1
|
Rousseau N, Chabrand P, Destainville A, Richart O, Milan JL. Mechanobiological model to study the influence of screw design and surface treatment on osseointegration. Comput Methods Biomech Biomed Engin 2021; 25:273-289. [PMID: 34854783 DOI: 10.1080/10255842.2021.1950144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study aims at suggesting a new approach to peri-implant healing models, providing a set of taxis-diffusion-reaction equations under the combined influence of mechanical and biochemical factors. Early events of osseointegration were simulated for titanium screw implants inserted into a pre-drilled trabecular bone environment, up to 12 weeks of peri-implant bone healing. Simulations showed the ability of the model to reproduce biological events occurring at the implant interface through osteogenesis. Implants with shallow healing chamber showed higher proportions of lamellar bone, enhanced by the increase of mechanical stimulation. Osteoconduction was observed through the surface treatment model and similar bone healing patterns compared to in vivo studies.
Collapse
Affiliation(s)
- Nicolas Rousseau
- CNRS, ISM, Aix Marseille University, Marseille, France.,Selenium Medical, La Rochelle, France
| | | | | | | | | |
Collapse
|
2
|
Wu HY, Yang L, Tu JS, Wang J, Li JG, Lv HY, Yang XN. Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2639-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Lorthongpanich C, Charoenwongpaiboon T, Supakun P, Klaewkla M, Kheolamai P, Issaragrisil S. Fisetin Inhibits Osteogenic Differentiation of Mesenchymal Stem Cells via the Inhibition of YAP. Antioxidants (Basel) 2021; 10:antiox10060879. [PMID: 34070903 PMCID: PMC8226865 DOI: 10.3390/antiox10060879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are self-renewal and capable of differentiating to various functional cell types, including osteocytes, adipocytes, myoblasts, and chondrocytes. They are, therefore, regarded as a potential source for stem cell therapy. Fisetin is a bioactive flavonoid known as an active antioxidant molecule that has been reported to inhibit cell growth in various cell types. Fisetin was shown to play a role in regulating osteogenic differentiation in animal-derived MSCs; however, its molecular mechanism is not well understood. We, therefore, studied the effect of fisetin on the biological properties of human MSCs derived from chorion tissue and its role in human osteogenesis using MSCs and osteoblast-like cells (SaOs-2) as a model. We found that fisetin inhibited proliferation, migration, and osteogenic differentiation of MSCs as well as human SaOs-2 cells. Fisetin could reduce Yes-associated protein (YAP) activity, which results in downregulation of osteogenic genes and upregulation of fibroblast genes. Further analysis using molecular docking and molecular dynamics simulations suggests that fisetin occupied the hydrophobic TEAD pocket preventing YAP from associating with TEA domain (TEAD). This finding supports the potential application of flavonoids like fisetin as a protein–protein interaction disruptor and also suggesting an implication of fisetin in regulating human osteogenesis.
Collapse
Affiliation(s)
- Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.S.); (S.I.)
- Correspondence:
| | | | - Prapasri Supakun
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.S.); (S.I.)
| | - Methus Klaewkla
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pakpoom Kheolamai
- Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathum Thani 10120, Thailand;
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.S.); (S.I.)
| |
Collapse
|
4
|
Dey K, Roca E, Ramorino G, Sartore L. Progress in the mechanical modulation of cell functions in tissue engineering. Biomater Sci 2021; 8:7033-7081. [PMID: 33150878 DOI: 10.1039/d0bm01255f] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In mammals, mechanics at multiple stages-nucleus to cell to ECM-underlie multiple physiological and pathological functions from its development to reproduction to death. Under this inspiration, substantial research has established the role of multiple aspects of mechanics in regulating fundamental cellular processes, including spreading, migration, growth, proliferation, and differentiation. However, our understanding of how these mechanical mechanisms are orchestrated or tuned at different stages to maintain or restore the healthy environment at the tissue or organ level remains largely a mystery. Over the past few decades, research in the mechanical manipulation of the surrounding environment-known as substrate or matrix or scaffold on which, or within which, cells are seeded-has been exceptionally enriched in the field of tissue engineering and regenerative medicine. To do so, traditional tissue engineering aims at recapitulating key mechanical milestones of native ECM into a substrate for guiding the cell fate and functions towards specific tissue regeneration. Despite tremendous progress, a big puzzle that remains is how the cells compute a host of mechanical cues, such as stiffness (elasticity), viscoelasticity, plasticity, non-linear elasticity, anisotropy, mechanical forces, and mechanical memory, into many biological functions in a cooperative, controlled, and safe manner. High throughput understanding of key cellular decisions as well as associated mechanosensitive downstream signaling pathway(s) for executing these decisions in response to mechanical cues, solo or combined, is essential to address this issue. While many reports have been made towards the progress and understanding of mechanical cues-particularly, substrate bulk stiffness and viscoelasticity-in regulating the cellular responses, a complete picture of mechanical cues is lacking. This review highlights a comprehensive view on the mechanical cues that are linked to modulate many cellular functions and consequent tissue functionality. For a very basic understanding, a brief discussion of the key mechanical players of ECM and the principle of mechanotransduction process is outlined. In addition, this review gathers together the most important data on the stiffness of various cells and ECM components as well as various tissues/organs and proposes an associated link from the mechanical perspective that is not yet reported. Finally, beyond addressing the challenges involved in tuning the interplaying mechanical cues in an independent manner, emerging advances in designing biomaterials for tissue engineering are also explored.
Collapse
Affiliation(s)
- Kamol Dey
- Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Bangladesh
| | | | | | | |
Collapse
|
5
|
Heng W, Bhavsar M, Han Z, Barker JH. Effects of Electrical Stimulation on Stem Cells. Curr Stem Cell Res Ther 2020; 15:441-448. [PMID: 31995020 DOI: 10.2174/1574888x15666200129154747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 11/22/2022]
Abstract
Recent interest in developing new regenerative medicine- and tissue engineering-based treatments has motivated researchers to develop strategies for manipulating stem cells to optimize outcomes in these potentially, game-changing treatments. Cells communicate with each other, and with their surrounding tissues and organs via electrochemical signals. These signals originate from ions passing back and forth through cell membranes and play a key role in regulating cell function during embryonic development, healing, and regeneration. To study the effects of electrical signals on cell function, investigators have exposed cells to exogenous electrical stimulation and have been able to increase, decrease and entirely block cell proliferation, differentiation, migration, alignment, and adherence to scaffold materials. In this review, we discuss research focused on the use of electrical stimulation to manipulate stem cell function with a focus on its incorporation in tissue engineering-based treatments.
Collapse
Affiliation(s)
- Wang Heng
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma & Orthopedic Surgery, J.W. Goethe University, Frankfurt, Germany
| | - Mit Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma & Orthopedic Surgery, J.W. Goethe University, Frankfurt, Germany
| | - Zhihua Han
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma & Orthopedic Surgery, J.W. Goethe University, Frankfurt, Germany
| | - John H Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma & Orthopedic Surgery, J.W. Goethe University, Frankfurt, Germany
| |
Collapse
|
6
|
Abstract
For mechanical force to induce changes in cellular behaviors, two main processes are inevitable; perception of the force and response to it. Perception of mechanical force by cells, or mechanosensing, requires mechanical force-induced conformational changes in mechanosensors. For this, at least one end of the mechanosensors should be anchored to relatively fixed structures, such as extracellular matrices or the cytoskeletons, while the other end should be pulled along the direction of the mechanical force. Alternatively, mechanosensors may be positioned in lipid bilayers, so that conformational changes in the embedded sensors can be induced by mechanical force-driven tension in the lipid bilayer. Responses to mechanical force by cells, or mechanotransduction, require translation of such mechanical force-induced conformational changes into biochemical signaling. For this, protein-protein interactions or enzymatic activities of mechanosensors should be modulated in response to force-induced structural changes. In the last decade, several molecules that met the required criteria of mechanosensors have been identified and proven to directly sense mechanical force. The present review introduces examples of such mechanosensors and summarizes their mechanisms of action.
Collapse
Affiliation(s)
- Chul-Gyun Lim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jiyoung Jang
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
7
|
Chu SY, Chou CH, Huang HD, Yen MH, Hong HC, Chao PH, Wang YH, Chen PY, Nian SX, Chen YR, Liou LY, Liu YC, Chen HM, Lin FM, Chang YT, Chen CC, Lee OK. Mechanical stretch induces hair regeneration through the alternative activation of macrophages. Nat Commun 2019; 10:1524. [PMID: 30944305 PMCID: PMC6447615 DOI: 10.1038/s41467-019-09402-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/04/2019] [Indexed: 12/28/2022] Open
Abstract
Tissues and cells in organism are continuously exposed to complex mechanical cues from the environment. Mechanical stimulations affect cell proliferation, differentiation, and migration, as well as determining tissue homeostasis and repair. By using a specially designed skin-stretching device, we discover that hair stem cells proliferate in response to stretch and hair regeneration occurs only when applying proper strain for an appropriate duration. A counterbalance between WNT and BMP-2 and the subsequent two-step mechanism are identified through molecular and genetic analyses. Macrophages are first recruited by chemokines produced by stretch and polarized to M2 phenotype. Growth factors such as HGF and IGF-1, released by M2 macrophages, then activate stem cells and facilitate hair regeneration. A hierarchical control system is revealed, from mechanical and chemical signals to cell behaviors and tissue responses, elucidating avenues of regenerative medicine and disease control by demonstrating the potential to manipulate cellular processes through simple mechanical stimulation.
Collapse
Affiliation(s)
- Szu-Ying Chu
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, 112, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 112, Taiwan
- Department of Dermatology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chih-Hung Chou
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Sciences and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Meng-Hua Yen
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan
| | - Hsiao-Chin Hong
- Department of Biological Science and Technology, Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Po-Han Chao
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Yu-Hsuan Wang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Po-Yu Chen
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, 112, Taiwan
- Department of Dermatology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Shi-Xin Nian
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, 112, Taiwan
- Department of Dermatology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Yu-Ru Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Li-Ying Liou
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, 112, Taiwan
- Department of Dermatology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Yu-Chen Liu
- Department of Biological Science and Technology, Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Hui-Mei Chen
- Department of Biological Science and Technology, Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Feng-Mao Lin
- Department of Biological Science and Technology, Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yun-Ting Chang
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, 112, Taiwan
- Department of Dermatology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chih-Chiang Chen
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, 112, Taiwan.
