1
|
Chen L, Yu X, Chen W, Qiu F, Li D, Yang Z, Yang S, Lu S, Wang L, Feng S, Xiu P, Tang M, Wang H. Nanoscale detection of carbon dots-induced changes in actin skeleton of neural cells. J Colloid Interface Sci 2024; 668:293-302. [PMID: 38678885 DOI: 10.1016/j.jcis.2024.04.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Understanding the cytotoxicity of fluorescent carbon dots (CDs) is crucial for their applications, and various biochemical assays have been used to study the effects of CDs on cells. Knowledge on the effects of CDs from a biophysical perspective is integral to the recognition of their cytotoxicity, however the related information is very limited. Here, we report that atomic force microscopy (AFM) can be used as an effective tool for studying the effects of CDs on cells from the biophysical perspective. We achieve this by integrating AFM-based nanomechanics with AFM-based imaging. We demonstrate the performance of this method by measuring the influence of CDs on living human neuroblastoma (SH-SY5Y) cells at the single-cell level. We find that high-dose CDs can mechanically induce elevated normalized hysteresis (energy dissipation during the cell deformation) and structurally impair actin skeleton. The nanomechanical change highly correlates with the alteration of actin filaments, indicating that CDs-induced changes in SH-SY5Y cells are revealed in-depth from the AFM-based biophysical aspect. We validate the reliability of the biophysical observations using conventional biological methods including cell viability test, fluorescent microscopy, and western blot assay. Our work contributes new and significant information on the cytotoxicity of CDs from the biophysical perspective.
Collapse
Affiliation(s)
- Ligang Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| | - Xiaoting Yu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| | - Wei Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| | - Fucheng Qiu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| | - Dandan Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| | - Zhongbo Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| | - Songrui Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Shengjun Lu
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Shuanglong Feng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Mingjie Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| | - Huabin Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China.
| |
Collapse
|
2
|
Valiei A, Bryche JF, Canva M, Charette PG, Moraes C, Hill RJ, Tufenkji N. Effects of Surface Topography and Cellular Biomechanics on Nanopillar-Induced Bactericidal Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9614-9625. [PMID: 38378485 DOI: 10.1021/acsami.3c09552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Bacteria are mechanically resistant biological structures that can sustain physical stress. Experimental data, however, have shown that high-aspect-ratio nanopillars deform bacterial cells upon contact. If the deformation is sufficiently large, it lyses the bacterial cell wall, ultimately leading to cell death. This has prompted a novel strategy, known as mechano-bactericide technology, to fabricate antibacterial surfaces. Although adhesion forces were originally proposed as the driving force for mechano-bactericidal action, it has been recently shown that external forces, such as capillary forces arising from an air-water interface at bacterial surfaces, produce sufficient loads to rapidly kill bacteria on nanopillars. This discovery highlights the need to theoretically examine how bacteria respond to external loads and to ascertain the key factors. In this study, we developed a finite element model approximating bacteria as elastic shells filled with cytoplasmic fluid brought into contact with an individual nanopillar or nanopillar array. This model elucidates that bacterial killing caused by external forces on nanopillars is influenced by surface topography and cell biomechanical variables, including the density and arrangement of nanopillars, in addition to the cell wall thickness and elastic modulus. Considering that surface topography is an important design parameter, we performed experiments using nanopillar arrays with precisely controlled nanopillar diameters and spacing. Consistent with model predictions, these demonstrate that nanopillars with a larger spacing increase bacterial susceptibility to mechanical puncture. The results provide salient insights into mechano-bactericidal activity and identify key design parameters for implementing this technology.
Collapse
Affiliation(s)
- Amin Valiei
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
| | - Jean-François Bryche
- Laboratoire Nanotechnologies Nanosystèmes (LN2)-IRL3463, CNRS, Université de Sherbrooke, Universitè Grenoble Alpes, École Centrale de Lyon, INSA Lyon, Sherbrooke, Québec J1K 0A5, Canada
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université, Sherbrooke, Québec J1K OA5, Canada
| | - Michael Canva
- Laboratoire Nanotechnologies Nanosystèmes (LN2)-IRL3463, CNRS, Université de Sherbrooke, Universitè Grenoble Alpes, École Centrale de Lyon, INSA Lyon, Sherbrooke, Québec J1K 0A5, Canada
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université, Sherbrooke, Québec J1K OA5, Canada
| | - Paul G Charette
- Laboratoire Nanotechnologies Nanosystèmes (LN2)-IRL3463, CNRS, Université de Sherbrooke, Universitè Grenoble Alpes, École Centrale de Lyon, INSA Lyon, Sherbrooke, Québec J1K 0A5, Canada
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université, Sherbrooke, Québec J1K OA5, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
- Goodman Cancer Research Center, McGill University, Montreal, Québec H3A 0G4, Canada
| | - Reghan J Hill
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
| |
Collapse
|
3
|
Sun J, Huang X, Chen J, Xiang R, Ke X, Lin S, Xuan W, Liu S, Cao Z, Sun L. Recent advances in deformation-assisted microfluidic cell sorting technologies. Analyst 2023; 148:4922-4938. [PMID: 37743834 DOI: 10.1039/d3an01150j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Cell sorting is an essential prerequisite for cell research and has great value in life science and clinical studies. Among the many microfluidic cell sorting technologies, label-free methods based on the size of different cell types have been widely studied. However, the heterogeneity in size for cells of the same type and the inevitable size overlap between different types of cells would result in performance degradation in size-based sorting. To tackle such challenges, deformation-assisted technologies are receiving more attention recently. Cell deformability is an inherent biophysical marker of cells that reflects the changes in their internal structures and physiological states. It provides additional dimensional information for cell sorting besides size. Therefore, in this review, we summarize the recent advances in deformation-assisted microfluidic cell sorting technologies. According to how the deformability is characterized and the form in which the force acts, the technologies can be divided into two categories: (1) the indirect category including transit-time-based and image-based methods, and (2) the direct category including microstructure-based and hydrodynamics-based methods. Finally, the separation performance and the application scenarios of each method, the existing challenges and future outlook are discussed. Deformation-assisted microfluidic cell sorting technologies are expected to realize greater potential in the label-free analysis of cells.
Collapse
Affiliation(s)
- Jingjing Sun
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Xiwei Huang
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Jin Chen
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Rikui Xiang
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Xiang Ke
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Siru Lin
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Weipeng Xuan
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, China
| | - Zhen Cao
- College of Information Science and Electronic Engineering, Zhejiang University, China
| | - Lingling Sun
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| |
Collapse
|
4
|
Siddiquie RY, Sharma K, Banerjee A, Agrawal A, Joshi SS. Time-dependent plastic behavior of bacteria leading to rupture. J Mech Behav Biomed Mater 2023; 145:106048. [PMID: 37523842 DOI: 10.1016/j.jmbbm.2023.106048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
A study of the mechanical response of bacteria is essential in designing an antibacterial surface for implants and food packaging applications. This research evaluated the mechanical response of Escherichia coli under different loading conditions. Indentation and prolonged creep tests were performed to understand their viscoelastic-plastic response. The results indicate that varying loading rates from 1 μm/s to 5 μm/s show an increase in modulus of 182% and 90%, calculated in the loading and unloading cycles, respectively, and a decrease in adhesion force by 42%. However, on varying loads from 5 nN to 25 nN, nominal change is observed in both modulus and adhesion force. The rupture curve at 100 nN load shows elastic and a small plastic deformation accompanied by a sharp peak indicating the cell wall rupture. The rupture force at the peak was found to be 34.38 ± 5.15 nN, irrespective of the loading rate, making it a failure criterion for bacteria rupture. The creep response of bacteria increases (for 6 s) and then remains constant (for 15 s) with time, indicating that a standard linear solid (SLS) model applies to this behavior. This work attempts to evaluate the mechanical properties of E. coli bacteria focusing on its rupture by contact killing mechanism.
Collapse
Affiliation(s)
- Reshma Y Siddiquie
- Department of Mechanical Engineering, Indian Institute of Technology, Bombay, India
| | - Kuldeep Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, India
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, India
| | - Amit Agrawal
- Department of Mechanical Engineering, Indian Institute of Technology, Bombay, India
| | - Suhas S Joshi
- Department of Mechanical Engineering, Indian Institute of Technology, Bombay, India; Department of Mechanical Engineering, Indian Institute of Technology, Indore, India.
| |
Collapse
|
5
|
Surveying membrane landscapes: a new look at the bacterial cell surface. Nat Rev Microbiol 2023:10.1038/s41579-023-00862-w. [PMID: 36828896 DOI: 10.1038/s41579-023-00862-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/26/2023]
Abstract
Recent studies applying advanced imaging techniques are changing the way we understand bacterial cell surfaces, bringing new knowledge on everything from single-cell heterogeneity in bacterial populations to their drug sensitivity and mechanisms of antimicrobial resistance. In both Gram-positive and Gram-negative bacteria, the outermost surface of the bacterial cell is being imaged at nanoscale; as a result, topographical maps of bacterial cell surfaces can be constructed, revealing distinct zones and specific features that might uniquely identify each cell in a population. Functionally defined assembly precincts for protein insertion into the membrane have been mapped at nanoscale, and equivalent lipid-assembly precincts are suggested from discrete lipopolysaccharide patches. As we review here, particularly for Gram-negative bacteria, the applications of various modalities of nanoscale imaging are reawakening our curiosity about what is conceptually a 3D cell surface landscape: what it looks like, how it is made and how it provides resilience to respond to environmental impacts.
