistry, Bowling Green, Ohio 43403, USA.
| | - Maolin Lu
- Bowling Green State University, Center for Photochemical Sciences, Department of Chemistry, Bowling Green, Ohio 43403, USA.
| | - H. Peter Lu
- Bowling Green State University, Center for Photochemical Sciences, Department of Chemistry, Bowling Green, Ohio 43403, USA.
| |
Collapse
|
18
|
Chao Y, Zhang T. Optimization of fixation methods for observation of bacterial cell morphology and surface ultrastructures by atomic force microscopy. Appl Microbiol Biotechnol 2011; 92:381-92. [PMID: 21881891 PMCID: PMC3181414 DOI: 10.1007/s00253-011-3551-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/06/2011] [Accepted: 08/13/2011] [Indexed: 11/14/2022]
Abstract
Fixation ability of five common fixation solutions, including 2.5% glutaraldehyde, 10% formalin, 4% paraformaldehyde, methanol/acetone (1:1), and ethanol/acetic acid (3:1) were evaluated by using atomic force microscopy in the present study. Three model bacteria, i.e., Escherichia coli, Pseudomonas putida, and Bacillus subtilis were applied to observe the above fixation methods for the morphology preservation of bacterial cells and surface ultrastructures. All the fixation methods could effectively preserve cell morphology. However, for preserving bacterial surface ultrastructures, the methods applying aldehyde fixations performed much better than those using alcohols, since the alcohols could detach the surface filaments (i.e., flagella and pili) significantly. Based on the quantitative and qualitative assessments, the 2.5% glutaraldehyde was proposed as a promising fixation solution both for observing morphology of both bacterial cell and surface ultrastructures, while the methonal/acetone mixture was the worst fixation solution which may obtain unreliable results.
Collapse
Affiliation(s)
- Yuanqing Chao
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China
| | | |
Collapse
|
19
|
Abstract
The atomic force microscope (AFM) is a high-resolution scanning-probe instrument which has become an important tool for cellular and molecular biophysics in recent years, but lacks the time resolution and functional specificities offered by fluorescence microscopic techniques. The advantages of both methods may be exploited by combining and synchronizing them. In this paper, the biological applications of AFM, fluorescence, and their combinations are briefly reviewed, and the assembly and utilization of a spatially and temporally synchronized AFM and total internal reflection fluorescence microscope are described. The application of the method is demonstrated on a fluorescently labeled cell culture.
Collapse
Affiliation(s)
- Miklós S Z Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
20
|
Wright CJ, Shah MK, Powell LC, Armstrong I. Application of AFM from microbial cell to biofilm. SCANNING 2010; 32:134-49. [PMID: 20648545 DOI: 10.1002/sca.20193] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Atomic Force Microscopy (AFM) has proven itself over recent years as an essential tool for the analysis of microbial systems. This article will review how AFM has been used to study microbial systems to provide unique insight into their behavior and relationship with their environment. Immobilization of live cells has enabled AFM imaging and force measurement to provide understanding of the structure and function of numerous microbial cells. At the macromolecular level AFM investigation into the properties of surface macromolecules and the energies associated with their mechanical conformation and functionality has helped unravel the complex interactions of microbial cells. At the level of the whole cell AFM has provided an integrated analysis of how the microbial cell exploits its environment through its selective, adaptable interface, the cell surface. In addition to these areas of study the AFM investigation of microbial biofilms has been vital for industrial and medical process analysis. There exists a tremendous potential for the future application of AFM to microbial systems and this has been strengthened by the trend to use AFM in combination with other characterization methods, such as confocal microscopy and Raman spectroscopy, to elucidate dynamic cellular processes.
Collapse
Affiliation(s)
- Chris J Wright
- Multidisciplinary Nanotechnology Centre, School of Engineering, Swansea University, Swansea, United Kingdom.
| | | | | | | |
Collapse
|
21
|
Abstract
Atomic force microscopy (AFM) is a powerful tool for microbiological investigation. This versatile technique cannot only image cellular surfaces at high resolution, but also measure many forms of fundamental interactions over scales ranging from molecules to cells. In this work, we review the recent development of AFM applications in the microbial area. We discuss several approaches for using AFM scanning images to investigate morphological characteristics of microbes and the use of force-distance curves to investigate interaction of microbial samples at the nanometer and cellular levels. Complementary techniques used in combination with AFM for study of microbes are also discussed.