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 112, Taiwan.
- Department of Dermatology, National Yang-Ming University, Taipei, 112, Taiwan.
| | - Oscar K Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 112, Taiwan.
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China.
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, China.
| |
Collapse
|
8
|
Fu X, Halim A, Tian B, Luo Q, Song G. MT1-MMP downregulation via the PI3K/Akt signaling pathway is required for the mechanical stretching-inhibited invasion of bone-marrow-derived mesenchymal stem cells. J Cell Physiol 2019; 234:14133-14144. [PMID: 30659604 DOI: 10.1002/jcp.28105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022]
Abstract
Mobilization from the bone marrow and the migration of bone-marrow-derived mesenchymal stem cells (BMSCs) through the peripheral circulation to injured tissue sites are regulated by multiple mechanical and chemical factors. We previously demonstrated that mechanical stretching promotes the migration but inhibits the invasion of BMSCs. However, the involved mechanisms, especially the mechanism of stretching-inhibited BMSC invasion, have not been thoroughly elucidated to date. In this study, we found that mechanical stretching with a 10% amplitude at a 1-Hz frequency for 8 hr significantly reduces BMSC invasion and downregulates the expression of membrane type-1 matrix metalloproteinases (MT1-MMP) at both the messenger RNA and protein levels. The overexpression of MT1-MMP restores mechanical stretching-reduced BMSC invasion. Moreover, phosphatidylinositol 3-kinase (PI3K)-dependent Akt phosphorylation in BMSCs was found to be inactivated by mechanical stretching. Pharmacological inhibitors of PI3K/Akt signaling (LY294002 or A443654) reduced the expression of MT1-MMP and impaired BMSC invasion. In addition, the upregulation of Akt phosphorylation by a pharmacological activator (SC79) increased MT1-MMP expression and suppressed mechanical stretching-reduced BMSC invasion. Taken together, our results suggest that mechanical stretching inhibits BMSC invasion by downregulating MT1-MMP expression by suppressing the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiaorong Fu
- Department of Bioengineering, College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing, China
| | - Alexander Halim
- Department of Bioengineering, College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing, China
| | - Boren Tian
- Department of Bioengineering, College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing, China
| | - Qing Luo
- Department of Bioengineering, College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing, China
| | - Guanbin Song
- Department of Bioengineering, College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing, China
| |
Collapse
|
9
|
He YB, Liu SY, Deng SY, Kuang LP, Xu SY, Li Z, Xu L, Liu W, Ni GX. Mechanical Stretch Promotes the Osteogenic Differentiation of Bone Mesenchymal Stem Cells Induced by Erythropoietin. Stem Cells Int 2019; 2019:1839627. [PMID: 31360172 PMCID: PMC6642771 DOI: 10.1155/2019/1839627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION The effects of erythropoietin (EPO) on the behaviors of bone marrow mesenchymal stem cells (BMSCs) subjected to mechanical stretch remain unclear. This study was therefore aimed at establishing the dose-response effect of EPO stimulation on rat BMSCs and investigating the effects of mechanical stretch combined with EPO on the proliferation and osteogenic differentiation of BMSCs. MATERIAL AND METHODS The proliferation and osteogenic differentiation of rat BMSCs were examined and compared using EPO with different concentrations. Thereafter, BMSCs were subjected to 10% elongation using a Flexcell strain unit, combined with 20 IU/ml EPO. The proliferation of BMSCs was detected by Cell Counting Kit-8, colony formation assay, and cell cycle assay; meanwhile, the mRNA expression levels of Ets-1, C-myc, Ccnd1, and C-fos were detected by reverse transcription and real-time quantitative PCR (qPCR). The osteogenic differentiation of BMSCs was detected by alkaline phosphatase (ALP) staining, and the mRNA expression levels of ALP, OCN, COL, and Runx2 were detected by qPCR. The role of the extracellular signal-regulated kinases 1/2 (ERK1/2) in the osteogenesis of BMSCs stimulated by mechanical stretch combined with 20 IU/ml EPO was examined by Western blot. RESULTS Our results showed that effects of EPO on BMSCs included a dose-response relationship, with the 20 IU/ml EPO yielding the largest. Mechanical stretch combined with 20 IU/ml EPO promoted proliferation and osteogenic differentiation of BMSCs. The increase in ALP, mineral deposition, and osteoblastic genes induced by the mechanical stretch-EPO combination was inhibited by U0126, an ERK1/2 inhibitor. CONCLUSION EPO was able to promote the proliferation and osteogenic differentiation of BMSCs, and these effects were enhanced when combined with mechanical stretch. The underlying mechanism may be related to the activation of the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Yong-Bin He
- 1School of Sport Medicine and Rehabilitation, Beijing Sport University, China
- 2Department of Orthopedics, The Fifth Affiliated Hospital of Zunyi Medical University, China
| | - Sheng-Yao Liu
- 3Department of Orthopedics, The Second Affiliated Hospital of Guangzhou Medical University, China
| | - Song-Yun Deng
- 4Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, China
| | - Li-Peng Kuang
- 2Department of Orthopedics, The Fifth Affiliated Hospital of Zunyi Medical University, China
| | - Shao-Yong Xu
- 4Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, China
| | - Zhe Li
- 5Department of Orthopaedics and Traumatology, Zhengzhou Orthopaedics Hospital, Zhengzhou, China
| | - Lei Xu
- 4Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, China
| | - Wei Liu
- 6Department of Orthopedics, The People's Hospital of Gaoming District of Foshan City, China
| | - Guo-Xin Ni
- 1School of Sport Medicine and Rehabilitation, Beijing Sport University, China
| |
Collapse
|
10
|
Rogers EH, Pekovic-Vaughan V, Hunt JA. Mechanical stretch and chronotherapeutic techniques for progenitor cell transplantation and biomaterials. Biomedicine (Taipei) 2018; 8:14. [PMID: 30141401 PMCID: PMC6108224 DOI: 10.1051/bmdcn/2018080314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 01/02/2023] Open
Abstract
In the body, mesenchymal progenitor cells are subjected to a substantial amount external force from different mechanical stresses, each potentially influences their behaviour and maintenance differentially. Tensile stress, or compression loading are just two of these forces, and here we examine the role of cyclical or dynamic mechanical loading on progenitor cell proliferation and differentiation, as well as on other cellular processes including cell morphology, apoptosis and matrix mineralisation. Moreover, we also examine how mechanical stretch can be used to optimise and ready biomaterials before their implantation, and examine the role of the circadian rhythm, the body's innate time keeping system, on biomaterial delivery and acceptance. Finally, we also investigate the effect of mechanical stretch on the circadian rhythm of progenitor cells, as research suggests that mechanical stimulation may be sufficient in itself to synchronise the circadian rhythm of human adult progenitor cells alone, and has also been linked to progenitor cell function. If proven correct, this could offer a novel, non-intrusive method by which human adult progenitor cells may be activated or preconditioned, being readied for differentiation, so that they may be more successfully integrated within a host body, thereby improving tissue engineering techniques and the efficacy of cellular therapies.
Collapse
Affiliation(s)
- Eve Helena Rogers
- Institute of Ageing and Chronic Disease, University of Liverpool, the William Henry Duncan Building, 6 West Derby Street, Liverpool, UK, L7 8TX
| | - Vanja Pekovic-Vaughan
- Institute of Ageing and Chronic Disease, University of Liverpool, the William Henry Duncan Building, 6 West Derby Street, Liverpool, UK, L7 8TX
| | - John Alan Hunt
- School of Science and Technology, Nottingham Trent University, Clifton Campus, College Drive, Nottingham, UK, NG11 8NS
| |
Collapse
|
11
|
Polo-Corrales L, Ramirez-Vick J, Feria-Diaz JJ. Recent Advances in Biophysical stimulation of MSC for bone regeneration. ACTA ACUST UNITED AC 2018. [DOI: 10.17485/ijst/2018/v11i15/121405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
12
|
Engebretson B, Mussett ZR, Sikavitsas VI. The effects of varying frequency and duration of mechanical stimulation on a tissue-engineered tendon construct. Connect Tissue Res 2018; 59:167-177. [PMID: 28459287 DOI: 10.1080/03008207.2017.1324431] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Decellularized, discarded human tissues, such as the human umbilical vein, have been widely utilized for tissue engineering applications, including tendon grafts. When recellularized, such natural scaffolds are cultured in 3D dynamic culture environments (bioreactor systems). For tendon tissue-engineered grafts, such systems often employ oscillatory mechanical stimulation in the form uniaxial tensile strain. The three main parameters of such stimulation are frequency, duration, and force. In this study we investigated the effects of changing the duration (0.5, 1, and 2 h/day) and frequency (0.5, 1, 2 cycles/min) of stimulation of a human umbilical vein seeded with mesenchymal stem cells cultured for up to 7 days. Strain of the construct was held constant at 2%. The highest proliferation rates were observed in the 0.5 h/day duration and 1 cycle/min frequency (203% increase) with a close second being 1 h/day and 1 cycle/min frequency (170% increase). Static cultures along with a 2 cycles/min frequency and a 2 h/day duration of stretching did not increase cellular proliferation significantly. Extracellular matrix quality and alignment of the construct fibers had a direct relation to cellularity and those groups with the highest cellularity improved the most. Gene expression indicated cellular activity consistent with tendon-like tissue remodeling. In addition, scleraxis, tenascin-C, and tenomodulin were upregulated in certain groups after 7 days, with osteoblast, chondrocyte, and adipocyte phenotypes depressed. The stimulation parameters investigated in this study indicated that slower frequencies and shorter durations were best for construct quality in early stage cultures.
