1
|
Ahmadi F, Kariman K, Mousavi M, Rengel Z. Echinacea: Bioactive Compounds and Agronomy. PLANTS (BASEL, SWITZERLAND) 2024; 13:1235. [PMID: 38732450 PMCID: PMC11085449 DOI: 10.3390/plants13091235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
For centuries, medicinal plants have been used as sources of remedies and treatments for various disorders and diseases. Recently, there has been renewed interest in these plants due to their potential pharmaceutical properties, offering natural alternatives to synthetic drugs. Echinacea, among the world's most important medicinal plants, possesses immunological, antibacterial, antifungal, and antiviral properties. Nevertheless, there is a notable lack of thorough information regarding the echinacea species, underscoring the vital need for a comprehensive review paper to consolidate existing knowledge. The current review provides a thorough analysis of the existing knowledge on recent advances in understanding the physiology, secondary metabolites, agronomy, and ecology of echinacea plants, focusing on E. purpurea, E. angustifolia, and E. pallida. Pharmacologically advantageous effects of echinacea species on human health, particularly distinguished for its ability to safeguard the nervous system and combat cancer, are discussed. We also highlight challenges in echinacea research and provide insights into diverse approaches to boost the biosynthesis of secondary metabolites of interest in echinacea plants and optimize their large-scale farming. Various academic databases were employed to carry out an extensive literature review of publications from 2001 to 2024. The medicinal properties of echinacea plants are attributed to diverse classes of compounds, including caffeic acid derivatives (CADs), chicoric acid, echinacoside, chlorogenic acid, cynarine, phenolic and flavonoid compounds, polysaccharides, and alkylamides. Numerous critical issues have emerged, including the identification of active metabolites with limited bioavailability, the elucidation of specific molecular signaling pathways or targets linked to echinacoside effects, and the scarcity of robust clinical trials. This raises the overarching question of whether scientific inquiry can effectively contribute to harnessing the potential of natural compounds. A systematic review and analysis are essential to furnish insights and lay the groundwork for future research endeavors focused on the echinacea natural products.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; (K.K.); (M.M.); (Z.R.)
| | - Khalil Kariman
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; (K.K.); (M.M.); (Z.R.)
| | - Milad Mousavi
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; (K.K.); (M.M.); (Z.R.)
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; (K.K.); (M.M.); (Z.R.)
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia
| |
Collapse
|
2
|
Sikkema R, Baker K, Zhitomirsky I. Electrophoretic deposition of polymers and proteins for biomedical applications. Adv Colloid Interface Sci 2020; 284:102272. [PMID: 32987293 DOI: 10.1016/j.cis.2020.102272] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 11/19/2022]
Abstract
This review is focused on new electrophoretic deposition (EPD) mechanisms for deposition biomacromolecules, such as biopolymers, proteins and enzymes. Among the rich literature sources of EPD of biopolymers, proteins and enzymes for biomedical applications we selected papers describing new fundamental deposition mechanisms. Such deposition mechanisms are of critical importance for further development of EPD method and its emerging biomedical applications. Our goal is to emphasize innovative ideas which have enriched colloid and interface science of EPD during recent years. We describe various mechanisms of cathodic and anodic EPD of charged biopolymers. Special attention is focused on in-situ chemical modification of biopolymers and crosslinking techniques. Recent innovations in the development of natural and biocompatible charged surfactants and film forming agents are outlined. Among the important advances in this area are the applications of bile acids and salts for EPD of neutral polymers. Such innovations allowed for the successful EPD of various electrically neutral functional polymers for biomedical applications. Particularly important are biosurfactant-polymer interactions, which facilitate dissolution, dispersion, charging, electrophoretic transport and deposit formation. Recent advances in EPD mechanisms addressed the problem of EPD of proteins and enzymes related to their charge reversal at the electrode surface. Conceptually new methods are described, which are based on the use of biopolymer complexes with metal ions, proteins, enzymes and other biomolecules. This review describes new developments in co-deposition of biomacromolecules and future trends in the development of new EPD mechanisms and strategies for biomedical applications.