Collapse
Affiliation(s)
- Shaoyang Liu
- Biosystems Engineering Department, Auburn University, Auburn, Alabama 36849-5417, USA
| | | |
Collapse
|
22
|
Liu Z, Wang J, Wang E. Direct Binding of Thymopentin to Surface Class II Major Histocompatibility Complex in Living Cells. J Phys Chem B 2009; 114:638-42. [DOI: 10.1021/jp909017j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China, and Department of Chemistry and Physics, State University of New York, Stony Brook, New York
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China, and Department of Chemistry and Physics, State University of New York, Stony Brook, New York
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China, and Department of Chemistry and Physics, State University of New York, Stony Brook, New York
| |
Collapse
|
23
|
Moreno Flores S, Toca-Herrera JL. The new future of scanning probe microscopy: Combining atomic force microscopy with other surface-sensitive techniques, optical microscopy and fluorescence techniques. NANOSCALE 2009; 1:40-9. [PMID: 20644859 DOI: 10.1039/b9nr00156e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Atomic force microscopy (AFM) is in its thirties and has become an invaluable tool for studying the micro- and nanoworlds. As a stand-alone, high-resolution imaging technique and force transducer, it defies most other surface instrumentation in ease of use, sensitivity and versatility. Still, the technique has limitations to overcome. A promising way is to integrate the atomic force microscope into hybrid devices, a combination of two or three complementary techniques in one instrument. In this way, a comprehensive description of molecular processes is at hand; morphological, (electro)chemical, mechanical and kinetic information are simultaneously obtained in one experiment. Hereby we review the recent efforts towards such development, describing the aim and the applications resulting from the combination of AFM with spectroscopic, optical, mechanical or electrochemical techniques. Interesting possibilities include using AFM to bring optical microscopies beyond the diffraction limit and also bestowing spectroscopic capabilities on the atomic force microscope.
Collapse
|
24
|
Immobilizing live bacteria for AFM imaging of cellular processes. Ultramicroscopy 2009; 109:775-80. [DOI: 10.1016/j.ultramic.2009.01.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/21/2009] [Accepted: 01/28/2009] [Indexed: 11/22/2022]
|
25
|
Oreopoulos J, Yip CM. Combined scanning probe and total internal reflection fluorescence microscopy. Methods 2008; 46:2-10. [PMID: 18602010 DOI: 10.1016/j.ymeth.2008.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 05/22/2008] [Indexed: 11/19/2022] Open
Abstract
Combining scanning probe and optical microscopy represents a powerful approach for investigating structure-function relationships and dynamics of biomolecules and biomolecular assemblies, often in situ and in real-time. This platform technology allows us to obtain three-dimensional images of individual molecules with nanometer resolution, while simultaneously characterizing their structure and interactions though complementary techniques such as optical microscopy and spectroscopy. We describe herein the practical strategies for the coupling of scanning probe and total internal reflection fluorescence microscopy along with challenges and the potential applications of such platforms, with a particular focus on their application to the study of biomolecular interactions at membrane surfaces.
Collapse
Affiliation(s)
- John Oreopoulos
- Institute of Biomaterials and Biomedical Engineering, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, Ont., Canada M5S 3E1
| | | |
Collapse
|
26
|
High spatial resolution surface imaging and analysis of fungal cells using SEM and AFM. Micron 2008; 39:349-61. [DOI: 10.1016/j.micron.2007.10.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/17/2007] [Accepted: 10/18/2007] [Indexed: 11/22/2022]
|
27
|
Biju V, Pan D, Gorby YA, Fredrickson J, McLean J, Saffarini D, Lu HP. Combined spectroscopic and topographic characterization of nanoscale domains and their distributions of a redox protein on bacterial cell surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:1333-8. [PMID: 17241055 DOI: 10.1021/la061343z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Redox protein nanoscale domains on the cell surface of a bacterium, Shewanella oneidensis MR1, grown in the absence and presence of electron acceptors, is topographically characterized using combined atomic force microscopy (AFM) and confocal surface enhanced Raman scattering (SERS) spectroscopy. The protruding nanoscale domains on the outer membrane of S. oneidensis were observed, as was their disappearance upon exposure to electron acceptors such as oxygen, nitrate, fumarate, and iron nitrilotriacetate (FeNTA). Using SERS spectroscopy, a redox heme protein was identified as a major component of the cell surface domains. This conclusion was further confirmed by the disappearance of Raman vibrational frequencies, characteristic of heme proteins, upon exposure of the cells to electron acceptors. Our experimental results from our AFM imaging and SERS spectroscopy, consistent with the literature, suggest the protruding nanoscale surface domains as heme-containing secretions. Our results on the distributions of redox proteins on microbial cell surfaces will be helpful for a mechanistic understanding of the behaviors of surface proteins and their interactions with redox environments.