Collapse
Affiliation(s)
- Brandon Engebretson
- a School of Chemical , Biological and Materials Engineering, University of Oklahoma , Norman , OK , USA
| | - Zachary R Mussett
- b Stephenson School of Biomedical Engineering , University of Oklahoma , Norman , OK , USA
| | - Vassilios I Sikavitsas
- a School of Chemical , Biological and Materials Engineering, University of Oklahoma , Norman , OK , USA.,b Stephenson School of Biomedical Engineering , University of Oklahoma , Norman , OK , USA
| |
Collapse
|
13
|
Cyclic mechanical stretch enhances BMP9-induced osteogenic differentiation of mesenchymal stem cells. INTERNATIONAL ORTHOPAEDICS 2018; 42:947-955. [PMID: 29429074 DOI: 10.1007/s00264-018-3796-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
Abstract
PURPOSE The purpose of this study was to investigate whether mechanical stretch can enhance the bone morphogenetic protein 9 (BMP9)-induced osteogenic differentiation in MSCs. METHODS Recombinant adenoviruses were used to overexpress the BMP9 in C3H10T1/2 MSCs. Cells were seeded onto six-well BioFlex collagen I-coated plates and subjected to cyclic mechanical stretch [6% elongation at 60 cycles/minute (1 Hz)] in a Flexercell FX-4000 strain unit for up to 12 hours. Immunostaining and confocal microscope were used to detect cytoskeleton organization. Cell cycle progression was checked by flow cytometry. Alkaline phosphatase activity was measured with a Chemiluminescence Assay Kit and was quantified with a histochemical staining assay. Matrix mineralization was examined by Alizarin Red S Staining. RESULTS Mechanical stretch induces cytoskeleton reorganization and inhibits cell proliferation by preventing cells entry into S phase of the cell cycle. Although mechanical stretch alone does not induce the osteogenic differentiation of C3H10T1/2 MSCs, co-stimulation with mechanical stretch and BMP9 enhances alkaline phosphatase activity. The expression of key lineage-specific regulators (e.g., osteocalcin (OCN), SRY-related HMG-box 9, and runt-related transcription factor 2) is also increased after the co-stimulation, compared to the mechanical stretch stimulation along. Furthermore, mechanical stretch augments the BMP9-mediated bone matrix mineralization of C3H10T1/2 MSCs. CONCLUSIONS Our results suggest that mechanical stretch enhances BMP9-induced osteoblastic lineage specification in C3H10T1/2 MSCs.
Collapse
|
14
|
Schneider AK, Cama G, Ghuman M, Hughes FJ, Gharibi B. Sprouty 2
, an Early Response Gene Regulator of FosB
and Mesenchymal Stem Cell Proliferation During Mechanical Loading and Osteogenic Differentiation. J Cell Biochem 2017; 118:2606-2614. [DOI: 10.1002/jcb.26035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/05/2017] [Indexed: 01/26/2023]
Affiliation(s)
- A. Kristin Schneider
- Division of Tissue Engineering and Biophotonics; Dental Institute; King's College London, Tower Wing, Guy's Hospital; London SE1 9RT UK
| | - Giuseppe Cama
- Division of Tissue Engineering and Biophotonics; Dental Institute; King's College London, Tower Wing, Guy's Hospital; London SE1 9RT UK
| | - Mandeep Ghuman
- Division of Tissue Engineering and Biophotonics; Dental Institute; King's College London, Tower Wing, Guy's Hospital; London SE1 9RT UK
| | - Francis J. Hughes
- Division of Tissue Engineering and Biophotonics; Dental Institute; King's College London, Tower Wing, Guy's Hospital; London SE1 9RT UK
| | - Borzo Gharibi
- Division of Tissue Engineering and Biophotonics; Dental Institute; King's College London, Tower Wing, Guy's Hospital; London SE1 9RT UK
| |
Collapse
|
15
|
Liu L, Liu M, Li R, Liu H, Du L, Chen H, Zhang Y, Zhang S, Liu D. MicroRNA-503-5p inhibits stretch-induced osteogenic differentiation and bone formation. Cell Biol Int 2016; 41:112-123. [PMID: 27862699 DOI: 10.1002/cbin.10704] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/05/2016] [Indexed: 01/08/2023]
Abstract
Cyclical stretch-induced bone formation during orthodontic treatment is a complex biological process modulated by various factors including miRNAs and their targeted-gene network. However, the miRNA expression profile and their roles in osteogenic differentiation of bone mesenchymal stem cells (BMSCs) exposed to mechanical stretch remains unclear. Here, we use the miRNA microarray assay to screen for mechano-sensitive miRNAs during stretch-induced osteogenic differentiation of BMSCs and identified that nine miRNAs were differentially expressed between stretched and control BMSCs. Furthermore, miR-503-5p, which was markedly downregulated in both microarray assay and qRT-PCR assay were selected for further functional verification. We found that overexpression of miR-503-5p in BMSCs attenuated stretch-induced osteogenic differentiation while the effect was reversed by miR-503-5p inhibition treatment. In vivo studies, overexpression of miR-503-5p with specific agomir decreased Runx2, ALP mRNA, and protein expression, decreased osteoblast numbers and osteoblastic bone formation in the OTM tension sides. In conclusion, our study revealed that miR-503-5p functions as the mechano-sensitive miRNA and inhibits BMSCs osteogenic differentiation subjected to mechanical stretch and bone formation in OTM tension sides.
Collapse
Affiliation(s)
- Lu Liu
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Mengjun Liu
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Rongrong Li
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Hong Liu
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Liling Du
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Hong Chen
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Yan Zhang
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| | - Shijie Zhang
- Department of Stomatology, School of Dentistry, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Dongxu Liu
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Dentistry, Shandong University, Jinan, 250012, China
| |
Collapse
|
16
|
Han N, Li Z, Cai Z, Yan Z, Hua Y, Xu C. P-glycoprotein overexpression in bone marrow-derived multipotent stromal cells decreases the risk of steroid-induced osteonecrosis in the femoral head. J Cell Mol Med 2016; 20:2173-2182. [PMID: 27396977 PMCID: PMC5082398 DOI: 10.1111/jcmm.12917] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/31/2016] [Indexed: 12/21/2022] Open
Abstract
P‐glycoprotein (P‐gp) plays a role in steroid‐induced osteonecrosis of the femoral head (ONFH), but the underlying mechanism remains unknown. We hypothesized that P‐gp overexpression can prevent ONFH by regulating bone marrow–derived multipotent stromal cell (BMSC) adipogenesis and osteogenesis. BMSCs from Sprague–Dawley rats were transfected with green fluorescent protein (GFP) or the multidrug resistance gene 1 (MDR1) encoding GFP and P‐gp. Dexamethasone was used to induce BMSC differentiation. Adipogenesis was determined by measuring peroxisome proliferator‐activated receptor (PPAR‐γ) expression and the triglyceride level. Osteogenesis was determined by measuring runt‐related transcription factor 2 (Runx2) expression and alkaline phosphatase activity. For in vivo experiments, rats were injected with saline, BMSCs expressing GFP (GFP‐BMSCs) or BMSCs expressing GFP‐P‐gp (MDR1‐GFP‐BMSCs). After dexamethasone induction, adipogenesis was determined by measuring PPAR‐γ expression and fatty marrow, whereas osteogenesis was detected by measuring Runx2 expression, trabecular parameters and the mineral apposition rate, followed by evaluation of the incidence of ONFH. Overexpression of P‐gp in BMSCs resulted in markedly decreased expression of adipogenic markers and increased expression of osteogenic markers. Compared with rats injected with saline, rats injected with GFP‐BMSCs showed reduced ONFH, and the injected GFP‐positive BMSCs attached to trabecular surfaces and exhibited an osteoblast‐like morphology. Compared with the rats injected with BMSCs expressing GFP alone, rats injected with BMSCs overexpressing GFP and P‐gp showed lower adipocytic variables, higher osteogenic variables and lower incidence of ONFH. Overexpression of P‐gp inhibited BMSC adipogenesis and promoted osteogenesis, which reduced the incidence of steroid‐induced ONFH.
Collapse
Affiliation(s)
- Ning Han
- Shanghai East Hospital of Tongji University, Shanghai, China.,Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zengchun Li
- Shanghai East Hospital of Tongji University, Shanghai, China
| | - Zhengdong Cai
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, China. .,Shanghai First People's Hospital of Jiaotong University, Shanghai, China.
| | - Zuoqin Yan
- Zhongshan Hospital of Fudan University, Shanghai, China.
| | - Yingqi Hua
- Shanghai First People's Hospital of Jiaotong University, Shanghai, China
| | - Chong Xu
- Shanghai East Hospital of Tongji University, Shanghai, China
| |
Collapse
|
17
|
Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1. Cell Death Dis 2016; 7:e2221. [PMID: 27171263 PMCID: PMC4917651 DOI: 10.1038/cddis.2016.112] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 01/18/2023]
Abstract
Mechanical stimulation and histone deacetylases (HDACs) have essential roles in regulating the osteogenic differentiation of bone marrow stromal cells (BMSCs) and bone formation. However, little is known regarding what regulates HDAC expression and therefore the osteogenic differentiation of BMSCs during osteogenesis. In this study, we investigated whether mechanical loading regulates HDAC expression directly and examined the role of HDACs in mechanical loading-triggered osteogenic differentiation and bone formation. We first studied the microarrays of samples from patients with osteoporosis and found that the NOTCH pathway and skeletal development gene sets were downregulated in the BMSCs of patients with osteoporosis. Then we demonstrated that mechanical stimuli can regulate osteogenesis and bone formation both in vivo and in vitro. NOTCH signaling was upregulated during cyclic mechanical stretch (CMS)-induced osteogenic differentiation, whereas HDAC1 protein expression was downregulated. The perturbation of HDAC1 expression also had a significant effect on matrix mineralization and JAG1-mediated Notch signaling, suggesting that HDAC1 acts as an endogenous attenuator of Notch signaling in the mechanotransduction of BMSCs. Chromatin immunoprecipitation (ChIP) assay results suggest that HDAC1 modulates the CMS-induced histone H3 acetylation level at the JAG1 promoter. More importantly, we found an inhibitory role of Hdac1 in regulating bone formation in response to hindlimb unloading in mice, and pretreatment with an HDAC1 inhibitor partly rescued the osteoporosis caused by mechanical unloading. Our results demonstrate, for the first time, that mechanical stimulation orchestrates genes expression involved in the osteogenic differentiation of BMSCs via the direct regulation of HDAC1, and the therapeutic inhibition of HDAC1 may be an efficient strategy for enhancing bone formation under mechanical stimulation.
