1
|
Ao Q, Jiang L, Tong X, Song Y, Lv X, Tang J. Construction of molecular enrichment accelerators via assembly of enzyme surface grafted polymer and cyclodextrin achieving rapid and stable ester catalysis for biodiesel synthesis. Carbohydr Polym 2023; 322:121337. [PMID: 37839844 DOI: 10.1016/j.carbpol.2023.121337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023]
Abstract
Efficient and stable catalysis has always been the core concept of enzyme catalysis in industrial processes for manufacturing. Here, we constructed molecular enrichment accelerators to synergistically enhance enzyme activity and stability by assembling enzyme surface grafted polymer and cyclodextrin. At 40 °C, the enzyme activity of CalB-PNIPAM212/β-CD was 2.9 times that of CalB-PNIPAM212. The enzyme activity of CalB-PNIPAM428/γ-CD had reached 1.61 times that of CalB. At the same time, the stability of CalB-PNIPAM212/β-CD and CalB-PNIPAM428/γ-CD are slightly better than that of CalB under high temperature, organic solution and extreme pH conditions. The synergistic increase in activity and stability of the lipase-polymer assembly was achieved due to the structure of assembly, in which the role of cyclodextrin could enrich substrate affecting molecular diffusion. In addition, the lipase-polymer assembly proved to be an efficient catalyst for biodiesel synthesis, with a biodiesel conversion 1.4 times that of CalB at 60 °C. Therefore, this simple and low-cost lipase-polymer assembly provides new possibilities for the construction of high-efficiency industrial biocatalytic catalysts.
Collapse
Affiliation(s)
- Qi Ao
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lin Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xinglai Tong
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ying Song
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaoxiao Lv
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jun Tang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Luo M, Wang L, Chen G, Zhao J. Performance of Microenvironment-induced Lipase Immobilization on diversify Surface of Magnetic Particle. Colloids Surf B Biointerfaces 2023; 225:113286. [PMID: 37004389 DOI: 10.1016/j.colsurfb.2023.113286] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/21/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
The orientation of the enzyme molecular on the interface of the carrier affects its activity. Therefore, it is very important to controllably induce the orientation of the enzyme on the surface to improve the performance of the immobilized enzyme. Magnetic nanoparticles were used to construct microenvironments with the different surface hydrophobicity and charge characteristics by controlled modification, and those particles with various microenvironments were further used to study their interaction with the lipase. The amount and activity of immobilized enzyme on different magnetic nanoparticles surfaces were studied by physical adsorption and covalent binding. Through the enzyme surface and particle surface characteristics analysis, the possible preferred orientation of enzyme and enzyme conformation on different surfaces were inferred, which well explained the effect of surface induction on enzyme loading and activity. The methods of surface microenvironment regulation and the strategy of controllable induction of enzyme orientation adopted in this study are enlightening for the rational design of immobilized enzyme methods.
Collapse
Affiliation(s)
- Mianxing Luo
- Department of Bioengineering and Biotechnology, Huaqiao University, Jimei Ave. 668, Xiamen 361021, China
| | - Liang Wang
- Department of Bioengineering and Biotechnology, Huaqiao University, Jimei Ave. 668, Xiamen 361021, China
| | - Guo Chen
- Department of Bioengineering and Biotechnology, Huaqiao University, Jimei Ave. 668, Xiamen 361021, China.
| | - Jun Zhao
- Department of Bioengineering and Biotechnology, Huaqiao University, Jimei Ave. 668, Xiamen 361021, China
| |
Collapse
|
3
|
Cecone C, Hoti G, Caldera F, Zanetti M, Trotta F, Bracco P. NADES-derived beta cyclodextrin-based polymers as sustainable precursors to produce sub-micrometric cross-linked mats and fibrous carbons. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Covalent Immobilization of Candida rugosa Lipase on Epichlorohydrin-Coated Magnetite Nanoparticles: Enantioselective Hydrolysis Studies of Some Racemic Esters and HPLC Analysis. Appl Biochem Biotechnol 2020; 191:1411-1431. [PMID: 32103473 DOI: 10.1007/s12010-020-03274-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
In this study, a new biocatalyst was prepared by immobilizing Candida rugosa lipase epichlorohydrin-functionalized onto the surface of the nanoparticles. Magnetite nanoparticles were obtained by chemical co-precipitation method of Fe2+ and Fe3+, and then the prepared uncoated and coated nanoparticles were characterized by XRD, FT-IR and TGA. Lipase was covalently attached to activated nanoparticles. The catalytic properties of free and immobilized lipases were determined. It was found that the optimum temperature for free and immobilized lipases was 30 °C and 35 °C, respectively. The optimum pH values were found to be 7.0 and 8 for free and immobilized lipases, respectively. Immobilized lipase was found to retain significant activity even after the seventh use. In the final section of the study, optically pure compounds were obtained by carrying out the enantioselective hydrolysis studies of racemic esters by using immobilized lipase. Enantiomeric excesses of the products in the enantioselective hydrolysis of racemic ibuprofen and naproxen methyl ester and racemic butyl mandelate were determined to be 94.93, 77.30 and 68.15, respectively.