Collapse
|
6
|
Fioravanti A, Mathelie-Guinlet M, Dufrêne YF, Remaut H. The Bacillus anthracis S-layer is an exoskeleton-like structure that imparts mechanical and osmotic stabilization to the cell wall. PNAS NEXUS 2022; 1:pgac121. [PMID: 36714836 PMCID: PMC9802277 DOI: 10.1093/pnasnexus/pgac121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023]
Abstract
Surface layers (S-layers) are 2D paracrystalline protein monolayers covering the cell envelope of many prokaryotes and archaea. Proposed functions include a role in cell support, as scaffolding structure, as molecular sieve, or as virulence factor. Bacillus anthracis holds two S-layers, composed of Sap or EA1, which interchange in early and late exponential growth phase. We previously found that acute disruption of B. anthracis Sap S-layer integrity, by means of nanobodies, results in severe morphological cell surface defects and cell collapse. Remarkably, this loss of function is due to the destruction of the Sap lattice structure rather than detachment of monomers from the cell surface. Here, we combine force nanoscopy and light microscopy observations to probe the contribution of the S-layer to the mechanical, structural, and functional properties of the cell envelope, which have been so far elusive. Our experiments reveal that cells with a compromised S-layer lattice show a decreased compressive stiffness and elastic modulus. Furthermore, we find that S-layer integrity is required to resist cell turgor under hypotonic conditions. These results present compelling experimental evidence indicating that the S-layers can serve as prokaryotic exoskeletons that support the cell wall in conferring rigidity and mechanical stability to bacterial cells.
Collapse
Affiliation(s)
- Antonella Fioravanti
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marion Mathelie-Guinlet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Han Remaut
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
7
|
Singh S, Wilksch JJ, Dunstan RA, Mularski A, Wang N, Hocking D, Jebeli L, Cao H, Clements A, Jenney AWJ, Lithgow T, Strugnell RA. LPS O Antigen Plays a Key Role in Klebsiella pneumoniae Capsule Retention. Microbiol Spectr 2022; 10:e0151721. [PMID: 35913154 PMCID: PMC9431683 DOI: 10.1128/spectrum.01517-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the importance of encapsulation in bacterial pathogenesis, the biochemical mechanisms and forces that underpin retention of capsule by encapsulated bacteria are poorly understood. In Gram-negative bacteria, there may be interactions between lipopolysaccharide (LPS) core and capsule polymers, between capsule polymers with retained acyl carriers and the outer membrane, and in some bacteria, between the capsule polymers and Wzi, an outer membrane protein lectin. Our transposon studies in Klebsiella pneumoniae B5055 identified additional genes that, when insertionally inactivated, resulted in reduced encapsulation. Inactivation of the gene waaL, which encodes the ligase responsible for attaching the repeated O antigen of LPS to the LPS core, resulted in a significant reduction in capsule retention, measured by atomic force microscopy. This reduction in encapsulation was associated with increased sensitivity to human serum and decreased virulence in a murine model of respiratory infection and, paradoxically, with increased biofilm formation. The capsule in the WaaL mutant was physically smaller than that of the Wzi mutant of K. pneumoniae B5055. These results suggest that interactions between surface carbohydrate polymers may enhance encapsulation, a key phenotype in bacterial virulence, and provide another target for the development of antimicrobials that may avoid resistance issues associated with growth inhibition. IMPORTANCE Bacterial capsules, typically comprised of complex sugars, enable pathogens to avoid key host responses to infection, including phagocytosis. These capsules are synthesized within the bacteria, exported through the outer envelope, and then secured to the external surface of the organism by a force or forces that are incompletely described. This study shows that in the important hospital pathogen Klebsiella pneumoniae, the polysaccharide capsule is retained by interactions with other surface sugars, especially the repeated sugar molecule of the LPS molecule in Gram-negative bacteria known as "O antigen." This O antigen is joined to the LPS molecule by ligation, and loss of the enzyme responsible for ligation, a protein called WaaL, results in reduced encapsulation. Since capsules are essential to the virulence of many pathogens, WaaL might provide a target for new antimicrobial development, critical to the control of pathogens like K. pneumoniae that have become highly drug resistant.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jonathan J. Wilksch
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Rhys A. Dunstan
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Anna Mularski
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nancy Wang
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Dianna Hocking
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hanwei Cao
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Abigail Clements
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Adam W. J. Jenney
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Richard A. Strugnell
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Gainutdinov RV, Lashkova AK, Zolotov DA, Asadchikov VE, Shiryaev AA, Ivanova AG, Roshchin BS, Shut VN, Kashevich IF, Mozzharov SE, Tolstikhina AL. Determination of Young’s Modulus in Triglycine Sulfate Crystals with Layered Impurity Distribution. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s1063774522040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Choi J, Bastatas L, Lee E, Mutiso KT, Park S. Mechanical characterization of multi-layered lipid nanoparticles using high-resolution AFM force spectroscopy. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
A Novel Methodology to Obtain the Mechanical Properties of Membranes by Means of Dynamic Tests. MEMBRANES 2022; 12:membranes12030288. [PMID: 35323765 PMCID: PMC8951155 DOI: 10.3390/membranes12030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/05/2023]
Abstract
A new, non-destructive methodology is proposed in this work in order to determine the mechanical properties of membrane using vibro-acoustic tests. This procedure is based on the dynamic analysis of the behavior of the membrane. When the membrane is subjected to a sound excitation it responds by vibrating based on its modal characteristics and this modal parameter is directly related to its mechanical properties. The paper is structured in two parts. First, the theoretical bases of the test are presented. The interaction between the sound waves and the membrane (mechano-acoustic coupling) is complex and requires meticulous study. It was broadly studied by means of numerical simulations. A summary of this study is shown. Aspects, such as the position of the sound source, the measuring points, the dimensions of the membrane, the frequency range, and the magnitudes to be measured, among others, were evaluated. The validity of modal analysis curve-fitting techniques to extract the modal parameter from the data measures was also explored. In the second part, an experimental test was performed to evaluate the validity of the method. A membrane of the same material with three different diameters was measured with the aim of estimating the value of the Young’s modulus. The procedure was applied and satisfactory results were obtained. Additionally, the experiment shed light on aspects that must be taken account in future experiments.
Collapse
|
11
|
Qin J, Zhang M, Guan Y, Guo X, Li Z, Rankl C, Tang J. Imaging and quantifying analysis the binding behavior of PD-L1 at molecular resolution by atomic force microscopy. Anal Chim Acta 2022; 1191:339281. [PMID: 35033247 DOI: 10.1016/j.aca.2021.339281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022]
Abstract
Immunotherapy has emerged as an effective treatment modality for cancer. The interaction of programmed cell death ligand-1 (PD-L1) and programmed cell death protein-1 (PD-1) plays a key role in tumor-related immune escape and has become one of the most extensive targets for immunotherapy. Herein, we investigated the interaction of PD-L1 with its antibody and PD-1 using atomic force microscopy-based single molecule force spectroscopy for the first time. It was found that the PD-L1/anti-PD-L1 antibody complex was easier to dissociate than PD-L1/PD-1. The unbinding forces of specific interaction of PD-L1 on T24 cells with its antibody and PD-1 were quantitatively measured and similar to those on substrate. In addition, the location of PD-L1 on T24 cells was mapped at the single-molecule level by force-volume mapping. The force maps revealed that PD-L1 randomly distributed on T24 cells surface. The recognition events on cells obviously increased after INF-γ treatment, which proved that INF-γ up-regulated the expression of PD-L1 on T24 cells. These findings enrich our understanding of the molecular mechanisms by which PD-L1 interacts with its antibody and PD-1. It provides useful information for the physical factors that is needed to be considered in the design of inhibitors for tumor immunology.
Collapse
Affiliation(s)
- Juan Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Miaomiao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Yanxue Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Xinyue Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Zongjia Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Christian Rankl
- Research Center for Non Destructive Testing GmbH, Science Park 2/2. OG, Altenberger Straße 69, A-4040, Linz, Austria
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China.
| |
Collapse
|
12
|
Olubowale O, Biswas S, Azom G, Prather BL, Owoso SD, Rinee KC, Marroquin K, Gates KA, Chambers MB, Xu A, Garno JC. "May the Force Be with You!" Force-Volume Mapping with Atomic Force Microscopy. ACS OMEGA 2021; 6:25860-25875. [PMID: 34660949 PMCID: PMC8515370 DOI: 10.1021/acsomega.1c03829] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 06/02/2023]
Abstract
Information of the chemical, mechanical, and electrical properties of materials can be obtained using force volume mapping (FVM), a measurement mode of scanning probe microscopy (SPM). Protocols have been developed with FVM for a broad range of materials, including polymers, organic films, inorganic materials, and biological samples. Multiple force measurements are acquired with the FVM mode within a defined 3D volume of the sample to map interactions (i.e., chemical, electrical, or physical) between the probe and the sample. Forces of adhesion, elasticity, stiffness, deformation, chemical binding interactions, viscoelasticity, and electrical properties have all been mapped at the nanoscale with FVM. Subsequently, force maps can be correlated with features of topographic images for identifying certain chemical groups presented at a sample interface. The SPM tip can be coated to investigate-specific reactions; for example, biological interactions can be probed when the tip is coated with biomolecules such as for recognition of ligand-receptor pairs or antigen-antibody interactions. This review highlights the versatility and diverse measurement protocols that have emerged for studies applying FVM for the analysis of material properties at the nanoscale.