Collapse
Affiliation(s)
- Vasudevanpillai Biju
- Fundamental Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Kellermayer MSZ, Karsai A, Kengyel A, Nagy A, Bianco P, Huber T, Kulcsár A, Niedetzky C, Proksch R, Grama L. Spatially and temporally synchronized atomic force and total internal reflection fluorescence microscopy for imaging and manipulating cells and biomolecules. Biophys J 2006; 91:2665-77. [PMID: 16861276 PMCID: PMC1562396 DOI: 10.1529/biophysj.106.085456] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The atomic force microscope is a high-resolution scanning-probe instrument which has become an important tool for cellular and molecular biophysics in recent years but lacks the time resolution and functional specificities offered by fluorescence microscopic techniques. To exploit the advantages of both methods, here we developed a spatially and temporally synchronized total internal reflection fluorescence and atomic force microscope system. The instrument, which we hereby call STIRF-AFM, is a stage-scanning device in which the mechanical and optical axes are coaligned to achieve spatial synchrony. At each point of the scan the sample topography (atomic force microscope) and fluorescence (photon count or intensity) information are simultaneously recorded. The tool was tested and validated on various cellular (monolayer cells in which actin filaments and intermediate filaments were fluorescently labeled) and biomolecular (actin filaments and titin molecules) systems. We demonstrate that with the technique, correlated sample topography and fluorescence images can be recorded, soft biomolecular systems can be mechanically manipulated in a targeted fashion, and the fluorescence of mechanically stretched titin can be followed with high temporal resolution.
Collapse
Affiliation(s)
- Miklós S Z Kellermayer
- Department of Biophysics, University of Pécs, Faculty of Medicine, Pécs H-7624, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shaw JE, Alattia JR, Verity JE, Privé GG, Yip CM. Mechanisms of antimicrobial peptide action: Studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. J Struct Biol 2006; 154:42-58. [PMID: 16459101 DOI: 10.1016/j.jsb.2005.11.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 10/13/2005] [Accepted: 11/09/2005] [Indexed: 11/21/2022]
Abstract
We report here on an in situ atomic force microscopy study of the interaction of indolicidin, a tryptophan-rich antimicrobial peptide, with phase-segregated zwitterionic DOPC/DSPC supported planar bilayers. By varying the peptide concentration and bilayer composition through the inclusion of anionic lipids (DOPG or DSPG), we found that indolicidin interacts with these model membranes in one of two concentration-dependent manners. At low peptide concentrations, indolicidin forms an amorphous layer on the fluid domains when these domains contain anionic lipids. At high peptide concentrations, indolicidin appears to initiate a lowering of the gel-phase domains independent of the presence of an anionic lipid. Similar studies performed using membrane-raft mimetic bilayers comprising 30mol% cholesterol/1:1 DOPC/egg sphingomyelin revealed that indolicidin does not form a carpet-like layer on the zwitterionic DOPC domains at low peptide concentrations and does not induce membrane lowering of the liquid-ordered sphingomyelin/cholesterol-rich domains at high peptide concentration. Simultaneous AFM-confocal microscopy imaging did however reveal that indolicidin preferentially inserts into the fluid-phase DOPC domains. These data suggest that the indolicidin-membrane association is influenced greatly by specific electrostatic interactions, lipid fluidity, and peptide concentration. These insights provide a glimpse into the mechanism of the membrane selectivity of antibacterial peptides and suggest a powerful correlated approach for characterizing peptide-membrane interactions.
Collapse
Affiliation(s)
- James E Shaw
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
30
|
Meller K, Theiss C. Atomic force microscopy and confocal laser scanning microscopy on the cytoskeleton of permeabilised and embedded cells. Ultramicroscopy 2006; 106:320-5. [PMID: 16360280 DOI: 10.1016/j.ultramic.2005.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 10/07/2005] [Accepted: 10/19/2005] [Indexed: 11/23/2022]
Abstract
We describe a technical method of cell permeabilisation and embedding to study the organisation and distribution of intracellular proteins with aid of atomic force microscopy and confocal laser scanning microscopy in identical areas. While confocal laser scanning microscopy is useful for the identification of certain proteins subsequent labelling with markers or antibodies, atomic force microscopy allows the observation of macromolecular structures in fixed and living cells. To demonstrate the field of application of this preparatory technique, cells were permeabilised, fixed, and the actin cytoskeleton was stained with phalloidin-rhodamine. Confocal laser scanning microscopy was used to show the organisation of these microfilaments, e.g. geodesic dome structures. Thereafter, cells were embedded in Durcupan water-soluble resin, followed by UV-polymerisation of resin at 4 degrees C. This procedure allowed intracellular visualisation of the cell nucleus or cytoskeletal elements by atomic force microscopy, for instance to analyse the globular organisation of actin filaments. Therefore, this method offers a great potential to combine both microscopy techniques in order to understand and interpret intracellular protein relations, for example, the biochemical and morphological interaction of the cytoskeleton.