Collapse
|
18
|
Mokhtari‐Jafari F, Amoabediny G, Haghighipour N, Zarghami R, Saatchi A, Akbari J, Salehi‐Nik N. Mathematical modeling of cell growth in a 3D scaffold and validation of static and dynamic cultures. Eng Life Sci 2016; 16:290-298. [DOI: 10.1002/elsc.201500047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Tissue engineering, an immensely important field in contemporary clinical practices, aims at the repair or replacement of damaged tissues. The mathematical model proposed herein shows the distribution and growth of cells in their characteristic time in a 3D scaffold model. This study contributes to the progress of simulation techniques in static and dynamic cultures of bone tissue. Brinkman, nutrient transport, and cell growth equations are brought together to quantify the growth behavior of cells. However, when a static culture is being studied, the Brinkman equation is eliminated. The model was validated by experimental cell culture using 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay and scanning electron microscopy. Then, static and dynamic cultures were compared to assess the cell density and cell distribution in the scaffold. Cell counting after 21 days of cell culture showed that the number of cells increased 42‐fold in static and 53.5‐fold in dynamic cultures, which was in good agreement with our model estimations (37‐fold increase in the number of cells in static and 49‐fold increase in dynamic cultures). In conclusion, our mathematical model could predict cell distribution and growth in the scaffold.
Collapse
Affiliation(s)
- Fatemeh Mokhtari‐Jafari
- School of Chemical Engineering College of Engineering University of Tehran Tehran Iran
- Department of Biomedical Engineering Research Center for New Technologies in Life Science Engineering University of Tehran Tehran Iran
- National Cell Bank of Iran Pasteur Institute of Iran Tehran Iran
| | - Ghassem Amoabediny
- School of Chemical Engineering College of Engineering University of Tehran Tehran Iran
- Department of Biomedical Engineering Research Center for New Technologies in Life Science Engineering University of Tehran Tehran Iran
| | | | - Reza Zarghami
- School of Chemical Engineering College of Engineering University of Tehran Tehran Iran
| | - Alireza Saatchi
- School of Chemical Engineering College of Engineering University of Tehran Tehran Iran
- Department of Biomedical Engineering Research Center for New Technologies in Life Science Engineering University of Tehran Tehran Iran
| | - Javad Akbari
- School of Chemical Engineering College of Engineering University of Tehran Tehran Iran
- Department of Biomedical Engineering Research Center for New Technologies in Life Science Engineering University of Tehran Tehran Iran
| | - Nasim Salehi‐Nik
- School of Chemical Engineering College of Engineering University of Tehran Tehran Iran
- Department of Biomedical Engineering Research Center for New Technologies in Life Science Engineering University of Tehran Tehran Iran
- National Cell Bank of Iran Pasteur Institute of Iran Tehran Iran
| |
Collapse
|
19
|
Directed osteogenic differentiation of mesenchymal stem cell in three-dimensional biodegradable methylcellulose-based scaffolds. Colloids Surf B Biointerfaces 2015; 135:332-338. [DOI: 10.1016/j.colsurfb.2015.07.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/18/2015] [Accepted: 07/22/2015] [Indexed: 12/20/2022]
|
20
|
Lee J, Baker AB. Computational analysis of fluid flow within a device for applying biaxial strain to cultured cells. J Biomech Eng 2015; 137:051006. [PMID: 25611013 DOI: 10.1115/1.4029638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 11/08/2022]
Abstract
In vitro systems for applying mechanical strain to cultured cells are commonly used to investigate cellular mechanotransduction pathways in a variety of cell types. These systems often apply mechanical forces to a flexible membrane on which cells are cultured. A consequence of the motion of the membrane in these systems is the generation of flow and the unintended application of shear stress to the cells. We recently described a flexible system for applying mechanical strain to cultured cells, which uses a linear motor to drive a piston array to create biaxial strain within multiwell culture plates. To better understand the fluidic stresses generated by this system and other systems of this type, we created a computational fluid dynamics model to simulate the flow during the mechanical loading cycle. Alterations in the frequency or maximal strain magnitude led to a linear increase in the average fluid velocity within the well and a nonlinear increase in the shear stress at the culture surface over the ranges tested (0.5-2.0 Hz and 1-10% maximal strain). For all cases, the applied shear stresses were relatively low and on the order of millipascal with a dynamic waveform having a primary and secondary peak in the shear stress over a single mechanical strain cycle. These findings should be considered when interpreting experimental results using these devices, particularly in the case when the cell type used is sensitive to low magnitude, oscillatory shear stresses.
Collapse
|
21
|
Lithography-free fabrication of reconfigurable substrate topography for contact guidance. Biomaterials 2014; 39:164-72. [PMID: 25468368 DOI: 10.1016/j.biomaterials.2014.10.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/25/2014] [Accepted: 10/27/2014] [Indexed: 11/20/2022]
Abstract
Mammalian cells detect and respond to topographical cues presented in natural and synthetic biomaterials both in vivo and in vitro. Micro- and nano-structures influence the adhesion, morphology, proliferation, migration, and differentiation of many phenotypes. Although the mechanisms that underpin cell-topography interactions remain elusive, synthetic substrates with well-defined micro- and nano-structures are important tools to elucidate the origin of these responses. Substrates with reconfigurable topography are desirable because programmable cues can be harmonized with dynamic cellular responses. Here we present a lithography-free fabrication technique that can reversibly present topographical cues using an actuation mechanism that minimizes the confounding effects of applied stimuli. This method utilizes strain-induced buckling instabilities in bilayer substrate materials with rigid uniform silicon oxide membranes that are thermally deposited on elastomeric substrates. The resulting surfaces are capable of reversible of substrates between three distinct states: flat substrates (A = 1.53 ± 0.55 nm; Rms = 0.317 ± 0.048 nm); parallel wavy grating arrays (A∥= 483.6 ± 7.8 nm; λ∥= 4.78 ± 0.16 μm); perpendicular wavy grating arrays (A⊥= 429.3 ± 5.8 nm; λ⊥= 4.95 ± 0.36 μm). The cytoskeleton dynamics of 3T3 fibroblasts in response to these surfaces was measured using optical microscopy. Fibroblasts cultured on dynamic substrates that are switched from flat to topographic features (FLAT-WAVY) exhibit a robust and rapid change in gross morphology as measured by a reduction in circularity from 0.30 ± 0.13 to 0.15 ± 0.08 after 5 min. Conversely, dynamic substrate sequences of FLAT-WAVY-FLAT do not significantly alter the gross steady-state morphology. Taken together, substrates that present topographic structures reversibly can elucidate dynamic aspects of cell-topography interactions.
Collapse
|
22
|
The proliferation and tenogenic differentiation potential of bone marrow-derived mesenchymal stromal cell are influenced by specific uniaxial cyclic tensile loading conditions. Biomech Model Mechanobiol 2014; 14:649-63. [PMID: 25351891 DOI: 10.1007/s10237-014-0628-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 10/07/2014] [Indexed: 01/08/2023]
Abstract
It has been previously demonstrated that mechanical stimuli are important for multipotent human bone marrow-derived mesenchymal stromal cells (hMSCs) to maintain good tissue homeostasis and even to enhance tissue repair processes. In tendons, this is achieved by promoting the cellular proliferation and tenogenic expression/differentiation. The present study was conducted to determine the optimal loading conditions needed to achieve the best proliferation rates and tenogenic differentiation potential. The effects of mechanical uniaxial stretching using different rates and strains were performed on hMSCs cultured in vitro. hMSCs were subjected to cyclical uniaxial stretching of 4, 8 or 12 % strain at 0.5 or 1 Hz for 6, 24, 48 or 72 h. Cell proliferation was analyzed using alamarBlue[Formula: see text] assay, while hMSCs differentiation was analyzed using total collagen assay and specific tenogenic gene expression markers (type I collagen, type III collagen, decorin, tenascin-C, scleraxis and tenomodulin). Our results demonstrate that the highest cell proliferation is observed when 4 % strain [Formula: see text] 1 Hz was applied. However, at 8 % strain [Formula: see text] 1 Hz loading, collagen production and the tenogenic gene expression were highest. Increasing strain or rates thereafter did not demonstrate any significant increase in both cell proliferation and tenogenic differentiation. In conclusion, our results suggest that 4 % [Formula: see text] 1 Hz cyclic uniaxial loading increases cell proliferation, but higher strains are required for superior tenogenic expressions. This study suggests that selected loading regimes will stimulate tenogenesis of hMSCs.
Collapse
|
23
|
Effects of negative pressure wound therapy on mesenchymal stem cells proliferation and osteogenic differentiation in a fibrin matrix. PLoS One 2014; 9:e107339. [PMID: 25216182 PMCID: PMC4162584 DOI: 10.1371/journal.pone.0107339] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/10/2014] [Indexed: 12/22/2022] Open
Abstract
Vacuum-assisted closure (VAC) negative pressure wound therapy (NPWT) has been proven to be an effective therapeutic method for the treatment of recalcitrant wounds. However, its role in bone healing remains to be unclear. Here, we investigated the effects of NPWT on rat periosteum-derived mesenchymal stem cells (P-MSCs) proliferation and osteoblastic differentiation in a 3D fibrin matrix. P-MSCs underwent primary culture for three passages before being used to construct cell clots. The fibrin clots were incubated with NPWT under continuous suction at −125 mmHg in a subatmospheric perfusion bioreactor. Clots exposed to atmospheric pressure served as the static control. Compared to the control group, cell proliferation significantly increased in NPWT group after incubation for 3 days. There was no statistical difference in apoptosis rate between two groups. The ALP activity and mineralization of P-MSCs all increased under continuous suction. The expressions of collagen type 1 and transcription factor Cbfa-1 were higher at the 1-, 3-, and 7-day timepoints and the expressions of osteocalcin and integrin β5 were higher at the 3-, and 7-day timepoints in the NPWT group. These results indicate that a short time treatment with NPWT, applied with continuous suction at −125 mmHg, can enhance cellular proliferation of P-MSCs and induce the differentiation toward an osteogenic phenotype. The mechanotransduction molecule integrin β5 was found to be highly expressed after NPWT treatment, which indicates that NPWT may play a positive role in fracture healing through enhance bone formation and decrease bone resorption.