Collapse
|
13
|
Pattem J, Davrandi M, Aguayo S, Slak B, Maev R, Allan E, Spratt D, Bozec L. Dependency of hydration and growth conditions on the mechanical properties of oral biofilms. Sci Rep 2021; 11:16234. [PMID: 34376751 PMCID: PMC8355335 DOI: 10.1038/s41598-021-95701-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Within the oral cavity, dental biofilms experience dynamic environments, in part due to changes in dietary content, frequency of intake and health conditions. This can impact bacterial diversity and morpho-mechanical properties. While phenotypic properties of oral biofilms are closely related to their composition, these can readily change according to dynamic variations in the growth environment and nutrient availability. Understanding the interlink between phenotypic properties, variable growth conditions, and community characterization is an essential requirement to develop structure–property relationships in oral-biofilms. In this study, the impact of two distinct growth media types with increasing richness on the properties of oral biofilms was assessed through a new combination of in-vitro time-lapse biophysical methods with microbiological assays. Oral biofilms grown in the enriched media composition presented a decrease in their pH, an increase in soluble EPS production, and a severe reduction in bacterial diversity. Additionally, enriched media conditions presented an increase in biofilm volumetric changes (upon hydration) as well as a reduction in elastic modulus upon indentation. With hydration time considered a major factor contributing to changes in biofilm mechanical properties, we have shown that it is less associated than media richness. Future investigations can now use this time-lapse approach, with a clearer focus on the extracellular matrix of oral biofilms dictating their morpho-mechanical properties.
Collapse
Affiliation(s)
- J Pattem
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK. .,National Centre for Molecular Hydrodynamics, and Soft Matter Biomaterials and Bio-Interfaces, University of Nottingham, The Limes Building, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK.
| | - M Davrandi
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
| | - S Aguayo
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - B Slak
- Department of Electrical and Computer Engineering, University of Windsor, Windsor, Canada
| | - R Maev
- Department of Electrical and Computer Engineering, University of Windsor, Windsor, Canada
| | - E Allan
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
| | - D Spratt
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
| | - L Bozec
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK.,Faculty of Dentistry, University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
Gibbs E, Hsu J, Barth K, Goss JW. Characterization of the nanomechanical properties of the fission yeast (Schizosaccharomyces pombe) cell surface by atomic force microscopy. Yeast 2021; 38:480-492. [PMID: 33913187 PMCID: PMC9291503 DOI: 10.1002/yea.3564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 11/11/2022] Open
Abstract
Variations in cell wall composition and biomechanical properties can contribute to the cellular plasticity required during complex processes such as polarized growth and elongation in microbial cells. This study utilizes atomic force microscopy (AFM) to map the cell surface topography of fission yeast, Schizosaccharomyces pombe, at the pole regions and to characterize the biophysical properties within these regions under physiological, hydrated conditions. High-resolution images acquired from AFM topographic scanning reveal decreased surface roughness at the cell poles. Force extension curves acquired by nanoindentation probing with AFM cantilever tips under low applied force revealed increased cell wall deformation and decreased cellular stiffness (cellular spring constant) at cell poles (17 ± 4 mN/m) relative to the main body of the cell that is not undergoing growth and expansion (44 ± 10 mN/m). These findings suggest that the increased deformation and decreased stiffness at regions of polarized growth at fission yeast cell poles provide the plasticity necessary for cellular extension. This study provides a direct biophysical characterization of the S. pombe cell surface by AFM, and it provides a foundation for future investigation of how the surface topography and local nanomechanical properties vary during different cellular processes.
Collapse
Affiliation(s)
- Ellie Gibbs
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Justine Hsu
- Biochemistry Program, Wellesley College, Wellesley, MA, USA
| | - Kathryn Barth
- Biochemistry Program, Wellesley College, Wellesley, MA, USA
| | - John W Goss
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA.,Biochemistry Program, Wellesley College, Wellesley, MA, USA
| |
Collapse
|
15
|
Spent Brewer's Yeast as a Source of Insoluble β-Glucans. Int J Mol Sci 2021; 22:ijms22020825. [PMID: 33467670 PMCID: PMC7829969 DOI: 10.3390/ijms22020825] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
In the brewing process, the consumption of resources and the amount of waste generated are high and due to a lot of organic compounds in waste-water, the capacity of natural regeneration of the environment is exceeded. Residual yeast, the second by-product of brewing is considered to have an important chemical composition. An approach with nutritional potential refers to the extraction of bioactive compounds from the yeast cell wall, such as β-glucans. Concerning the potential food applications with better textural characteristics, spent brewer’s yeast glucan has high emulsion stability and water-holding capacity fitting best as a fat replacer in different food matrices. Few studies demonstrate the importance and nutritional role of β-glucans from brewer’s yeast, and even less for spent brewer’s yeast, due to additional steps in the extraction process. This review focuses on describing the process of obtaining insoluble β-glucans (particulate) from spent brewer’s yeast and provides an insight into how a by-product from brewing can be converted to potential food applications.
Collapse
|
16
|
Zamani E, Johnson TJ, Chatterjee S, Immethun C, Sarella A, Saha R, Dishari SK. Cationic π-Conjugated Polyelectrolyte Shows Antimicrobial Activity by Causing Lipid Loss and Lowering Elastic Modulus of Bacteria. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49346-49361. [PMID: 33089982 PMCID: PMC8926324 DOI: 10.1021/acsami.0c12038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cationic, π-conjugated oligo-/polyelectrolytes (CCOEs/CCPEs) have shown great potential as antimicrobial materials to fight against antibiotic resistance. In this work, we treated wild-type and ampicillin-resistant (amp-resistant) Escherichia coli (E. coli) with a promising cationic, π-conjugated polyelectrolyte (P1) with a phenylene-based backbone and investigated the resulting morphological, mechanical, and compositional changes of the outer membrane of bacteria in great detail. The cationic quaternary amine groups of P1 led to electrostatic interactions with negatively charged moieties within the outer membrane of bacteria. Using atomic force microscopy (AFM), high-resolution transmission electron microscopy (TEM), we showed that due to this treatment, the bacterial outer membrane became rougher, decreased in stiffness/elastic modulus (AFM nanoindentation), formed blebs, and released vesicles near the cells. These evidences, in addition to increased staining of the P1-treated cell membrane by lipophilic dye Nile Red (confocal laser scanning microscopy (CLSM)), suggested loosening/disruption of packing of the outer cell envelope and release and exposure of lipid-based components. Lipidomics and fatty acid analysis confirmed a significant loss of phosphate-based outer membrane lipids and fatty acids, some of which are critically needed to maintain cell wall integrity and mechanical strength. Lipidomics and UV-vis analysis also confirmed that the extracellular vesicles released upon treatment (AFM) are composed of lipids and cationic P1. Such surface alterations (vesicle/bleb formation) and release of lipids/fatty acids upon treatment were effective enough to inhibit further growth of E. coli cells without completely disintegrating the cells and have been known as a defense mechanism of the cells against cationic antimicrobial agents.
Collapse
Affiliation(s)
- Ehsan Zamani
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Tyler J. Johnson
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Shyambo Chatterjee
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Cheryl Immethun
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Anandakumar Sarella
- Nebraska Center for Materials and Nanoscience, Voelte-Keegan Nanoscience Research Center, University of Nebraska-Lincoln, Lincoln, NE 68588-0298, United States
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
17
|
Pham DQ, Bryant SJ, Cheeseman S, Huang LZY, Bryant G, Dupont MF, Chapman J, Berndt CC, Vongsvivut JP, Crawford RJ, Truong VK, Ang ASM, Elbourne A. Micro- to nano-scale chemical and mechanical mapping of antimicrobial-resistant fungal biofilms. NANOSCALE 2020; 12:19888-19904. [PMID: 32985644 DOI: 10.1039/d0nr05617k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A fungal biofilm refers to the agglomeration of fungal cells surrounded by a polymeric extracellular matrix (ECM). The ECM is composed primarily of polysaccharides that facilitate strong surface adhesion, proliferation, and cellular protection from the surrounding environment. Biofilms represent the majority of known microbial communities, are ubiquitous, and are found on a multitude of natural and synthetic surfaces. The compositions, and in-turn nanomechanical properties, of fungal biofilms remain poorly understood, because these systems are complex, composed of anisotropic cellular and extracellular material, and importantly are species and environment dependent. Therefore, genomic variation, and/or mutations, as well as environmental and growth factors can change the composition of a fungal cell's biofilm. In this work, we probe the physico-mechanical and biochemical properties of two fungal species, Candida albicans (C. albicans) and Cryptococcus neoformans (C. neoformans), as well as two antifungal resistant sub-species of C. neoformans, fluconazole-resistant C. neoformans (FlucRC. neoformans) and amphotericin B-resistant C. neoformans (AmBRC. neoformans). A new experimental methodology of characterization is proposed, employing a combination of atomic force microscopy (AFM), instrumented nanoindentation, and Synchrotron ATR-FTIR measurements. This allowed the nano-mechanical and chemical characterisation of each fungal biofilm.
Collapse
Affiliation(s)
- Duy Quang Pham
- Surface Engineering for Advanced Materials (SEAM), Department of Mechanical and Production Design Engineering, Swinburne University of Technology, Hawthorn, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang J, Li X, Zou Q, Su C, Lin NS. Rapid broadband discrete nanomechanical mapping of soft samples on atomic force microscope. NANOTECHNOLOGY 2020; 31:335705. [PMID: 32344391 DOI: 10.1088/1361-6528/ab8deb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, an approach to achieve rapid broadband discrete nanomechanical mapping of soft samples using an atomic force microscope is developed. Nanomechanical mapping (NM) is needed to investigate, for example, dynamic evolution of the nanomechanical distribution of the sample-provided that the mapping is fast enough. The throughput of conventional NM methods, however, is inherently limited by the continuous scanning involved where the probe visits each sampling location continuously. Thus, we propose to significantly reduce the number of measurements through discrete mapping where only discrete sampling locations of interests are visited and measured. An online-searching learning-based technique is utilized to achieve rapid probe engagement and withdrawal with the interaction force minimized at each sampling location. Then, a control-based nanoindentation measurement technique is used to quickly acquire the nanomechanical property at each location, over frequencies that can be chosen arbitrarily in a broad range. Finally, a decomposition-based learning approach is explored to achieve rapid probe transitions between the sampling locations. The proposed technique is demonstrated through experiments using a Polydimethylsiloxane (PDMS) sample and a PDMS-epoxy sample as examples.