Collapse
Affiliation(s)
- Karl Meller
- Abteilung für Cytologie, Ruhr-University Bochum, Bochum, Germany
| | | |
Collapse
|
31
|
Shaw JE, Oreopoulos J, Wong D, Hsu JCY, Yip CM. Coupling evanescent-wave fluorescence imaging and spectroscopy with scanning probe microscopy: challenges and insights from TIRF–AFM. SURF INTERFACE ANAL 2006. [DOI: 10.1002/sia.2444] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Dressler C, Minet O, Beuthan J, Novkov V, Müller G. Microscopical heat stress investigations under application of quantum dots. JOURNAL OF BIOMEDICAL OPTICS 2005; 10:41209. [PMID: 16178633 DOI: 10.1117/1.2001674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Heat stress responses are analyzed in cancer cells by applying different microscopy techniques for targeting various fluorescently labeled or native structures. Thermotreatments are performed at 40, 45, 50, and 56 degrees C, respectively, for 30 min each, while controls were kept at 37 degrees C. Actin cytoskeletons labeled with Alexa Fluor 488-conjugated phalloidin are imaged by wide-field fluorescence microscopy (WFFM). Structural plasma membrane stabilities are labeled with fluorescent quantum dots and analyzed by laser scanning microscopy (LSM). High-resolution atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to study morphological features and surface structures. Fluorescence images reveal F-actin to be a comparatively thermolabile cell component showing distinctive alteration after heat treatment at 40 degrees C. Destabilization of actin cytoskeletons proceed with increasing stress temperatures. Active reorganization of plasma membranes coincidental to heat-induced shrinkage and rounding of cell shapes, and loosening of monolayered tissue are observed after treatment at 45 or 50 degrees C. Active stress response is inhibited by stress at 56 degrees C, because actin cytoskeletons as well as plasma membranes are destroyed, resulting in necrotic cell phenotypes. Comparing data measured with the same microscopic technique and comparing the different datasets with each other reveal that heat stress response in MX1 cells results from the overlap of different heat-induced subcellular defects.
Collapse
Affiliation(s)
- Cathrin Dressler
- Charité Universitätsmedizin in Berlin, Institut für Medizinische Physik und Lasermedizin, Campus Benjamin Franklin, Fabeckstrasse 60-62, D-14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
33
|
Núñez ME, Martin MO, Chan PH, Spain EM. Predation, death, and survival in a biofilm: Bdellovibrio investigated by atomic force microscopy. Colloids Surf B Biointerfaces 2005; 42:263-71. [PMID: 15893228 DOI: 10.1016/j.colsurfb.2005.03.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 03/23/2005] [Accepted: 03/24/2005] [Indexed: 11/18/2022]
Abstract
Biofilms are complex microbial communities that are resistant to attack by bacteriophages and to removal by drugs and chemicals. Here we use atomic force microscopy (AFM) to image the attack on Escherichia coli biofilms by Bdellovibrio bacteriovorus 109J. Bdellovibrio is a small, predatory bacterium that invades and devours other Gram-negative bacteria. We demonstrate that under dilute nutrient conditions, bdellovibrios can prevent the formation of simple bacterial biofilms and destroy established biofilms; under richer conditions the prey bacteria persist and are not eradicated, but may be shifted toward solution populations. Using AFM we explore these bacterial interactions with more detail and accuracy than available by more traditional staining assays or optical microscopy. AFM also allows us to investigate the nanoscale morphological changes of the predator, especially those related to motility. This demonstration of Bdellovibrio's successful predation in a biofilm inspires us to consider ways that it might be used productively for industrial, medical, agricultural, and biodefensive purposes.
Collapse
Affiliation(s)
- Megan E Núñez
- Department of Chemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | | | | | | |
Collapse
|