Collapse
|
24
|
Barthes J, Özçelik H, Hindié M, Ndreu-Halili A, Hasan A, Vrana NE. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. BIOMED RESEARCH INTERNATIONAL 2014; 2014:921905. [PMID: 25143954 PMCID: PMC4124711 DOI: 10.1155/2014/921905] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/15/2014] [Indexed: 01/01/2023]
Abstract
In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.
Collapse
Affiliation(s)
- Julien Barthes
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Hayriye Özçelik
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Mathilde Hindié
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, Université de Cergy-Pontoise, 2 Avenue Adolphe Chauvin, 95302 Cergy Pontoise, France
| | | | - Anwarul Hasan
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nihal Engin Vrana
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
- Protip SAS, 8 Place de l'Hôpital, 67000, Strasbourg, France
| |
Collapse
|
25
|
Effect of cyclic mechanical stimulation on the expression of osteogenesis genes in human intraoral mesenchymal stromal and progenitor cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:189516. [PMID: 24804200 PMCID: PMC3998000 DOI: 10.1155/2014/189516] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 01/29/2023]
Abstract
We evaluated the effects of mechanical stimulation on the osteogenic differentiation of human intraoral mesenchymal stem and progenitor cells (MSPCs) using the Flexcell FX5K Tension System that mediated cyclic tensile stretch on the cells. MSPCs were isolated from human mandibular retromolar bones and characterized using flow cytometry. The positive expression of CD73, CD90, and CD105 and negativity for CD14, CD19, CD34, CD45, and HLA-DR confirmed the MSPC phenotype. Mean MSPC doubling time was 30.4 ± 2.1 hrs. The percentage of lactate dehydrogenase (LDH) release showed no significant difference between the mechanically stimulated groups and the unstimulated controls. Reverse transcription quantitative real-time PCR revealed that 10% continuous cyclic strain (0.5 Hz) for 7 and 14 days induced a significant increase in the mRNA expression of the osteogenesis-specific markers type-I collagen (Col1A1), osteonectin (SPARC), bone morphogenetic protein 2 (BMP2), osteopontin (SPP1), and osteocalcin (BGLAP) in osteogenic differentiated MSPCs. Furthermore, mechanically stimulated groups produced significantly higher amounts of calcium deposited into the cultures and alkaline phosphatase (ALP). These results will contribute to a better understanding of strain-induced bone remodelling and will form the basis for the correct choice of applied force in oral and maxillofacial surgery.
Collapse
|
26
|
Mechano-growth factor induces migration of rat mesenchymal stem cells by altering its mechanical properties and activating ERK pathway. Biochem Biophys Res Commun 2013; 441:202-7. [DOI: 10.1016/j.bbrc.2013.10.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 10/08/2013] [Indexed: 12/13/2022]
|
27
|
Gharibi B, Cama G, Capurro M, Thompson I, Deb S, Di Silvio L, Hughes FJ. Gene expression responses to mechanical stimulation of mesenchymal stem cells seeded on calcium phosphate cement. Tissue Eng Part A 2013; 19:2426-38. [PMID: 23968499 PMCID: PMC3807700 DOI: 10.1089/ten.tea.2012.0623] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 05/13/2013] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The aim of the study reported here was to investigate the molecular responses of human mesenchymal stem cells (MSC) to loading with a model that attempts to closely mimic the physiological mechanical loading of bone, using monetite calcium phosphate (CaP) scaffolds to mimic the biomechanical properties of bone and a bioreactor to induce appropriate load and strain. METHODS Human MSCs were seeded onto CaP scaffolds and subjected to a pulsating compressive force of 5.5±4.5 N at a frequency of 0.1 Hz. Early molecular responses to mechanical loading were assessed by microarray and quantitative reverse transcription-polymerase chain reaction and activation of signal transduction cascades was evaluated by western blotting analysis. RESULTS The maximum mechanical strain on cell/scaffolds was calculated at around 0.4%. After 2 h of loading, a total of 100 genes were differentially expressed. The largest cluster of genes activated with 2 h stimulation was the regulator of transcription, and it included FOSB. There were also changes in genes involved in cell cycle and regulation of protein kinase cascades. When cells were rested for 6 h after mechanical stimulation, gene expression returned to normal. Further resting for a total of 22 h induced upregulation of 63 totally distinct genes that were mainly involved in cell surface receptor signal transduction and regulation of metabolic and cell division processes. In addition, the osteogenic transcription factor RUNX-2 was upregulated. Twenty-four hours of persistent loading also markedly induced osterix expression. Mechanical loading resulted in upregulation of Erk1/2 phosphorylation and the gene expression study identified a number of possible genes (SPRY2, RIPK1, SPRED2, SERTAD1, TRIB1, and RAPGEF2) that may regulate this process. CONCLUSION The results suggest that mechanical loading activates a small number of immediate-early response genes that are mainly associated with transcriptional regulation, which subsequently results in activation of a wider group of genes including those associated with osteoblast proliferation and differentiation. The results provide a valuable insight into molecular events and signal transduction pathways involved in the regulation of MSC osteogenic differentiation in response to a physiological level of mechanical stimulation.
Collapse
Affiliation(s)
- Borzo Gharibi
- Department of Periodontology, Dental Institute, Kings College London, London, United Kingdom
| | - Giuseppe Cama
- Department of Dental Biomaterials and Tissue Engineering, Kings College London, London, United Kingdom
| | - Marco Capurro
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, Italy
| | - Ian Thompson
- Department of Dental Biomaterials and Tissue Engineering, Kings College London, London, United Kingdom
| | - Sanjukta Deb
- Department of Dental Biomaterials and Tissue Engineering, Kings College London, London, United Kingdom
| | - Lucy Di Silvio
- Department of Dental Biomaterials and Tissue Engineering, Kings College London, London, United Kingdom
| | - Francis John Hughes
- Department of Periodontology, Dental Institute, Kings College London, London, United Kingdom
| |
Collapse
|
28
|
Charoenpanich A, Wall ME, Tucker CJ, Andrews DMK, Lalush DS, Dirschl DR, Loboa EG. Cyclic tensile strain enhances osteogenesis and angiogenesis in mesenchymal stem cells from osteoporotic donors. Tissue Eng Part A 2013; 20:67-78. [PMID: 23927731 DOI: 10.1089/ten.tea.2013.0006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have shown that the uniaxial cyclic tensile strain of magnitude 10% promotes and enhances osteogenesis of human mesenchymal stem cells (hMSC) and human adipose-derived stem cells (hASC) from normal, nonosteoporotic donors. In the present study, MSC from osteoporotic donors were analyzed for changes in mRNA expression in response to 10% uniaxial tensile strain to identify potential mechanisms underlying the use of this mechanical loading paradigm for prevention and treatment of osteoporosis. Human MSC isolated from three female, postmenopausal osteoporotic donors were analyzed for their responses to mechanical loading using microarray analysis of over 47,000 gene probes. Human MSC were seeded in three-dimensional collagen type I constructs to mimic the organic extracellular matrix of bone and 10% uniaxial cyclic tensile strain was applied to promote osteogenesis. Seventy-nine genes were shown to be regulated within hMSC from osteoporotic donors in response to 10% cyclic tensile strain. Upregulation of six genes were further confirmed with real-time RT-PCR: jun D proto-oncogene (JUND) and plasminogen activator, urokinase receptor (PLAUR), two genes identified as potential key molecules from network analysis; phosphoinositide-3-kinase, catalytic, delta polypeptide (PIK3CD) and wingless-type MMTV integration site family, member 5B (WNT5B), two genes with known importance in bone biology; and, PDZ and LIM domain 4 (PDLIM4) and vascular endothelial growth factor A (VEGFA), two genes that we have previously shown are significantly regulated in hASC in response to this mechanical stimulus. Function analysis indicated that 10% cyclic tensile strain induced expression of genes associated with cell movement, cell proliferation, and tissue development, including development in musculoskeletal and cardiovascular systems. Our results demonstrate that hMSC from aged, osteoporotic donors are capable of enhanced osteogenic differentiation in response to 10% cyclic tensile strain with significant increases in the expression of genes associated with enhanced cell proliferation, musculoskeletal development, and angiogenesis. Surprisingly, cyclic tensile strain of magnitude 10% not only enhanced osteogenesis in hMSC from osteoporotic donors, but also enhanced expression of angiogenic factors. Better understanding and methodologies to promote osteogenesis in hMSC from elderly, osteoporotic donors may greatly facilitate achieving long-term success in bone regeneration and functional bone tissue engineering for this ever-growing patient population.
Collapse
Affiliation(s)
- Adisri Charoenpanich
- 1 Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, and North Carolina State University , Raleigh, North Carolina
| | | | | | | | | | | | | |
Collapse
|
29
|
Liu C, Baek S, Kim J, Vasko E, Pyne R, Chan C. Effect of Static Pre-stretch Induced Surface Anisotropy on Orientation of Mesenchymal Stem Cells. Cell Mol Bioeng 2013; 7:106-121. [PMID: 24678348 DOI: 10.1007/s12195-013-0300-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mechanical cues in the cellular environment play important roles in guiding various cell behaviors, such as cell alignment, migration, and differentiation. Previous studies investigated mechanical stretch guided cell alignment pre-dominantly with cyclic stretching whereby an external force is applied to stretch the substrate dynamically (i.e., cyclically) while the cells are attached onto the substrate. In contrast, we created a static pre-stretched anisotropic surface in which the cells were seeded subsequent to stretching the substrate. We hypothesized that the cell senses the physical environment through a more active mechanism, namely, even without external forces the cell can actively apply traction and sense an increased stiffness in the stretched direction and align in that direction. To test our hypothesis, we quantified the extent of pre-stretch induced anisotropy by employing the theory of small deformation superimposed on large and predicted the effective stiffness in the stretch direction as well as its perpendicular direction. We showed mesenchymal stem cells (MSC) aligned in the pre-stretched direction, and the cell alignment and morphology were dependent on the pre-stretch magnitude. In addition, the pre-stretched surface demonstrated an ability to promote early myoblast differentiation of the MSC. This study is the first report on MSC alignment on a statically pre-stretched surface. The cell orientation induced by the pre-stretch induced anisotropy could provide insight into tissue engineering applications involving cells that aligned in vivo in the absence of dynamic mechanical stimuli.