Collapse
Affiliation(s)
- Jingren Wang
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States of America
| | | | | | | | | |
Collapse
|
19
|
Krce L, Šprung M, Rončević T, Maravić A, Čikeš Čulić V, Blažeka D, Krstulović N, Aviani I. Probing the Mode of Antibacterial Action of Silver Nanoparticles Synthesized by Laser Ablation in Water: What Fluorescence and AFM Data Tell Us. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1040. [PMID: 32485869 PMCID: PMC7352602 DOI: 10.3390/nano10061040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
We aim to elucidate the mode of antibacterial action of the laser-synthesized silver colloid against Escherichia coli. Membrane integrity was studied by flow cytometry, while the strain viability of the treated culture was determined by plating. The spectrofluorometry was used to obtain the time development of the reactive oxygen species (ROS) inside the nanoparticle-treated bacterial cells. An integrated atomic force and bright-field/fluorescence microscopy system enabled the study of the cell morphology, Young modulus, viability, and integrity before and during the treatment. Upon lethal treatment, not all bacterial cells were shown to be permeabilized and have mostly kept their morphology with an indication of cell lysis. Young modulus of untreated cells was shown to be distinctly bimodal, with randomly distributed softer parts, while treated cells exhibited exponential softening of the stiffer parts in time. Silver nanoparticles and bacteria have shown a masking effect on the raw fluorescence signal through absorbance and scattering. The contribution of cellular ROS in the total fluorescence signal was resolved and it was proven that the ROS level inside the lethally treated cells is not significant. It was found that the laser-synthesized silver nanoparticles mode of antibacterial action includes reduction of the cell's Young modulus in time and subsequently the cell leakage.
Collapse
Affiliation(s)
- Lucija Krce
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia;
| | - Matilda Šprung
- Department of Chemistry, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia;
| | - Tomislav Rončević
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (T.R.); (A.M.)
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (T.R.); (A.M.)
| | - Vedrana Čikeš Čulić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, Šoltanska ulica 2, 21000 Split, Croatia;
| | - Damjan Blažeka
- Institute of Physics, Bijenička cesta 46, 10000 Zagreb, Croatia; (D.B.); (N.K.)
| | - Nikša Krstulović
- Institute of Physics, Bijenička cesta 46, 10000 Zagreb, Croatia; (D.B.); (N.K.)
| | - Ivica Aviani
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia;
| |
Collapse
|
20
|
Lipoprotein Lpp regulates the mechanical properties of the E. coli cell envelope. Nat Commun 2020; 11:1789. [PMID: 32286264 PMCID: PMC7156740 DOI: 10.1038/s41467-020-15489-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022] Open
Abstract
The mechanical properties of the cell envelope in Gram-negative bacteria are controlled by the peptidoglycan, the outer membrane, and the proteins interacting with both layers. In Escherichia coli, the lipoprotein Lpp provides the only covalent crosslink between the outer membrane and the peptidoglycan. Here, we use single-cell atomic force microscopy and genetically engineered strains to study the contribution of Lpp to cell envelope mechanics. We show that Lpp contributes to cell envelope stiffness in two ways: by covalently connecting the outer membrane to the peptidoglycan, and by controlling the width of the periplasmic space. Furthermore, mutations affecting Lpp function substantially increase bacterial susceptibility to the antibiotic vancomycin, indicating that Lpp-dependent effects can affect antibacterial drug efficacy. Lipoprotein Lpp provides a covalent crosslink between the outer membrane and the peptidoglycan in E. coli. Here, the authors use atomic force microscopy to show that Lpp contributes to cell envelope stiffness by covalently connecting the two layers and by controlling the width of the periplasmic space.
Collapse
|
21
|
Tamayo L, Melo F, Caballero L, Hamm E, Díaz M, Leal MS, Guiliani N, Urzúa MD. Does Bacterial Elasticity Affect Adhesion to Polymer Fibers? ACS APPLIED MATERIALS & INTERFACES 2020; 12:14507-14517. [PMID: 32118396 DOI: 10.1021/acsami.9b21060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The factors governing bacterial adhesion to substrates with different topographies are still not fully identified. The present work seeks to elucidate for the first time and with quantitative data the roles of bacterial elasticity and shape and substrate topography in bacterial adhesion. With this aim, populations of three bacterial species, P. aeruginosa DSM 22644, B. subtilis DSM 10, and S. aureus DSM 20231 adhered on flat substrates covered with electrospun polycaprolactone fibers of different diameters ranging from 0.4 to 5.5 μm are counted. Populations of bacterial cells are classified according to the preferred binding sites of the bacteria to the substrate. The colloidal probe technique was used to assess the stiffness of the bacteria and bacteria-polymer surface adhesion energy. A theoretical model is developed to interpret the observed populations in terms of a balance between stiffness and adhesion energy of the bacteria. The model, which also incorporates the radius of the fiber and the size and shape of the bacteria, predicts increased adhesion for a low level of stiffness and for a larger number of available bacteria-fiber contact points. Te adhesive propensity of bacteria depends in a nontrivial way on the radius of the fibers due to the random arrangement of fibers.
Collapse
Affiliation(s)
- Laura Tamayo
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago 3425, Chile
| | - Francisco Melo
- Departamento Física, Facultad de Ciencia, Universidad de Santiago de Chile, Avenida Ecuador, Santiago 3493, Chile
- Center for Soft Matter Research, SMAT-C, Avenida Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Leonardo Caballero
- Departamento Física, Facultad de Ciencia, Universidad de Santiago de Chile, Avenida Ecuador, Santiago 3493, Chile
- Center for Soft Matter Research, SMAT-C, Avenida Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Eugenio Hamm
- Departamento Física, Facultad de Ciencia, Universidad de Santiago de Chile, Avenida Ecuador, Santiago 3493, Chile
| | - M Díaz
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Ñuñoa, Santiago 3425, Chile
| | - M S Leal
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago 3425, Chile
| | - N Guiliani
- Laboratorio de Comunicación Bacteriana, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Ñuñoa, Santiago 3425, Chile
| | - M D Urzúa
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago 3425, Chile
| |
Collapse
|
22
|
Rojas ER. The Mechanical Properties of Bacteria and Why they Matter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1267:1-14. [PMID: 32894474 DOI: 10.1007/978-3-030-46886-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
I review recent techniques to measure the mechanical properties of bacterial cells and their subcellular components, and then discuss what these techniques have revealed about the constitutive mechanical properties of whole bacterial cells and subcellular material, as well as the molecular basis for these properties.
Collapse
Affiliation(s)
- Enrique R Rojas
- Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
23
|
Nguyen DHK, Loebbe C, Linklater DP, Xu X, Vrancken N, Katkus T, Juodkazis S, Maclaughlin S, Baulin V, Crawford RJ, Ivanova EP. The idiosyncratic self-cleaning cycle of bacteria on regularly arrayed mechano-bactericidal nanostructures. NANOSCALE 2019; 11:16455-16462. [PMID: 31451827 DOI: 10.1039/c9nr05923g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanostructured mechano-bactericidal surfaces represent a promising technology to prevent the incidence of microbial contamination on a variety of surfaces and to avoid bacterial infection, particularly with antibiotic resistant strains. In this work, a regular array of silicon nanopillars of 380 nm height and 35 nm diameter was used to study the release of bacterial cell debris off the surface, following inactivation of the cell due to nanostructure-induced rupture. It was confirmed that substantial bactericidal activity was achieved against Gram-negative Pseudomonas aeruginosa (85% non-viable cells) and only modest antibacterial activity towards Staphylococcus aureus (8% non-viable cells), as estimated by measuring the proportions of viable and non-viable cells via fluorescence imaging. In situ time-lapse AFM scans of the bacteria-nanopillar interface confirmed the removal rate of the dead P. aeruginosa cells from the surface to be approximately 19 minutes per cell, and approximately 11 minutes per cell for dead S. aureus cells. These results highlight that the killing and dead cell detachment cycle for bacteria on these substrata are dependant on the bacterial species and the surface architecture studied and will vary when these two parameters are altered. The outcomes of this work will enhance the current understanding of antibacterial nanostructures, and impact upon the development and implementation of next-generation implants and medical devices.
Collapse
Affiliation(s)
- Duy H K Nguyen
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia.
| | | | - Denver P Linklater
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia. and Centre for Microphotonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - XiuMei Xu
- IMEC, Kapeldreef 75, Leuven 3001, Belgium
| | - Nandi Vrancken
- IMEC, Kapeldreef 75, Leuven 3001, Belgium and Research Group Electrochemical and Surface Engineering (SURF), Dept. of Materials & Chemistry (MACH), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Elsene, Belgium
| | - Tomas Katkus
- Centre for Microphotonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Saulius Juodkazis
- Centre for Microphotonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | | | - Vladimir Baulin
- Departament d'Enginyeria Química, Universitat Rovira i Virgili Tarragona, Spain
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia.
| | - Elena P Ivanova
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
24
|
Araújo GRDS, Viana NB, Gómez F, Pontes B, Frases S. The mechanical properties of microbial surfaces and biofilms. ACTA ACUST UNITED AC 2019; 5:100028. [PMID: 32743144 PMCID: PMC7389442 DOI: 10.1016/j.tcsw.2019.100028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
Abstract
Microbes can modify their surface structure as an adaptive mechanism for survival and dissemination in the environment or inside the host. Altering their ability to respond to mechanical stimuli is part of this adaptive process. Since the 1990s, powerful micromanipulation tools have been developed that allow mechanical studies of microbial cell surfaces, exploring little known aspects of their dynamic behavior. This review concentrates on the study of mechanical and rheological properties of bacteria and fungi, focusing on their cell surface dynamics and biofilm formation.