Collapse
Affiliation(s)
- Rebecca Sikkema
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada
| | - Kayla Baker
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada
| | - Igor Zhitomirsky
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
3
|
Korzhova E, Déon S, Koubaa Z, Fievet P, Lopatin D, Baranov O. Modification of commercial UF membranes by electrospray deposition of polymers for tailoring physicochemical properties and enhancing filtration performances. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117805] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
4
|
Liu Y, Xue Y, Tang J, Chen J, Chen M. Efficient mesophyll protoplast isolation and development of a transient expression system for castor-oil plant (Ricinus communis L.). Biol Futur 2019; 70:8-15. [PMID: 34554435 DOI: 10.1556/019.70.2019.02] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/21/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION We investigated the main factors affecting the efficacy of protoplast isolation, including leaf-obtaining period, cutting shapes of leaf material, enzyme concentration, enzymolysis time, and centrifugal speed. METHODS Protoplast isolation was optimal on the condition of 20 days of leaf materials, 2-mm filament of leaves, 1.6% RS and 0.8% R-10, 80 min of enzymolysis, and 700 rpm of centrifugation, resulting in the best yield (1.19 X 106 protoplasts/g FW) and vitality (80.34%) of mesophyll protoplasts. The transient expression vector pGFPl with green fluorescent protein was transfected into the obtained protoplasts from castor by polyethylene glycol-mediated method with a transformation efficiency of 12.37%. RESULTS Moreover, the applicability of the system for studying the subcellular localization of Re FATA (an acyl-ACP thioesterase) was validated via the protoplast isolation and transient expression protocol in this study. DISCUSSION Collectively, the efficient mesophyll protoplast isolation and protoplast transient expression system facilitate to analyze the function of specific gene in castor (Ricinus communis L).
Collapse
Affiliation(s)
- Ying Liu
- Department of Biotechnology, Faculty of Agricultural Science, Guangdong Ocean University, Zhanjiang, Guangdong, P. R. China
| | - Yingbin Xue
- Department of Biotechnology, Faculty of Agricultural Science, Guangdong Ocean University, Zhanjiang, Guangdong, P. R. China
| | - Jianian Tang
- Department of Biotechnology, Faculty of Agricultural Science, Guangdong Ocean University, Zhanjiang, Guangdong, P. R. China.,State Key Laboratory for Conservation and Utilization of Subtropical Afro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Jianping Chen
- Department of Food Science and Engineering, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, P. R. China.
| | - Miao Chen
- Department of Biotechnology, Faculty of Agricultural Science, Guangdong Ocean University, Zhanjiang, Guangdong, P. R. China. .,State Key Laboratory for Conservation and Utilization of Subtropical Afro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
5
|
Lin LH, Su SK, Lai YC, Yang YH. Physicochemical Properties of Amino Acid Surfactants and Their Use in Dyeing with Natural Plant Dyes. TENSIDE SURFACT DET 2017. [DOI: 10.3139/113.110507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Environment-friendly green amino acid surfactants were prepared by the reaction of glutamic acid with various fatty acids (C2–C14). These green amino acid surfactants have been found to exhibit good surface activities i.e. surface tension, foaming, wetting power and emulsifying ability. The critical micelle concentration (CMC) increases with an increase of the alkyl chain of amino acid surfactants. After 5 days the biodegradation of these amino acid surfactants was larger than 60% and consequently, the surfactants should be regarded as readily biodegradable. Finally, the green amino acid surfactants were added to natural plant dyes to test their applicability for dyeing wool fibers. The surfactant developed in this study will contribute to green and sustainability chemistry.
Collapse
Affiliation(s)
- Li-Huei Lin
- Department of Cosmetic Science , Vanung University, 1, Van Nung Road, Chung-Li City, Taiwan , ROC
| | - Shuenn-Kung Su
- Department of Materials Science and Engineering , National Taiwan University of Science and Technology, 43, Keelung Road, Section 4, Taipei, Taiwan , ROC
| | - Yu-Ching Lai
- Department of Materials Science and Engineering , National Taiwan University of Science and Technology, 43, Keelung Road, Section 4, Taipei, Taiwan , ROC
| | - Yong-Han Yang
- Department of Materials Science and Engineering , National Taiwan University of Science and Technology, 43, Keelung Road, Section 4, Taipei, Taiwan , ROC
| |
Collapse
|
6
|
Wu JZ, Liu Q, Geng XS, Li KM, Luo LJ, Liu JP. Highly efficient mesophyll protoplast isolation and PEG-mediated transient gene expression for rapid and large-scale gene characterization in cassava (Manihot esculenta Crantz). BMC Biotechnol 2017; 17:29. [PMID: 28292294 PMCID: PMC5351281 DOI: 10.1186/s12896-017-0349-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/07/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Cassava (Manihot esculenta Crantz) is a major crop extensively cultivated in the tropics as both an important source of calories and a promising source for biofuel production. Although stable gene expression have been used for transgenic breeding and gene function study, a quick, easy and large-scale transformation platform has been in urgent need for gene functional characterization, especially after the cassava full genome was sequenced. METHODS Fully expanded leaves from in vitro plantlets of Manihot esculenta were used to optimize the concentrations of cellulase R-10 and macerozyme R-10 for obtaining protoplasts with the highest yield and viability. Then, the optimum conditions (PEG4000 concentration and transfection time) were determined for cassava protoplast transient gene expression. In addition, the reliability of the established protocol was confirmed for subcellular protein localization. RESULTS In this work we optimized the main influencing factors and developed an efficient mesophyll protoplast isolation and PEG-mediated transient gene expression in cassava. The suitable enzyme digestion system was established with the combination of 1.6% cellulase R-10 and 0.8% macerozyme R-10 for 16 h of digestion in the dark at 25 °C, resulting in the high yield (4.4 × 107 protoplasts/g FW) and vitality (92.6%) of mesophyll protoplasts. The maximum transfection efficiency (70.8%) was obtained with the incubation of the protoplasts/vector DNA mixture with 25% PEG4000 for 10 min. We validated the applicability of the system for studying the subcellular localization of MeSTP7 (an H+/monosaccharide cotransporter) with our transient expression protocol and a heterologous Arabidopsis transient gene expression system. CONCLUSION We optimized the main influencing factors and developed an efficient mesophyll protoplast isolation and transient gene expression in cassava, which will facilitate large-scale characterization of genes and pathways in cassava.