Collapse
Affiliation(s)
- C Liu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - S Baek
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - J Kim
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - E Vasko
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - R Pyne
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - C Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
30
|
Xu J, Zhu C, Zhang Y, Jiang N, Li S, Su Z, Akaike T, Yang J. hE-cadherin–Fc fusion protein coated surface enhances the adhesion and proliferation of human mesenchymal stem cells. Colloids Surf B Biointerfaces 2013; 109:97-102. [DOI: 10.1016/j.colsurfb.2013.03.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/27/2013] [Accepted: 03/30/2013] [Indexed: 01/01/2023]
|
31
|
Kuo YC, Li YSJ, Zhou J, Shih YRV, Miller M, Broide D, Lee OKS, Chien S. Human mesenchymal stem cells suppress the stretch-induced inflammatory miR-155 and cytokines in bronchial epithelial cells. PLoS One 2013; 8:e71342. [PMID: 23967196 PMCID: PMC3742760 DOI: 10.1371/journal.pone.0071342] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/30/2013] [Indexed: 12/31/2022] Open
Abstract
Current research in pulmonary pathology has focused on inflammatory reactions initiated by immunological responses to allergens and irritants. In addition to these biochemical stimuli, physical forces also play an important role in regulating the structure, function, and metabolism of the lung. Hyperstretch of lung tissues can contribute to the inflammatory responses in asthma, but the mechanisms of mechanically induced inflammation in the lung remain unclear. Our results demonstrate that excessive stretch increased the secretion of inflammatory cytokines by human bronchial epithelial cells (hBECs), including IL-8. This increase of IL-8 secretion was due to an elevated microRNA-155 (miR-155) expression, which caused the suppression of Src homology 2 domain–containing inositol 5-phosphatase 1 (SHIP1) production and the subsequent activation of JNK signaling. In vivo studies in our asthmatic mouse model also showed such changes in miR-155, IL-8, and SHIP1 expressions that reflect inflammatory responses. Co-culture with human mesenchymal stem cells (hMSCs) reversed the stretch-induced hBEC inflammatory responses as a result of IL-10 secretion by hMSCs to down-regulate miR-155 expression in hBECs. In summary, we have demonstrated that mechanical stretch modulates the homeostasis of the hBEC secretome involving miR-155 and that hMSCs can be used as a potential therapeutic approach to reverse bronchial epithelial inflammation in asthma.
Collapse
Affiliation(s)
- Yi-Chun Kuo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Bioengineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yi-Shuan Julie Li
- Department of Bioengineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jing Zhou
- Department of Bioengineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yu-Ru Vernon Shih
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Marina Miller
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - David Broide
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (OK-SL); (SC)
| | - Shu Chien
- Department of Bioengineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (OK-SL); (SC)
| |
Collapse
|
32
|
Richardson WJ, Wilson E, Moore JE. Altered phenotypic gene expression of 10T1/2 mesenchymal cells in nonuniformly stretched PEGDA hydrogels. Am J Physiol Cell Physiol 2013; 305:C100-10. [PMID: 23657569 DOI: 10.1152/ajpcell.00340.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Disease-related phenotype modulation of many cell types has been shown to be closely related to mechanical loading conditions; for example, vascular smooth muscle cell (SMC) phenotype shift from a mature, contractile state to a proliferative, synthetic state contributes to the formation of neointimal tissue during atherosclerosis and restenosis development and is related to SMC mechanical loading in vivo. The majority of past in vitro cell-stretching experiments have employed simplistic (uniform, uniaxial or biaxial) stretching environments to elucidate mechanobiological pathways involved in phenotypic shifts. However, the in vivo mechanics of the vascular wall consists of highly nonuniform stretch. Here we subjected 10T1/2 murine mesenchymal cells (an SMC precursor) to two- and three-dimensional nonuniform stretch environments. After 24 h of stretch, cells on an elastomeric membrane demonstrated varied proliferation [assessed by 5-bromo-2'-deoxyuridine (BrdU) incorporation] depending on location upon the membrane, with maximal proliferation occurring in a region of high, uniaxial stretch. Cells subjected to a nonuniform stretching regimen within three-dimensional polyethylene glycol diacrylate (PEGDA) hydrogel constructs demonstrated marked changes in mRNA expression of several phenotype-related proteins, indicating a sort of "hybrid" phenotype with contractile and synthetic markers being both upregulated and downregulated. Furthermore, expression levels of mRNAs were significantly different between various locations within the stretched gel. With the proliferation results, these data exhibit the capability of nonuniform stretching devices to induce heterogeneous cell responses, potentially indicative of spatial distributions of disease-related behaviors in vivo.
Collapse
Affiliation(s)
- W J Richardson
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | | | | |
Collapse
|
33
|
Zhang P, Wu Y, Dai Q, Fang B, Jiang L. p38-MAPK signaling pathway is not involved in osteogenic differentiation during early response of mesenchymal stem cells to continuous mechanical strain. Mol Cell Biochem 2013; 378:19-28. [PMID: 23435958 DOI: 10.1007/s11010-013-1589-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/08/2013] [Indexed: 12/31/2022]
Abstract
Mechanical stimuli play a significant role in the regulation of bone remodeling during orthodontic tooth movement. However, the correlation between mechanical strain and bone remodeling is still poorly understood. In this study, we used a model of continuous mechanical strain (CMS) on bone mesenchymal stem cells (BMSCs) to investigate the proliferation and osteogenic differentiation of BMSCs and the mechanism of mechano-transduction. A CMS of 10 % at 1 Hz suppressed the proliferation of BMSCs and induced early osteogenic differentiation within 48 h by activating Runx2 and increasing alkaline phosphatase (ALP) activity and mRNA expression of osteogenesis-related genes (ALP, collagen type I, and osteopontin). Regarding mitogen-activated protein kinase (MAPK) activation, CMS induced phased phosphorylation of p38 consisting of a rapid induction of p38 MAPK at 10 min and a rapid decay after 1 h. Furthermore, the potent p38 inhibitor SB203580 blocked the induction of p38 MAPK signaling, but had little effect on subsequent osteogenic events. These results demonstrate that mechanical strain may act as a stimulator to induce the differentiation of BMSCs into osteoblasts, which is a vital function for bone formation in orthodontic tooth movement. However, activation of the p38 signaling pathway may not be involved in this process.
Collapse
Affiliation(s)
- Peng Zhang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
34
|
Li R, Wei M, Shao J. Effects of verapamil on the immediate-early gene expression of bone marrow mesenchymal stem cells stimulated by mechanical strain in vitro. Med Sci Monit Basic Res 2013; 19:68-75. [PMID: 23435320 PMCID: PMC3638684 DOI: 10.12659/msmbr.883790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background To study the effects of verapamil on the immediate-early genes (IEGs) expression of bone marrow mesenchymal stem cells (MSCs) stimulated by cyclic mechanical strain, in order to deduce the role of calcium ion channel in the cell signaling responses of MSCs to mechanical strain. Material/Methods MSCs were isolated and cultured, and the passage of 3–6 MSCs were stimulated by mechanical strain and pretreated with or without verapamil. After that, flow cytometry was used to measure the fluorescence intensity of intracellular Ca2+ immediately. The expression of early-response genes/proteins (c-fos, c-jun and c-myc) were examined by RT-PCR, immunohistochemistry and Western blot. Results Intracellular Ca2+ concentration of MSCs significantly changed when stimulated by cyclic strain, and the expression of c-fos, c-jun and c-myc remarkably increased in both mRNA and protein levels, while verapamil pre-treatment partially inhibited these effects (P<0.01). Conclusions The changes of the intracellular calcium concentration of MSCs induced by mechanical strain, dependent on the regulation of calcium channel activation, might play a role in the early response of MSCs to cyclic strain.
Collapse
Affiliation(s)
- Runguang Li
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | | | | |
Collapse
|
35
|
Differential effects of cyclic uniaxial stretch on human mesenchymal stem cell into skeletal muscle cell. Cell Biol Int 2012; 36:669-75. [PMID: 22681392 DOI: 10.1042/cbi20110400] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Both fetal and adult skeletal muscle cells are continually being subjected to biomechanical forces. Biomechanical stimulation during cell growth affects proliferation, differentiation and maturation of skeletal muscle cells. Bone marrow-derived hMSCs [human MSCs (mesenchymal stem cells)] can differentiate into a variety of cell types, including skeletal muscle cells that are potentially a source for muscle regeneration. Our investigations involved a 10% cyclic uniaxial strain at 1 Hz being applied to hMSCs grown on collagen-coated silicon membranes with or without IGF-I (insulin-like growth factor-I) for 24 h. Results obtained from morphological studies confirmed the rearrangement of cells after loading. Comparison of MyoD and MyoG mRNA levels between test groups showed that mechanical loading alone can initiate myogenic differentiation. Furthermore, comparison of Myf5, MyoD, MyoG and Myf6 mRNA levels between test groups showed that a combination of mechanical loading and growth factor results in the highest expression of myogenic genes. These results indicate that cyclic strain may be useful in myogenic differentiation of stem cells, and can accelerate the differentiation of hMSCs into MSCs in the presence of growth factor.
Collapse
|
36
|
Effect of advanced glycosylation end products (AGEs) on proliferation of human bone marrow mesenchymal stem cells (MSCs) in vitro. In Vitro Cell Dev Biol Anim 2012; 48:599-602. [PMID: 23054442 DOI: 10.1007/s11626-012-9551-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/05/2012] [Indexed: 12/23/2022]
Abstract
This study aims to explore the effect of advanced glycosylation end products (AGEs) on proliferation of human bone marrow mesenchymal stem cells in vitro and the underlying mechanism. Bone marrow cell proliferation was determined by WST-8 assay using Cell Counting Kit-8 under the intervention of AGEs. In addition, the content of maldondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were also measured. The proliferation activity of mesenchymal stem cells (MSCs) was significantly inhibited when AGEs were added to culture medium, and this effect was dose-dependent and time-dependent. As the concentration of AGEs-bovine serum albumin increased, the content of intracellular MDA was significantly increased, but the activity of SOD in cell homogenates was significantly suppressed, which also showed a dose-dependent manner. AGEs could significantly inhibit the proliferation of MSCs in vitro by improving the oxidative stress in MSCs and breaking the homeostasis of intracellular environment.