Collapse
Affiliation(s)
- Glauber R de S Araújo
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Nathan B Viana
- Laboratório de Pinças Óticas (LPO-COPEA), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fran Gómez
- Laboratório de Pinças Óticas (LPO-COPEA), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruno Pontes
- Laboratório de Pinças Óticas (LPO-COPEA), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
25
|
Elbourne A, Chapman J, Gelmi A, Cozzolino D, Crawford RJ, Truong VK. Bacterial-nanostructure interactions: The role of cell elasticity and adhesion forces. J Colloid Interface Sci 2019; 546:192-210. [PMID: 30921674 DOI: 10.1016/j.jcis.2019.03.050] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
The attachment of single-celled organisms, namely bacteria and fungi, to abiotic surfaces is of great interest to both the scientific and medical communities. This is because the interaction of such cells has important implications in a range of areas, including biofilm formation, biofouling, antimicrobial surface technologies, and bio-nanotechnologies, as well as infection development, control, and mitigation. While central to many biological phenomena, the factors which govern microbial surface attachment are still not fully understood. This lack of understanding is a direct consequence of the complex nature of cell-surface interactions, which can involve both specific and non-specific interactions. For applications involving micro- and nano-structured surfaces, developing an understanding of such phenomenon is further complicated by the diverse nature of surface architectures, surface chemistry, variation in cellular physiology, and the intended technological output. These factors are extremely important to understand in the emerging field of antibacterial nanostructured surfaces. The aim of this perspective is to re-frame the discussion surrounding the mechanism of nanostructured-microbial surface interactions. Broadly, the article reviews our current understanding of these phenomena, while highlighting the knowledge gaps surrounding the adhesive forces which govern bacterial-nanostructure interactions and the role of cell membrane rigidity in modulating surface activity. The roles of surface charge, cell rigidity, and cell-surface adhesion force in bacterial-surface adsorption are discussed in detail. Presently, most studies have overlooked these areas, which has left many questions unanswered. Further, this perspective article highlights the numerous experimental issues and misinterpretations which surround current studies of antibacterial nanostructured surfaces.
Collapse
Affiliation(s)
- Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia.
| | - James Chapman
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| | - Amy Gelmi
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia
| | - Daniel Cozzolino
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| | - Vi Khanh Truong
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| |
Collapse
|
26
|
Qu Z, Meredith JC. The atypically high modulus of pollen exine. J R Soc Interface 2018; 15:rsif.2018.0533. [PMID: 30232244 DOI: 10.1098/rsif.2018.0533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/17/2018] [Indexed: 01/26/2023] Open
Abstract
Sporopollenin, the polymer comprising the exine (outer solid shell) of pollen, is recognized as one of the most chemically and mechanically stable naturally occurring organic substances. The elastic modulus of sporopollenin is of great importance to understanding the adhesion, transport and protective functions of pollen grains. In addition, this fundamental mechanical property is of significant interest in using pollen exine as a material for drug delivery, reinforcing fillers, sensors and adhesives. Yet, the literature reports of the elastic modulus of sporopollenin are very limited. We provide the first report of the elastic modulus of sporopollenin from direct indentation of pollen particles of three plant species: ragweed (Ambrosia artemisiifolia), pecan (Carya illinoinensis) and Kentucky bluegrass (Poa pratensis). The modulus was determined with atomic force microscopy by using direct nanomechanical mapping of the pollen shell surface. The moduli were atypically high for non-crystalline organic biomaterials, with average values of 16 ± 2.5 GPa (ragweed), 9.5 ± 2.3 GPa (pecan) and 16 ± 4.0 GPa (Kentucky bluegrass). The amorphous pollen exine has a modulus exceeding known non-crystalline biomaterials, such as lignin (6.7 GPa) and actin (1.8 GPa). In addition to native pollen, we have investigated the effects of exposure to a common preparative base-acid chemical treatment and elevated humidity on the modulus. Base-acid treatment reduced the ragweed modulus by up to 58% and water vapour exposure at 90% relative humidity reduced the modulus by 54% (pecan) and 72% (Kentucky bluegrass). These results are in agreement with recently published estimates of the modulus of base-acid-treated ragweed pollen of 8 GPa from fitting to mechanical properties of ragweed pollen-epoxy composites.
Collapse
Affiliation(s)
- Zihao Qu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - J Carson Meredith
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
27
|
Patel AN, Kranz C. (Multi)functional Atomic Force Microscopy Imaging. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:329-350. [PMID: 29490193 DOI: 10.1146/annurev-anchem-061417-125716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Incorporating functionality to atomic force microscopy (AFM) to obtain physical and chemical information has always been a strong focus in AFM research. Modifying AFM probes with specific molecules permits accessibility of chemical information via specific reactions and interactions. Fundamental understanding of molecular processes at the solid/liquid interface with high spatial resolution is essential to many emerging research areas. Nanoscale electrochemical imaging has emerged as a complementary technique to advanced AFM techniques, providing information on electrochemical interfacial processes. While this review presents a brief introduction to advanced AFM imaging modes, such as multiparametric AFM and topography recognition imaging, the main focus herein is on electrochemical imaging via hybrid AFM-scanning electrochemical microscopy. Recent applications and the challenges associated with such nanoelectrochemical imaging strategies are presented.
Collapse
Affiliation(s)
- Anisha N Patel
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm 89081, Germany;
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm 89081, Germany;
| |
Collapse
|
28
|
Mathelié-Guinlet M, Grauby-Heywang C, Martin A, Février H, Moroté F, Vilquin A, Béven L, Delville MH, Cohen-Bouhacina T. Detrimental impact of silica nanoparticles on the nanomechanical properties of Escherichia coli, studied by AFM. J Colloid Interface Sci 2018; 529:53-64. [PMID: 29883930 DOI: 10.1016/j.jcis.2018.05.098] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 12/17/2022]
Abstract
Despite great innovative and technological promises, nanoparticles (NPs) can ultimately exert an antibacterial activity by affecting the cell envelope integrity. This envelope, by conferring the cell its rigidity and protection, is intimately related to the mechanical behavior of the bacterial surface. Depending on their size, surface chemistry, shape, NPs can induce damages to the cell morphology and structure among others, and are therefore expected to alter the overall mechanical properties of bacteria. Although Atomic Force Microscopy (AFM) stands as a powerful tool to study biological systems, with high resolution and in near physiological environment, it has rarely been applied to investigate at the same time both morphological and mechanical degradations of bacteria upon NPs treatment. Consequently, this study aims at quantifying the impact of the silica NPs (SiO2-NPs) on the mechanical properties of E. coli cells after their exposure, and relating it to their toxic activity under a critical diameter. Cell elasticity was calculated by fitting the force curves with the Hertz model, and was correlated with the morphological study. SiO2-NPs of 100 nm diameter did not trigger any significant change in the Young modulus of E. coli, in agreement with the bacterial intact morphology and membrane structure. On the opposite, the 4 nm diameter SiO2-NPs did induce a significant decrease in E. coli Young modulus, mainly associated with the disorganization of lipopolysaccharides in the outer membrane and the permeation of the underlying peptidoglycan layer. The subsequent toxic behavior of these NPs is finally confirmed by the presence of membrane residues, due to cell lysis, exhibiting typical adhesion features.
Collapse
Affiliation(s)
- Marion Mathelié-Guinlet
- Univ. Bordeaux, CNRS, LOMA, UMR5798, 351 cours de la Libération, 33400 Talence, France; Univ. Bordeaux, CNRS, ICMCB, UMR5026, 87 avenue du Dr Albert Schweitzer, 33608 Pessac, France
| | | | - Axel Martin
- Univ. Bordeaux, CNRS, LOMA, UMR5798, 351 cours de la Libération, 33400 Talence, France
| | - Hugo Février
- Univ. Bordeaux, CNRS, LOMA, UMR5798, 351 cours de la Libération, 33400 Talence, France
| | - Fabien Moroté
- Univ. Bordeaux, CNRS, LOMA, UMR5798, 351 cours de la Libération, 33400 Talence, France
| | - Alexandre Vilquin
- Univ. Bordeaux, CNRS, LOMA, UMR5798, 351 cours de la Libération, 33400 Talence, France
| | - Laure Béven
- Univ. Bordeaux, INRA, UMR 1332 Biologie du Fruit et Pathologie, 33882 Villenave-d'Ornon, France
| | - Marie-Hélène Delville
- Univ. Bordeaux, CNRS, ICMCB, UMR5026, 87 avenue du Dr Albert Schweitzer, 33608 Pessac, France.