Collapse
Affiliation(s)
- Jun-Zheng Wu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, Hainan Province, 570228, China
| | - Qin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, Hainan Province, 570228, China
| | - Xiao-Shan Geng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, Hainan Province, 570228, China
| | - Kai-Mian Li
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan Province, 571101, China
| | - Li-Juan Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, Hainan Province, 570228, China.
| | - Jin-Ping Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, Hainan Province, 570228, China.
| |
Collapse
|
7
|
Nanjareddy K, Arthikala MK, Blanco L, Arellano ES, Lara M. Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene expression analysis. BMC Biotechnol 2016; 16:53. [PMID: 27342637 PMCID: PMC4919892 DOI: 10.1186/s12896-016-0283-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/14/2016] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Phaseolus vulgaris is one of the most extensively studied model legumes in the world. The P. vulgaris genome sequence is available; therefore, the need for an efficient and rapid transformation system is more imperative than ever. The functional characterization of P. vulgaris genes is impeded chiefly due to the non-amenable nature of Phaseolus sp. to stable genetic transformation. Transient transformation systems are convenient and versatile alternatives for rapid gene functional characterization studies. Hence, the present work focuses on standardizing methodologies for protoplast isolation from multiple tissues and transient transformation protocols for rapid gene expression analysis in the recalcitrant grain legume P. vulgaris. RESULTS Herein, we provide methodologies for the high-throughput isolation of leaf mesophyll-, flower petal-, hypocotyl-, root- and nodule-derived protoplasts from P. vulgaris. The highly efficient polyethylene glycol-mannitol magnesium (PEG-MMG)-mediated transformation of leaf mesophyll protoplasts was optimized using a GUS reporter gene. We used the P. vulgaris SNF1-related protein kinase 1 (PvSnRK1) gene as proof of concept to demonstrate rapid gene functional analysis. An RT-qPCR analysis of protoplasts that had been transformed with PvSnRK1-RNAi and PvSnRK1-OE vectors showed the significant downregulation and ectopic constitutive expression (overexpression), respectively, of the PvSnRK1 transcript. We also demonstrated an improved transient transformation approach, sonication-assisted Agrobacterium-mediated transformation (SAAT), for the leaf disc infiltration of P. vulgaris. Interestingly, this method resulted in a 90 % transformation efficiency and transformed 60-85 % of the cells in a given area of the leaf surface. The constitutive expression of YFP further confirmed the amenability of the system to gene functional characterization studies. CONCLUSIONS We present simple and efficient methodologies for protoplast isolation from multiple P. vulgaris tissues. We also provide a high-efficiency and amenable method for leaf mesophyll transformation for rapid gene functional characterization studies. Furthermore, a modified SAAT leaf disc infiltration approach aids in validating genes and their functions. Together, these methods help to rapidly unravel novel gene functions and are promising tools for P. vulgaris research.