Collapse
|
37
|
Han N, Yan ZQ, Guo CA, Shen F, Liu J, Shi YX, Zhang ZY. Effect of rifampicin on the risk of steroid-induced osteonecrosis of the femoral head. Orthop Surg 2012; 2:124-33. [PMID: 22009927 DOI: 10.1111/j.1757-7861.2010.00075.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To investigate the effects and possible mechanism of rifampicin on steroid-induced osteonecrosis of the femoral head (ONFH). METHODS Bone marrow stromal cells (BMSC) separated from male rats were cultured in vitro without any treatment (Group mA), exposed to dexamethasone (Group mB), treated with rifampicin (Group mC), and exposed to dexamethasone and rifampicin simultaneously (Group mD) respectively (n = 5 in each group). After 7 days, P-glycoprotein (P-gp) activity and adipogenesis of the BMSC were evaluated. In an in vivo experiment, 80 rats were randomly divided into 4 groups (n= 20 in each group). Group A received intragastric saline for 5 weeks. Group B received intragastric saline for one week, followed by subcutaneous methylprednisolone and saline for 4 weeks. Group C received intragastric rifampicin for 5 weeks. Group D received intragastric rifampicin for one week, followed by subcutaneous methylprednisolone and rifampicin for 4 weeks. At the end of the experiment, all rats underwent analysis of P-gp activity of BMSC, P-gp expression in the femoral heads, MRI and histomorphometry of the femoral heads. RESULTS In vitro, the P-gp activity of BMSC increased and lipid accumulation decreased significantly in Group mD, compared to Group mB. In vivo, P-gp activity and P-gp expression in Group D increased compared to Group B. The mean area of MRI abnormal signal, adipocytic variables and apoptotic cells in Group D decreased, mean percentage of the whole epiphysis made up by the epiphyseal ossification center and trabecular structure variables improved compared to those in Group B. The incidence of ONFH was lower in Group D (50%) than in Group B (80%). CONCLUSION Rifampicin may decrease the risk of steroid-induced ONFH by enhancing P-gp activity, thus preventing steroid-induced BMSC adipogenesis.
Collapse
Affiliation(s)
- Ning Han
- Zhongshan Hospital of Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Bayati V, Sadeghi Y, Shokrgozar MA, Haghighipour N, Azadmanesh K, Amanzadeh A, Azari S. The evaluation of cyclic uniaxial strain on myogenic differentiation of adipose-derived stem cells. Tissue Cell 2011; 43:359-66. [PMID: 21872289 DOI: 10.1016/j.tice.2011.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 12/31/2022]
Abstract
It has been revealed that skeletal muscle cells have the potential to generate, sense and respond to biomechanical signals and that, mechanical force is one of the important factors influencing proliferation, differentiation, regeneration and homeostasis of skeletal muscle cells and myoblasts. The aim of this study was to illustrate the effect of cyclic uniaxial strain on myogenic differentiation of adipose-derived stem cells (ASCs). This study was designed to investigate this effect within 3 days in 4 groups: control (untreated), chemical, chemical-mechanical and mechanical based on exposure of ASCs to chemical growth factors for 3 days or to mechanical strain just on the 2nd day. Finally, cell orientation, muscle-related gene expression, myosin protein synthesis and the number of myosin-positive cells were examined to estimate the rate of differentiation. By studying the cells before and after exposure to uniaxial strain, it could be observed that by exerting the load, the cells were organized almost perpendicularly to strain direction. Real-time RT-PCR demonstrated that uniaxial strain had a significant effect on up-regulation of muscle-related genes in chemical-mechanical group (P < 0.001) as compared to mechanical or chemical groups. Immunocytochemistry confirmed the myosin-positive cells in treated groups and the numbers of these cells were enumerated by flow cytometry. These data suggest that uniaxial cyclic strain could affect ASCs and cause their myogenic differentiation and that the combination of chemical myogenic differentiation factors with mechanical signals promotes differentiation much more than differentiation by chemical myogenic differentiation factors or mechanical signals alone.
Collapse
Affiliation(s)
- Vahid Bayati
- Biology and Anatomy Department, Medical School, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
39
|
Liu N, Tian J, Wang W, Cheng J, Hu D, Zhang J. Effect and mechanism of erythropoietin on mesenchymal stem cell proliferation in vitro under the acute kidney injury microenvironment. Exp Biol Med (Maywood) 2011; 236:1093-9. [PMID: 21865406 DOI: 10.1258/ebm.2011.011001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Erythropoietin (EPO) can stimulate the proliferation and protraction of endothelial progenitor cells, and plays an important role in the proliferation and differentiation of marrow-derived mesenchymal stem cells (mMSCs) under the acute kidney injury (AKI) microenvironment. In the present study, C57BL/6 mice mMSCs were isolated, and AKI mice models were prepared. The renal cortex was obtained to prepare the ischemia/reperfusion (I/R) kidney homogenate supernatant. P3-mMSCs were treated by different methods: one group was added only I/R kidney homogenate supernatant, and another contained different concentrations of EPO (1, 5, 10, 50 IU/mL) in I/R kidney homogenate supernatant. The proliferation and apoptosis of mMSCs were detected by CCK-8 and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling), respectively. Expression of erythropoietin receptor (EPOR) and protein of the signal pathway related to proliferation/apoptosis were also examined. The results showed that the proliferation ability of mMSCs treated with I/R kidney homogenate supernatant decreased significantly, while the apoptosis percentage was significantly higher than that of the control. After intervention of EPO, their proliferation enhanced and the apoptosis percentage decreased. EPOR expression was positive in P3-mMSCs. EPO decreased the expression of caspase-3 of mMSCs under the AKI microenvironment in a dose- and time-dependent manner, but increased the Bcl-2 expression. The expression of phosphor-Janus kinase 2, phosphor-signal transducer and activator of transcription (pSTAT-5) increased significantly in 10 IU/mL EPO cultured for five days. Our results show that EPO can promote proliferation of mMSCs in vitro under the AKI microenvironment, which is mediated by EPOR and related with the proliferation/apoptosis signal pathway.
Collapse
Affiliation(s)
- Nanmei Liu
- Department of Nephrology, 455th Hospital of PLA, Shanghai, China
| | | | | | | | | | | |
Collapse
|
40
|
Lui PPY, Rui YF, Ni M, Chan KM. Tenogenic differentiation of stem cells for tendon repair-what is the current evidence? J Tissue Eng Regen Med 2011; 5:e144-63. [PMID: 21548133 DOI: 10.1002/term.424] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 03/10/2011] [Indexed: 12/30/2022]
Abstract
Tendon/ligament injuries are very common in sports and other rigorous activities. Tendons regenerate and repair slowly and inefficiently in vivo after injury. The limited ability of tendon to self-repair and the general inefficiencies of current treatment regimes have hastened the motivation to develop tissue-engineering strategies for tissue repair. Of particular interest in recent years has been the use of adult mesenchymal stem cells (MSCs) to regenerate functional tendons and ligaments. Different sources of MSCs have been studied for their effects on tendon repair. However, ectopic bone and tumour formation has been reported in some special circumstances after transplantation of MSCs. The induction of MSCs to differentiate into tendon-forming cells in vitro prior to transplantation is a possible approach to avoid ectopic bone and tumour formation while promoting tendon repair. While there are reports about the factors that might promote tenogenic differentiation, the study of tenogenic differentiation is hampered by the lack of definitive biomarkers for tendons. This review aims to summarize the cell sources currently used for tendon repair as well as their advantages and limitations. Factors affecting tenogenic differentiation were summarized. Molecular markers currently used for assessing tenogenic differentiation or neotendon formation are summarized and their advantages and limitations are commented upon. Finally, further directions for promoting and assessing tenogenic differentiation of stem cells for tendon repair are discussed.
Collapse
Affiliation(s)
- P P Y Lui
- Department of Orthopaedics and Traumatology, Chinese University of Hong Kong, Hong Kong SAR, China.
| | | | | | | |
Collapse
|
41
|
Combined effects of surface morphology and mechanical straining magnitudes on the differentiation of mesenchymal stem cells without using biochemical reagents. J Biomed Biotechnol 2011; 2011:860652. [PMID: 21403908 PMCID: PMC3043320 DOI: 10.1155/2011/860652] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 12/19/2010] [Accepted: 01/11/2011] [Indexed: 11/21/2022] Open
Abstract
Existing studies examining the control of mesenchymal stem cell (MSC) differentiation into desired cell types have used a variety of biochemical reagents such as growth factors despite possible side effects. Recently, the roles of biomimetic microphysical environments have drawn much attention in this field. We studied MSC differentiation and changes in gene expression in relation to osteoblast-like cell and smooth muscle-like cell type resulting from various microphysical environments, including differing magnitudes of tensile strain and substrate geometries for 8 days. In addition, we also investigated the residual effects of those selected microphysical environment factors on the differentiation by ceasing those factors for 3 days. The results of this study showed the effects of the strain magnitudes and surface geometries. However, the genes which are related to the same cell type showed different responses depending on the changes in strain magnitude and surface geometry. Also, different responses were observed three days after the straining was stopped. These data confirm that controlling microenvironments so that they mimic those in vivo contributes to the differentiation of MSCs into specific cell types. And duration of straining engagement was also found to play important roles along with surface geometry.