| | | |
Collapse
|
29
|
Angeloni L, Reggente M, Passeri D, Natali M, Rossi M. Identification of nanoparticles and nanosystems in biological matrices with scanning probe microscopy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1521. [PMID: 29665287 DOI: 10.1002/wnan.1521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/26/2018] [Accepted: 03/10/2018] [Indexed: 01/22/2023]
Abstract
Identification of nanoparticles and nanosystems into cells and biological matrices is a hot research topic in nanobiotechnologies. Because of their capability to map physical properties (mechanical, electric, magnetic, chemical, or optical), several scanning probe microscopy based techniques have been proposed for the subsurface detection of nanomaterials in biological systems. In particular, atomic force microscopy (AFM) can be used to reveal stiff nanoparticles in cells and other soft biomaterials by probing the sample mechanical properties through the acquisition of local indentation curves or through the combination of ultrasound-based methods, like contact resonance AFM (CR-AFM) or scanning near field ultrasound holography. Magnetic force microscopy can detect magnetic nanoparticles and other magnetic (bio)materials in nonmagnetic biological samples, while electric force microscopy, conductive AFM, and Kelvin probe force microscopy can reveal buried nanomaterials on the basis of the differences between their electric properties and those of the surrounding matrices. Finally, scanning near field optical microscopy and tip-enhanced Raman spectroscopy can visualize buried nanostructures on the basis of their optical and chemical properties. Despite at a still early stage, these methods are promising for detection of nanomaterials in biological systems as they could be truly noninvasive, would not require destructive and time-consuming specific sample preparation, could be performed in vitro, on alive samples and in water or physiological environment, and by continuously imaging the same sample could be used to dynamically monitor the diffusion paths and interaction mechanisms of nanomaterials into cells and biological systems. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Livia Angeloni
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Melania Reggente
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Daniele Passeri
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Marco Natali
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy.,Research Center for Nanotechnology Applied to Engineering of Sapienza University of Rome (CNIS), Rome, Italy
| |
Collapse
|
30
|
A Multi-scale Biophysical Approach to Develop Structure-Property Relationships in Oral Biofilms. Sci Rep 2018; 8:5691. [PMID: 29632310 PMCID: PMC5890245 DOI: 10.1038/s41598-018-23798-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/19/2018] [Indexed: 11/09/2022] Open
Abstract
Over the last 5–10 years, optical coherence tomography (OCT) and atomic force microscopy (AFM) have been individually applied to monitor the morphological and mechanical properties of various single-species biofilms respectively. This investigation looked to combine OCT and AFM as a multi-scale approach to understand the role sucrose concentration and age play in the morphological and mechanical properties of oral, microcosm biofilms, in-vitro. Biofilms with low (0.1% w/v) and high (5% w/v) sucrose concentrations were grown on hydroxyapatite (HAP) discs from pooled human saliva and incubated for 3 and 5 days. Distinct mesoscale features of biofilms such as regions of low and high extracellular polymeric substances (EPS) were identified through observations made by OCT. Mechanical analysis revealed increasing sucrose concentration decreased Young’s modulus and increased cantilever adhesion (p < 0.0001), relative to the biofilm. Increasing age was found to decrease adhesion only (p < 0.0001). This was due to mechanical interactions between the indenter and the biofilm increasing as a function of increased EPS content, due to increasing sucrose. An expected decrease in EPS cantilever contact decreased adhesion due to bacteria proliferation with biofilm age. The application OCT and AFM revealed new structure-property relationships in oral biofilms, unattainable if the techniques were used independently.
Collapse
|
31
|
Benforte FC, Colonnella MA, Ricardi MM, Solar Venero EC, Lizarraga L, López NI, Tribelli PM. Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis. PLoS One 2018; 13:e0192559. [PMID: 29415056 PMCID: PMC5802925 DOI: 10.1371/journal.pone.0192559] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/25/2018] [Indexed: 11/19/2022] Open
Abstract
Psychrotroph microorganisms have developed cellular mechanisms to cope with cold stress. Cell envelopes are key components for bacterial survival. Outer membrane is a constituent of Gram negative bacterial envelopes, consisting of several components, such as lipopolysaccharides (LPS). In this work we investigated the relevance of envelope characteristics for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis by analyzing a mini Tn5 wapH mutant strain, encoding a core LPS glycosyltransferase. Our results showed that wapH strain is impaired to grow under low temperature but not for cold survival. The mutation in wapH, provoked a strong aggregative phenotype and modifications of envelope nanomechanical properties such as lower flexibility and higher turgor pressure, cell permeability and surface area to volume ratio (S/V). Changes in these characteristics were also observed in the wild type strain grown at different temperatures, showing higher cell flexibility but lower turgor pressure under cold conditions. Cold shock experiments indicated that an acclimation period in the wild type is necessary for cell flexibility and S/V ratio adjustments. Alteration in cell-cell interaction capabilities was observed in wapH strain. Mixed cells of wild type and wapH strains, as well as those of the wild type strain grown at different temperatures, showed a mosaic pattern of aggregation. These results indicate that wapH mutation provoked marked envelope alterations showing that LPS core conservation appears as a novel essential feature for active growth under cold conditions.
Collapse
Affiliation(s)
- Florencia C. Benforte
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria A. Colonnella
- Centro de Investigaciones en Bionanociencias, CONICET, Buenos Aires, Argentina
| | - Martiniano M. Ricardi
- Instituto de Fisiología, Biología Molecular y Neurociencias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Leonardo Lizarraga
- Centro de Investigaciones en Bionanociencias, CONICET, Buenos Aires, Argentina
| | - Nancy I. López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- IQUIBICEN, CONICET, Buenos Aires, Argentina
- * E-mail: (NIL); (PMT)
| | - Paula M. Tribelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- IQUIBICEN, CONICET, Buenos Aires, Argentina
- * E-mail: (NIL); (PMT)
| |
Collapse
|
32
|
Dinarelli S, Girasole M, Longo G. Methods for Atomic Force Microscopy of Biological and Living Specimens. Methods Mol Biol 2018; 1814:529-539. [PMID: 29956253 DOI: 10.1007/978-1-4939-8591-3_31] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two main precautions must be taken into account to obtain high-resolution morphological and nanomechanical characterization of biological specimens with an atomic force microscope: the tip-sample interaction and the sample-substrate adhesion. In this chapter we discuss the necessary steps for a correct preparation of three types of biological samples: erythrocytes, bacteria, and osteoblasts. The main goal is to deliver reproducible protocols to produce good cellular adhesion and minimizing the morphological alterations of the specimens.
Collapse
Affiliation(s)
- Simone Dinarelli
- Istituto di Struttura della Materia ISM - CNR, Via del Fosso del Cavaliere 100, Rome, Italy
| | - Marco Girasole
- Istituto di Struttura della Materia ISM - CNR, Via del Fosso del Cavaliere 100, Rome, Italy
| | - Giovanni Longo
- Istituto di Struttura della Materia ISM - CNR, Via del Fosso del Cavaliere 100, Rome, Italy.
| |
Collapse
|
33
|
Li T, Zou Q. Simultaneous topography imaging and broadband nanomechanical mapping on atomic force microscope. NANOTECHNOLOGY 2017; 28:505502. [PMID: 29087357 DOI: 10.1088/1361-6528/aa973a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, an approach is proposed to achieve simultaneous imaging and broadband nanomechanical mapping of soft materials in air by using an atomic force microscope. Simultaneous imaging and nanomechanical mapping are needed, for example, to correlate the morphological and mechanical evolutions of the sample during dynamic phenomena such as the cell endocytosis process. Current techniques for nanomechanical mapping, however, are only capable of capturing static elasticity of the material, or the material viscoelasticity in a narrow frequency band around the resonant frequency(ies) of the cantilever used, not competent for broadband nanomechanical mapping, nor acquiring topography image of the sample simultaneously. These limitations are addressed in this work by enabling the augmentation of an excitation force stimuli of rich frequency spectrum for nanomechanical mapping in the imaging process. Kalman-filtering technique is exploited to decouple and split the mixed signals for imaging and mapping, respectively. Then the sample indentation generated is quantified online via a system-inversion method, and the effects of the indentation generated and the topography tracking error on the topography quantification are taken into account. Moreover, a data-driven feedforward-feedback control is utilized to track the sample topography. The proposed approach is illustrated through experimental implementation on a polydimethylsiloxane sample with a pre-fabricated pattern.
Collapse
Affiliation(s)
- Tianwei Li
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States of America
| | | |
Collapse
|
34
|
Wang H, Wilksch JJ, Chen L, Tan JWH, Strugnell RA, Gee ML. Influence of Fimbriae on Bacterial Adhesion and Viscoelasticity and Correlations of the Two Properties with Biofilm Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:100-106. [PMID: 27959542 DOI: 10.1021/acs.langmuir.6b03764] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The surface polymers of bacteria determine the ability of bacteria to adhere to a substrate for colonization, which is an essential step for a variety of microbial processes, such as biofilm formation and biofouling. Capsular polysaccharides and fimbriae are two major components on a bacterial surface, which are critical for mediating cell-surface interactions. Adhesion and viscoelasticity of bacteria are two major physical properties related to bacteria-surface interactions. In this study, we employed atomic force microscopy (AFM) to interrogate how the adhesion work and the viscoelasticity of a bacterial pathogen, Klebsiella pneumoniae, influence biofilm formation. To do this, the wild-type, type 3 fimbriae-deficient, and type 3 fimbriae-overexpressed K. pneumoniae strains have been investigated in an aqueous environment. The results show that the measured adhesion work is positively correlated to biofilm formation; however, the viscoelasticity is not correlated to biofilm formation. This study indicates that AFM-based adhesion measurements of bacteria can be used to evaluate the function of bacterial surface polymers in biofilm formation and to predict the ability of bacterial biofilm formation.
Collapse
Affiliation(s)
- Huabin Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714, China
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences , Shanghai 201800, China
| | | | - Ligang Chen
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714, China
| | | | | | | |
Collapse
|
35
|
Mularski A, Separovic F. Atomic Force Microscopy Studies of the Interaction of Antimicrobial Peptides with Bacterial Cells. Aust J Chem 2017. [DOI: 10.1071/ch16425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antimicrobial peptides (AMPs) are promising therapeutic alternatives to conventional antibiotics. Many AMPs are membrane-active but their mode of action in killing bacteria or in inhibiting their growth remains elusive. Recent studies indicate the mechanism of action depends on peptide structure and lipid components of the bacterial cell membrane. Owing to the complexity of working with living cells, most of these studies have been conducted with synthetic membrane systems, which neglect the possible role of bacterial surface structures in these interactions. In recent years, atomic force microscopy has been utilized to study a diverse range of biological systems under non-destructive, physiologically relevant conditions that yield in situ biophysical measurements of living cells. This approach has been applied to the study of AMP interaction with bacterial cells, generating data that describe how the peptides modulate various biophysical behaviours of individual bacteria, including the turgor pressure, cell wall elasticity, bacterial capsule thickness, and organization of bacterial adhesins.
Collapse
|
36
|
Yun X, Tang M, Yang Z, Wilksch JJ, Xiu P, Gao H, Zhang F, Wang H. Interrogation of drug effects on HeLa cells by exploiting new AFM mechanical biomarkers. RSC Adv 2017. [DOI: 10.1039/c7ra06233h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
New AFM mechanical biomarkers including cell brush length, adhesion work and the factor of viscosity are discovered for drug assays.