Collapse
Affiliation(s)
- Kalpana Nanjareddy
- />Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México (UNAM), León, C.P.37684 Guanajuato Mexico
| | - Manoj-Kumar Arthikala
- />Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México (UNAM), León, C.P.37684 Guanajuato Mexico
| | - Lourdes Blanco
- />Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México (UNAM), León, C.P.37684 Guanajuato Mexico
- />Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacan, Ciudad de México C.P. 62210 Mexico
| | - Elizabeth S. Arellano
- />Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa Maria, Cuernavaca, Morelos 62100 Mexico
| | - Miguel Lara
- />Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México (UNAM), León, C.P.37684 Guanajuato Mexico
- />Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacan, Ciudad de México C.P. 04510 Mexico
| |
Collapse
|
8
|
Lin LH, Wang CC, Chen KM, Lin PC. Synthesis and physicochemical properties of silicon-based gemini surfactants. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.08.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Uskoković V. Dynamic Light Scattering Based Microelectrophoresis: Main Prospects and Limitations. J DISPER SCI TECHNOL 2012; 33:1762-1786. [PMID: 23904690 PMCID: PMC3726226 DOI: 10.1080/01932691.2011.625523] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microelectrophoresis based on the dynamic light scattering (DLS) effect has been a major tool for assessing and controlling the conditions for stability of colloidal systems. However, both the DLS methods for characterization of the hydrodynamic size of dispersed submicron particles and the theory behind the electrokinetic phenomena are associated with fundamental and practical approximations that limit their sensitivity and information output. Some of these fundamental limitations, including the spherical approximation of DLS measurements and an inability of microelectrophoretic analyses of colloidal systems to detect discrete charges and differ between differently charged particle surfaces due to rotational diffusion and particle orientation averaging, are revisited in this work. Along with that, the main prospects of these two analytical methods are mentioned. A detailed review of the role of zeta potential in processes of biochemical nature is given too. It is argued that although zeta potential has been used as one of the main parameters in controlling the stability of colloidal dispersions, its application potentials are much broader. Manipulating surface charges of interacting species in designing complex soft matter morphologies using the concept of zeta potential, intensively investigated recently, is given as one of the examples. Branching out from the field of colloid chemistry, DLS and zeta potential analyses are now increasingly finding application in drug delivery, biotechnologies, physical chemistry of nanoscale phenomena and other research fields that stand on the frontier of the contemporary science. Coupling the DLS-based microelectrophoretic systems with complementary characterization methods is mentioned as one of the prosperous paths for increasing the information output of these two analytical techniques.
Collapse
Affiliation(s)
- Vuk Uskoković
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, Mission Bay Campus, San Francisco, California, USA
| |
Collapse
|
10
|
Chabane D, Assani A, Bouguedoura N, Haïcour R, Ducreux G. Induction of callus formation from difficile date palm protoplasts by means of nurse culture. C R Biol 2007; 330:392-401. [PMID: 17531789 DOI: 10.1016/j.crvi.2007.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 02/12/2007] [Accepted: 02/20/2007] [Indexed: 11/22/2022]
Abstract
We report here for the first time callus formation from protoplasts in date palm (Phoenix dactylifera L.). Protoplasts were isolated from young leaves of offshoots and embryogenic calli in Deglet nour and Takerboucht genotypes. The protoplast yield depended on genotype, donor plant material, mixture of enzyme solution, and incubation time. With regard to the donor material, the best response was obtained with callus. Cell division was induced in both liquid culture and nurse culture. The best donor material for cell division was callus and the best response was obtained with the feeder layer, which induced a division rate of 30% in Deglet nour and 15% in Takerboucht genotypes. The dividing cells developed to microcalli on the feeder layer; the microcalli developed to calli on modified MS medium; however, the calli failed to regenerate into roots or shoots.
Collapse
Affiliation(s)
- Djamila Chabane
- Laboratoire de recherche sur les zones arides, université des sciences et de la technologie d'Alger, BP 44, Alger Gare, Alger, Algeria
| | | | | | | | | |
Collapse
|
11
|
Jurak M, Chibowski E. Topography and surface free energy of DPPC layers deposited on a glass, mica, or PMMA support. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:7226-34. [PMID: 16893219 DOI: 10.1021/la060585w] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An investigation of energetic properties of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) layers deposited on glass, mica, and PMMA (poly(methyl methacrylate)) surfaces was carried out by means of contact angles measurements (advancing and receding) for three probe liquids (diiodomethane, water, and formamide). DPPC was deposited on the surfaces from water (on glass and mica) or methanol (on PMMA) solutions. The topography of the tested surfaces was determined with a help of scanning electron microscopy (SEM) and atomic force microscopy (AFM). Using the measured contact angles, the total apparent surface free energy and its components of the studied layers were determined from van Oss et al.'s (Lifshitz-van der Waals and acid-base components, LWAB) and contact angle hysteresis (CAH) approaches. It allowed us to learn about changes in the surface free energy of the layers (hydrophobicity/hydrophilicity) depending on their number and kind of support. It was found that the changes in the energy greatly depended on the surface properties of the substrate as well as the statistical number of monolayers of DPPC. However, principal changes took place for first three monolayers.
Collapse
Affiliation(s)
- Malgorzata Jurak
- Department of Physical Chemistry-Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | | |
Collapse
|