Collapse
|
42
|
Gurkan UA, Krueger A, Akkus O. Ossifying Bone Marrow Explant Culture as a Three-Dimensional MechanoresponsiveIn VitroModel of Osteogenesis. Tissue Eng Part A 2011; 17:417-28. [PMID: 20807016 DOI: 10.1089/ten.tea.2010.0193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Umut Atakan Gurkan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Adam Krueger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Ozan Akkus
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| |
Collapse
|
43
|
Prodanov L, te Riet J, Lamers E, Domanski M, Luttge R, van Loon JJWA, Jansen JA, Walboomers XF. The interaction between nanoscale surface features and mechanical loading and its effect on osteoblast-like cells behavior. Biomaterials 2011; 31:7758-65. [PMID: 20647152 DOI: 10.1016/j.biomaterials.2010.06.050] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 06/28/2010] [Indexed: 11/18/2022]
Abstract
Osteoblasts respond to mechanical stimulation by changing morphology, gene expression and matrix mineralization. Introducing surface topography on biomaterials, independently of mechanical loading, has been reported to give similar effects. In the current study, using a nanotextured surface, and mechanical loading, we aimed to develop a multi-factorial model in which both parameters interact. Mechanical stimulation to osteoblast-like cells was applied by longitudinal stretch in parallel direction to the nanotexture (300 nm wide and 60 nm deep grooves), with frequency of 1 Hz and stretch magnitude varying from 1% to 8%. Scanning electron microscopy showed that osteoblast-like cells subjected to mechanical loading oriented perpendicularly to the stretch direction. When cultured on nanotextured surfaces, cells aligned parallel to the texture. However, the parallel cell direction to the nanotextured surface was lost and turned to perpendicular when parallel stretch to the nanotexture, greater than 3% was applied to the cells. This phenomenon could not be achieved when a texture with micro-sized dimensions was used. Moreover, a significant synergistic effect on upregulation of fibronectin and Cfba was observed when dual stimulation was used. These findings can lead to a development of new biomimetic materials that can guide morphogenesis in tissue repair and bone remodeling.
Collapse
Affiliation(s)
- Ljupcho Prodanov
- Radboud University Nijmegen Medical Centre, Department of Biomaterials, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Goli-Malekabadi Z, Tafazzoli-Shadpour M, Rabbani M, Janmaleki M. Effect of uniaxial stretch on morphology and cytoskeleton of human mesenchymal stem cells: static vs. dynamic loading. ACTA ACUST UNITED AC 2011; 56:259-65. [DOI: 10.1515/bmt.2011.109] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Stella JA, Wagner WR, Sacks MS. Scale-dependent fiber kinematics of elastomeric electrospun scaffolds for soft tissue engineering. J Biomed Mater Res A 2010; 93:1032-42. [PMID: 19753623 DOI: 10.1002/jbm.a.32593] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Electrospun poly(ester urethane)urea (PEUU) scaffolds contain complex multiscale hierarchical structures that work simultaneously to produce unique macrolevel mechanical behaviors. In this study, we focused on quantifying key multiscale scaffold structural features to elucidate the mechanisms by which these scaffolds function to emulate native tissue tensile behavior. Fiber alignment was modulated via increasing rotational velocity of the collecting mandrel, and the resultant specimens were imaged using SEM under controlled biaxial strain. From the SEM images, fiber splay, tortuosity, and diameter were quantified in the unstrained and deformed configurations. Results indicated that not only fiber alignment increased with mandrel velocity but also, paradoxically, tortuosity increased concurrently with mandrel velocity and was highly correlated with fiber orientation. At microlevel scales (1-10 mum), local scaffold deformation behavior was observed to be highly heterogeneous, while increasing the scale resulted in an increasingly homogenous strain field. From our comprehensive measurements, we determined that the transition scale from heterogenous to homogeneous-like behavior to be approximately 1 mm. Moreover, while electrospun PEUU scaffolds exhibit complex deformations at the microscale, the larger scale structural features of the fibrous network allow them to behave as long-fiber composites that deform in an affine-like manner. This study underscores the importance of understanding the structure-function relationships in elastomeric fibrous scaffolds, and in particular allowed us to link microscale deformations with mechanisms that allow them to successfully simulate soft tissue mechanical behavior.
Collapse
Affiliation(s)
- John A Stella
- Department of Bioengineering, Swanson School of Engineering and the McGowan Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | |
Collapse
|
46
|
Stella JA, D'Amore A, Wagner WR, Sacks MS. On the biomechanical function of scaffolds for engineering load-bearing soft tissues. Acta Biomater 2010; 6:2365-81. [PMID: 20060509 DOI: 10.1016/j.actbio.2010.01.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 12/18/2009] [Accepted: 01/04/2010] [Indexed: 11/16/2022]
Abstract
Replacement or regeneration of load-bearing soft tissues has long been the impetus for the development of bioactive materials. While maturing, current efforts continue to be confounded by our lack of understanding of the intricate multi-scale hierarchical arrangements and interactions typically found in native tissues. The current state of the art in biomaterial processing enables a degree of controllable microstructure that can be used for the development of model systems to deduce fundamental biological implications of matrix morphologies on cell function. Furthermore, the development of computational frameworks which allow for the simulation of experimentally derived observations represents a positive departure from what has mostly been an empirically driven field, enabling a deeper understanding of the highly complex biological mechanisms we wish to ultimately emulate. Ongoing research is actively pursuing new materials and processing methods to control material structure down to the micro-scale to sustain or improve cell viability, guide tissue growth, and provide mechanical integrity, all while exhibiting the capacity to degrade in a controlled manner. The purpose of this review is not to focus solely on material processing but to assess the ability of these techniques to produce mechanically sound tissue surrogates, highlight the unique structural characteristics produced in these materials, and discuss how this translates to distinct macroscopic biomechanical behaviors.
Collapse
Affiliation(s)
- John A Stella
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | |
Collapse
|
47
|
Sun LY, Hsieh DK, Lin PC, Chiu HT, Chiou TW. Pulsed electromagnetic fields accelerate proliferation and osteogenic gene expression in human bone marrow mesenchymal stem cells during osteogenic differentiation. Bioelectromagnetics 2010; 31:209-19. [PMID: 19866474 DOI: 10.1002/bem.20550] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Osteogenesis is a complex series of events involving the differentiation of mesenchymal stem cells to generate new bone. In this study, we examined the effect of pulsed electromagnetic fields (PEMFs) on cell proliferation, alkaline phosphatase (ALP) activity, mineralization of the extracellular matrix, and gene expression in bone marrow mesenchymal stem cells (BMMSCs) during osteogenic differentiation. Exposure of BMMSCs to PEMFs increased cell proliferation by 29.6% compared to untreated cells at day 1 of differentiation. Semi-quantitative RT-PCR indicated that PEMFs significantly altered temporal expression of osteogenesis-related genes, including a 2.7-fold increase in expression of the key osteogenesis regulatory gene cbfa1, compared to untreated controls. In addition, exposure to PEMFs significantly increased ALP expression during the early stages of osteogenesis and substantially enhanced mineralization near the midpoint of osteogenesis. These results suggest that PEMFs enhance early cell proliferation in BMMSC-mediated osteogenesis, and accelerate the osteogenesis.
Collapse
Affiliation(s)
- Li-Yi Sun
- Department of Biological Science and Technology, National Chiao Tung University, No. 75 Po-Ai Street, Hsinchu, Taiwan, ROC
| | | | | | | | | |
Collapse
|
48
|
Tensile Strain as a Regulator of Mesenchymal Stem Cell Osteogenesis. Ann Biomed Eng 2010; 38:1767-79. [DOI: 10.1007/s10439-010-9979-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 02/20/2010] [Indexed: 10/19/2022]
|
49
|
Stops A, Heraty K, Browne M, O'Brien F, McHugh P. A prediction of cell differentiation and proliferation within a collagen–glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow. J Biomech 2010; 43:618-26. [DOI: 10.1016/j.jbiomech.2009.10.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 10/19/2009] [Accepted: 10/19/2009] [Indexed: 11/25/2022]
|
50
|
Ziegler N, Alonso A, Steinberg T, Woodnutt D, Kohl A, Müssig E, Schulz S, Tomakidi P. Mechano-transduction in periodontal ligament cells identifies activated states of MAP-kinases p42/44 and p38-stress kinase as a mechanism for MMP-13 expression. BMC Cell Biol 2010; 11:10. [PMID: 20109185 PMCID: PMC2824740 DOI: 10.1186/1471-2121-11-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 01/28/2010] [Indexed: 11/23/2022] Open
Abstract
Background Mechano-transduction in periodontal ligament (PDL) cells is crucial for physiological and orthodontic tooth movement-associated periodontal remodelling. On the mechanistic level, molecules involved in this mechano-transduction process in PDL cells are not yet completely elucidated. Results In the present study we show by western blot (WB) analysis and/or indirect immunofluorescence (IIF) that mechanical strain modulates the amount of the matrix metalloproteinase MMP-13, and induces non-coherent modulation in the amount and activity of signal transducing molecules, such as FAK, MAP-kinases p42/44, and p38 stress kinase, suggesting their mechanistic role in mechano-transduction. Increase in the amount of FAK occurs concomitant with increased levels of the focal contact integrin subunits β3 and β1, as indicated by WB or optionally by IIF. By employing specific inhibitors, we further identified p42/44 and p38 in their activated, i.e. phosphorylated state responsible for the expression of MMP-13. This finding may point to the obedience in the expression of this MMP as extracellular matrix (ECM) remodelling executioner from the activation state of mechano-transducing molecules. mRNA analysis by pathway-specific RT-profiler arrays revealed up- and/or down-regulation of genes assigning to MAP-kinase signalling and cell cycle, ECM and integrins and growth factors. Up-regulated genes include for example focal contact integrin subunit α3, MMP-12, MAP-kinases and associated kinases, and the transcription factor c-fos, the latter as constituent of the AP1-complex addressing the MMP-13 promotor. Among others, genes down-regulated are those of COL-1 and COL-14, suggesting that strain-dependent mechano-transduction may transiently perturbate ECM homeostasis. Conclusions Strain-dependent mechano-/signal-transduction in PDL cells involves abundance and activity of FAK, MAP-kinases p42/44, and p38 stress kinase in conjunction with the amount of MMP-13, and integrin subunits β1 and β3. Identifying the activated state of p42/44 and p38 as critical for MMP-13 expression may indicate the mechanistic contribution of mechano-transducing molecules on executioners of ECM homeostasis.
Collapse
Affiliation(s)
- Nelli Ziegler
- Department of Oral Biotechnology, Dental School, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|