Collapse
Affiliation(s)
- Xiaoling Yun
- School of Life Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology
| | - Mingjie Tang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing 400714
- China
| | - Zhongbo Yang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing 400714
- China
| | - Jonathan J. Wilksch
- Department of Microbiology and Immunology
- University of Melbourne
- Parkville
- Australia
| | - Peng Xiu
- Department of Engineering Mechanics
- Soft Matter Research Center
- Zhejiang University
- Hangzhou 310027
- China
| | - Haiyang Gao
- School of Life Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
- Department of Biomedical Engineering
| | - Feng Zhang
- School of Life Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- China
| | - Huabin Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing 400714
- China
| |
Collapse
|
37
|
A nanomechanical study of the effects of colistin on the Klebsiella pneumoniae AJ218 capsule. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:351-361. [DOI: 10.1007/s00249-016-1178-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 01/30/2023]
|
38
|
Knittel P, Mizaikoff B, Kranz C. Simultaneous Nanomechanical and Electrochemical Mapping: Combining Peak Force Tapping Atomic Force Microscopy with Scanning Electrochemical Microscopy. Anal Chem 2016; 88:6174-8. [DOI: 10.1021/acs.analchem.6b01086] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Peter Knittel
- Institute
of Analytical and
Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Boris Mizaikoff
- Institute
of Analytical and
Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Christine Kranz
- Institute
of Analytical and
Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
39
|
Smolyakov G, Formosa-Dague C, Severac C, Duval R, Dague E. High speed indentation measures by FV, QI and QNM introduce a new understanding of bionanomechanical experiments. Micron 2016; 85:8-14. [DOI: 10.1016/j.micron.2016.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 12/31/2022]
|
40
|
Mularski A, Wilksch JJ, Hanssen E, Strugnell RA, Separovic F. Atomic force microscopy of bacteria reveals the mechanobiology of pore forming peptide action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1091-8. [DOI: 10.1016/j.bbamem.2016.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 11/26/2022]
|
41
|
Senapati S, Lindsay S. Recent Progress in Molecular Recognition Imaging Using Atomic Force Microscopy. Acc Chem Res 2016; 49:503-10. [PMID: 26934674 DOI: 10.1021/acs.accounts.5b00533] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Atomic force microscopy (AFM) is an extremely powerful tool in the field of bionanotechnology because of its ability to image single molecules and make measurements of molecular interaction forces with piconewton sensitivity. It works in aqueous media, enabling studies of molecular phenomenon taking place under physiological conditions. Samples can be imaged in their near-native state without any further modifications such as staining or tagging. The combination of AFM imaging with the force measurement added a new feature to the AFM technique, that is, molecular recognition imaging. Molecular recognition imaging enables mapping of specific interactions between two molecules (one attached to the AFM tip and the other to the imaging substrate) by generating simultaneous topography and recognition images (TREC). Since its discovery, the recognition imaging technique has been successfully applied to different systems such as antibody-protein, aptamer-protein, peptide-protein, chromatin, antigen-antibody, cells, and so forth. Because the technique is based on specific binding between the ligand and receptor, it has the ability to detect a particular protein in a mixture of proteins or monitor a biological phenomenon in the native physiological state. One key step for recognition imaging technique is the functionalization of the AFM tips (generally, silicon, silicon nitrides, gold, etc.). Several different functionalization methods have been reported in the literature depending on the molecules of interest and the material of the tip. Polyethylene glycol is routinely used to provide flexibility needed for proper binding as a part of the linker that carries the affinity molecule. Recently, a heterofunctional triarm linker has been synthesized and successfully attached with two different affinity molecules. This novel linker, when attached to AFM tip, helped to detect two different proteins simultaneously from a mixture of proteins using a so-called "two-color" recognition image. Biological phenomena in nature often involve multimolecular interactions, and this new linker could be ideal for studying them using AFM recognition imaging. It also has the potential to be used extensively in the diagnostics technique. This Account includes fundamentals behind AFM recognition imaging, a brief discussion on tip functionalization, recent advancements, and future directions and possibilities.
Collapse
Affiliation(s)
- Subhadip Senapati
- Biodesign Institute, ‡Department of Chemistry and Biochemistry, and §Department of
Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Stuart Lindsay
- Biodesign Institute, ‡Department of Chemistry and Biochemistry, and §Department of
Physics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
42
|
Zhong J, Yan J. Seeing is believing: atomic force microscopy imaging for nanomaterial research. RSC Adv 2016. [DOI: 10.1039/c5ra22186b] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Atomic force microscopy can image nanomaterial properties such as the topography, elasticity, adhesion, friction, electrical properties, and magnetism.
Collapse
Affiliation(s)
- Jian Zhong
- College of Food Science & Technology
- Shanghai Ocean University
- Shanghai 201306
- People's Republic of China
| | - Juan Yan
- College of Food Science & Technology
- Shanghai Ocean University
- Shanghai 201306
- People's Republic of China
| |
Collapse
|
43
|
Knittel P, Bibikova O, Kranz C. Challenges in nanoelectrochemical and nanomechanical studies of individual anisotropic gold nanoparticles. Faraday Discuss 2016; 193:353-369. [PMID: 27711902 DOI: 10.1039/c6fd00128a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The characterization of nanoparticles and the correlation of physical properties such as size and shape to their (electro)chemical properties is an emerging field, which may facilitate future optimization and tuning of devices involving nanoparticles. This requires the investigation of individual particles rather than obtaining averaged information on large ensembles. Here, we present atomic force – scanning electrochemical microscopy (AFM-SECM) measurements of soft conductive PDMS substrates modified with gold nanostars (i.e., multibranched Au nanoparticles) in peak force tapping mode, which next to the electrochemical characterization provides information on the adhesion, deformation properties, and Young's modulus of the sample. AFM-SECM probes with integrated nanodisc electrodes (radii < 50 nm) have been used for these measurements. Most studies attempting to map individual nanoparticles have to date been performed at spherical nanoparticles, rather than highly active asymmetric gold nanoparticles. Consequently, this study discusses challenges during the nanocharacterization of individual anisotropic gold nanostars.
Collapse
Affiliation(s)
- P. Knittel
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- 89081 Ulm
- Germany
| | - O. Bibikova
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- 89081 Ulm
- Germany
| | - C. Kranz
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- 89081 Ulm
- Germany
| |
Collapse
|
44
|
Loskill P, Pereira PM, Jung P, Bischoff M, Herrmann M, Pinho MG, Jacobs K. Reduction of the peptidoglycan crosslinking causes a decrease in stiffness of the Staphylococcus aureus cell envelope. Biophys J 2015; 107:1082-1089. [PMID: 25185544 DOI: 10.1016/j.bpj.2014.07.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/30/2014] [Accepted: 07/15/2014] [Indexed: 11/28/2022] Open
Abstract
We have used atomic-force microscopy (AFM) to probe the effect of peptidoglycan crosslinking reduction on the elasticity of the Staphylococcus aureus cell wall, which is of particular interest as a target for antimicrobial chemotherapy. Penicillin-binding protein 4 (PBP4) is a nonessential transpeptidase, required for the high levels of peptidoglycan crosslinking characteristic of S. aureus. Importantly, this protein is essential for β-lactam resistance in community-acquired, methicillin-resistant S. aureus (MRSA) strains but not in hospital-acquired MRSA strains. Using AFM in a new mode for recording force/distance curves, we observed that the absence of PBP4, and the concomitant reduction of the peptidoglycan crosslinking, resulted in a reduction in stiffness of the S. aureus cell wall. Importantly, the reduction in cell wall stiffness in the absence of PBP4 was observed both in community-acquired and hospital-acquired MRSA strains, indicating that high levels of peptidoglycan crosslinking modulate the overall structure and mechanical properties of the S. aureus cell envelope in both types of clinically relevant strains. Additionally, we were able to show that the applied method enables the separation of cell wall properties and turgor pressure.
Collapse
Affiliation(s)
- Peter Loskill
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Pedro M Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Philipp Jung
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany
| | - Mariana G Pinho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Karin Jacobs
- Experimental Physics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
45
|
Diao M, Nguyen TA, Taran E, Mahler SM, Nguyen AV. Effect of energy source, salt concentration and loading force on colloidal interactions between Acidithiobacillus ferrooxidans cells and mineral surfaces. Colloids Surf B Biointerfaces 2015; 132:271-80. [DOI: 10.1016/j.colsurfb.2015.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 11/28/2022]
|
46
|
Mularski A, Wilksch JJ, Wang H, Hossain MA, Wade JD, Separovic F, Strugnell RA, Gee ML. Atomic Force Microscopy Reveals the Mechanobiology of Lytic Peptide Action on Bacteria. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6164-71. [PMID: 25978768 DOI: 10.1021/acs.langmuir.5b01011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Increasing rates of antimicrobial-resistant medically important bacteria require the development of new, effective therapeutics, of which antimicrobial peptides (AMPs) are among the promising candidates. Many AMPs are membrane-active, but their mode of action in killing bacteria or in inhibiting their growth remains elusive. This study used atomic force microscopy (AFM) to probe the mechanobiology of a model AMP (a derivative of melittin) on living Klebsiella pneumoniae bacterial cells. We performed in situ biophysical measurements to understand how the melittin peptide modulates various biophysical behaviors of individual bacteria, including the turgor pressure, cell wall elasticity, and bacterial capsule thickness and organization. Exposure of K. pneumoniae to the peptide had a significant effect on the turgor pressure and Young's modulus of the cell wall. The turgor pressure increased upon peptide addition followed by a later decrease, suggesting that cell lysis occurred and pressure was lost through destruction of the cell envelope. The Young's modulus also increased, indicating that interaction with the peptide increased the rigidity of the cell wall. The bacterial capsule did not prevent cell lysis by the peptide, and surprisingly, the capsule appeared unaffected by exposure to the peptide, as capsule thickness and inferred organization were within the control limits, determined by mechanical measurements. These data show that AFM measurements may provide valuable insights into the physical events that precede bacterial lysis by AMPs.
Collapse
Affiliation(s)
- Anna Mularski
- †School of Chemistry, ‡Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, and §Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jonathan J Wilksch
- †School of Chemistry, ‡Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, and §Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Huabin Wang
- †School of Chemistry, ‡Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, and §Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mohammed Akhter Hossain
- †School of Chemistry, ‡Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, and §Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - John D Wade
- †School of Chemistry, ‡Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, and §Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Frances Separovic
- †School of Chemistry, ‡Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, and §Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Richard A Strugnell
- †School of Chemistry, ‡Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, and §Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michelle L Gee
- †School of Chemistry, ‡Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, and §Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
47
|
The interplay between cell wall mechanical properties and the cell cycle in Staphylococcus aureus. Biophys J 2014; 107:2538-45. [PMID: 25468333 DOI: 10.1016/j.bpj.2014.10.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/26/2014] [Accepted: 10/08/2014] [Indexed: 11/21/2022] Open
Abstract
The nanoscale mechanical properties of live Staphylococcus aureus cells during different phases of growth were studied by atomic force microscopy. Indentation to different depths provided access to both local cell wall mechanical properties and whole-cell properties, including a component related to cell turgor pressure. Local cell wall properties were found to change in a characteristic manner throughout the division cycle. Splitting of the cell into two daughter cells followed a local softening of the cell wall along the division circumference, with the cell wall on either side of the division circumference becoming stiffer. Once exposed, the newly formed septum was found to be stiffer than the surrounding, older cell wall. Deeper indentations, which were affected by cell turgor pressure, did not show a change in stiffness throughout the division cycle, implying that enzymatic cell wall remodeling and local variations in wall properties are responsible for the evolution of cell shape through division.
Collapse
|
48
|
Quan X, Guo K, Wang Y, Huang L, Chen B, Ye Z, Luo Z. Mechanical compression insults induce nanoscale changes of membrane-skeleton arrangement which could cause apoptosis and necrosis in dorsal root ganglion neurons. Biosci Biotechnol Biochem 2014; 78:1631-9. [PMID: 25126715 PMCID: PMC4205929 DOI: 10.1080/09168451.2014.932664] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In a primary spinal cord injury, the amount of mechanical compression insult that the neurons experience is one of the most critical factors in determining the extent of the injury. The ultrastructural changes that neurons undergo when subjected to mechanical compression are largely unknown. In the present study, using a compression-driven instrument that can simulate mechanical compression insult, we applied mechanical compression stimulation at 0.3, 0.5, and 0.7 MPa to dorsal root ganglion (DRG) neurons for 10 min. Combined with atomic force microscopy, we investigated nanoscale changes in the membrane-skeleton, cytoskeleton alterations, and apoptosis induced by mechanical compression injury. The results indicated that mechanical compression injury leads to rearrangement of the membrane-skeleton compared with the control group. In addition, mechanical compression stimulation induced apoptosis and necrosis and also changed the distribution of the cytoskeleton in DRG neurons. Thus, the membrane-skeleton may play an important role in the response to mechanical insults in DRG neurons. Moreover, sudden insults caused by high mechanical compression, which is most likely conducted by the membrane-skeleton, may induce necrosis, apoptosis, and cytoskeletal alterations.
Collapse
Affiliation(s)
- Xin Quan
- a Department of Orthopedics , Xijing Hospital, The Fourth Military Medical University , Xi'an , The People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
49
|
Chang YR, Raghunathan VK, Garland SP, Morgan JT, Russell P, Murphy CJ. Automated AFM force curve analysis for determining elastic modulus of biomaterials and biological samples. J Mech Behav Biomed Mater 2014; 37:209-18. [PMID: 24951927 DOI: 10.1016/j.jmbbm.2014.05.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/07/2014] [Accepted: 05/15/2014] [Indexed: 11/17/2022]
Abstract
The analysis of atomic force microscopy (AFM) force data requires the selection of a contact point (CP) and is often time consuming and subjective due to influence from intermolecular forces and low signal-to-noise ratios (SNR). In this report, we present an automated algorithm for the selection of CPs in AFM force data and the evaluation of elastic moduli. We propose that CP may be algorithmically easier to detect by identifying a linear elastic indentation region of data (high SNR) rather than the contact point itself (low SNR). Utilizing Hertzian mechanics, the data are fitted for the CP. We first detail the algorithm and then evaluate it on sample polymeric and biological materials. As a demonstration of automation, 64 × 64 force maps were analyzed to yield spatially varying topographical and mechanical information of cells. Finally, we compared manually selected CPs to automatically identified CPs and demonstrated that our automated approach is both accurate (< 10nm difference between manual and automatic) and precise for non-interacting polymeric materials. Our data show that the algorithm is useful for analysis of both biomaterials and biological samples.
Collapse
Affiliation(s)
- Yow-Ren Chang
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California 95616, USA
| | - Vijay Krishna Raghunathan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California 95616, USA
| | - Shaun P Garland
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, USA
| | - Joshua T Morgan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California 95616, USA
| | - Paul Russell
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California 95616, USA
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California 95616, USA; Department of Ophthalmology and Vision Science, School of Medicine, University of California Davis, Davis, California 95616, USA.
| |
Collapse
|
50
|
Dague E, Genet G, Lachaize V, Guilbeau-Frugier C, Fauconnier J, Mias C, Payré B, Chopinet L, Alsteens D, Kasas S, Severac C, Thireau J, Heymes C, Honton B, Lacampagne A, Pathak A, Sénard JM, Galés C. Atomic force and electron microscopic-based study of sarcolemmal surface of living cardiomyocytes unveils unexpected mitochondrial shift in heart failure. J Mol Cell Cardiol 2014; 74:162-72. [PMID: 24839910 DOI: 10.1016/j.yjmcc.2014.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
Abstract
Loss of T-tubules (TT), sarcolemmal invaginations of cardiomyocytes (CMs), was recently identified as a general heart failure (HF) hallmark. However, whether TT per se or the overall sarcolemma is altered during HF process is still unknown. In this study, we directly examined sarcolemmal surface topography and physical properties using Atomic Force Microscopy (AFM) in living CMs from healthy and failing mice hearts. We confirmed the presence of highly organized crests and hollows along myofilaments in isolated healthy CMs. Sarcolemma topography was tightly correlated with elasticity, with crests stiffer than hollows and related to the presence of few packed subsarcolemmal mitochondria (SSM) as evidenced by electron microscopy. Three days after myocardial infarction (MI), CMs already exhibit an overall sarcolemma disorganization with general loss of crests topography thus becoming smooth and correlating with a decreased elasticity while interfibrillar mitochondria (IFM), myofilaments alignment and TT network were unaltered. End-stage post-ischemic condition (15days post-MI) exacerbates overall sarcolemma disorganization with, in addition to general loss of crest/hollow periodicity, a significant increase of cell surface stiffness. Strikingly, electron microscopy revealed the total depletion of SSM while some IFM heaps could be visualized beneath the membrane. Accordingly, mitochondrial Ca(2+) studies showed a heterogeneous pattern between SSM and IFM in healthy CMs which disappeared in HF. In vitro, formamide-induced sarcolemmal stress on healthy CMs phenocopied post-ischemic kinetics abnormalities and revealed initial SSM death and crest/hollow disorganization followed by IFM later disarray which moved toward the cell surface and structured heaps correlating with TT loss. This study demonstrates that the loss of crest/hollow organization of CM surface in HF occurs early and precedes disruption of the TT network. It also highlights a general stiffness increased of the CM surface most likely related to atypical IFM heaps while SSM died during HF process. Overall, these results indicate that initial sarcolemmal stress leading to SSM death could underlie subsequent TT disarray and HF setting.
Collapse
Affiliation(s)
- Etienne Dague
- CNRS, LAAS, F-31400 Toulouse, France; CNRS, ITAV-USR3505, Toulouse, France; Université de Toulouse, ITAV, LAAS, F-31400 Toulouse France.
| | - Gaël Genet
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Toulouse, France
| | | | - Céline Guilbeau-Frugier
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Toulouse, France; Department of Histopathology, Centre Hospitalier Universitaire de Toulouse, 31432 Toulouse, France
| | - Jérémy Fauconnier
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Céline Mias
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Toulouse, France
| | - Bruno Payré
- Centre de Microscopie Électronique Appliquée à la Biologie, Faculté de Médecine Rangueil, 31062 Toulouse, France
| | - Louise Chopinet
- CNRS, LAAS, F-31400 Toulouse, France; CNRS, IPBS-UMR5089, F-31077 Toulouse, France
| | - David Alsteens
- Institute of Life Sciences, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Sandor Kasas
- Department of Cellular Biology and Morphology, Université de Lausanne, Institut de Physique des Systèmes Biologiques, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Childerick Severac
- CNRS, ITAV-USR3505, Toulouse, France; Université de Toulouse, ITAV, LAAS, F-31400 Toulouse France
| | - Jérôme Thireau
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Christophe Heymes
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Toulouse, France
| | - Benjamin Honton
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Toulouse, France
| | - Alain Lacampagne
- INSERM U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Atul Pathak
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Toulouse, France; Department of Clinical Pharmacology, Centre Hospitalier Universitaire de Toulouse, F-31432 Toulouse, France
| | - Jean-Michel Sénard
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Toulouse, France; Department of Clinical Pharmacology, Centre Hospitalier Universitaire de Toulouse, F-31432 Toulouse, France
| | - Céline Galés
- CNRS, ITAV-USR3505, Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Toulouse, France.
| |
Collapse
|