Collapse
|
5
|
Bušić A, Kundas S, Morzak G, Belskaya H, Marđetko N, Ivančić Šantek M, Komes D, Novak S, Šantek B. Recent Trends in Biodiesel and Biogas Production. Food Technol Biotechnol 2018; 56:152-173. [PMID: 30228791 PMCID: PMC6117991 DOI: 10.17113/ftb.56.02.18.5547] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/26/2018] [Indexed: 02/05/2023] Open
Abstract
Biodiesel and biogas are two very important sources of renewable energy worldwide, and particularly in the EU countries. While biodiesel is almost exclusively used as transportation fuel, biogas is mostly used for production of electricity and heat. The application of more sophisticated purification techniques in production of pure biomethane from biogas allows its delivery to natural gas grid and its subsequent use as transportation fuel. While biogas is produced mostly from waste materials (landfills, manure, sludge from wastewater treatment, agricultural waste), biodiesel in the EU is mostly produced from rapeseed or other oil crops that are used as food, which raises the 'food or fuel' concerns. To mitigate this problem, considerable efforts have been made to use non-food feedstock for biodiesel production. These include all kinds of waste oils and fats, but recently more attention has been devoted to production of microbial oils by cultivation of microorganisms that are able to accumulate high amounts of lipids in their biomass. Promising candidates for microbial lipid production can be found among different strains of filamentous fungi, yeast, bacteria and microalgae. Feedstocks of interest are agricultural waste rich in carbohydrates as well as different lignocellulosic raw materials where some technical issues have to be resolved. In this work, recovery and purification of biodiesel and biogas are also considered.
Collapse
Affiliation(s)
- Arijana Bušić
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Semjon Kundas
- Belarussian National Technical University, Power Plant Construction and Engineering Services Faculty, Nezavisimosti Ave. 150, BY-220013 Minsk, Belarus
| | - Galina Morzak
- Belarussian National Technical University, Mining Engineering and Engineering Ecology Faculty, Nezavisimosti Ave. 65, BY-220013 Minsk, Belarus
| | - Halina Belskaya
- Belarussian National Technical University, Mining Engineering and Engineering Ecology Faculty, Nezavisimosti Ave. 65, BY-220013 Minsk, Belarus
| | - Nenad Marđetko
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Mirela Ivančić Šantek
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Draženka Komes
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Srđan Novak
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Božidar Šantek
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| |
Collapse
|
6
|
Jeon EY, Seo JH, Kang WR, Kim MJ, Lee JH, Oh DK, Park JB. Simultaneous Enzyme/Whole-Cell Biotransformation of Plant Oils into C9 Carboxylic Acids. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01884] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Eun-Yeong Jeon
- Department
of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Joo-Hyun Seo
- Department
of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Woo-Ri Kang
- Department
of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Min-Ji Kim
- Department
of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Jung-Hoo Lee
- Department
of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Deok-Kun Oh
- Department
of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jin-Byung Park
- Department
of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|
7
|
Rastian Z, Khodadadi AA, Guo Z, Vahabzadeh F, Mortazavi Y. Plasma Functionalized Multiwalled Carbon Nanotubes for Immobilization of Candida antarctica Lipase B: Production of Biodiesel from Methanolysis of Rapeseed Oil. Appl Biochem Biotechnol 2015; 178:974-89. [DOI: 10.1007/s12010-015-1922-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/05/2015] [Indexed: 11/29/2022]
|
8
|
Costa-Silva TA, Souza CRF, Oliveira WP, Said S. Characterization and spray drying of lipase produced by the endophytic fungus Cercospora kikuchii. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2014. [DOI: 10.1590/0104-6632.20140314s00002880] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | - S. Said
- Universidade de São Paulo, Brazil
| |
Collapse
|
9
|
Immobilization of Lipase on Silver Nanoparticles via Adhesive Polydopamine for Biodiesel Production. Enzyme Res 2014; 2014:389739. [PMID: 25328685 PMCID: PMC4177086 DOI: 10.1155/2014/389739] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/23/2014] [Accepted: 09/01/2014] [Indexed: 12/03/2022] Open
Abstract
Biodiesel production technology is competitive in terms of low cost and alternative source of energy which should be not only sustainable but also environmentally friendly. Designing of the lipase immobilization for biodiesel production has a remarkable impact and is still challenging. In this work, biodiesel production from soybean oil was enhanced and facilitated by using a novel biocatalyst consisting of commercial lipase (EC 3.1.1.3), silver nanoparticles, and polydopamine. Silver nanoparticles (AgNPs) were synthesized with a size range of 10–20 nm. Polydopamine (PD) was delivered by the self-polymerization of dopamine in 10 mM Tris-HCl pH 8.5 and simultaneously coated the AgNPs to form a PD/AgNPs complex. Lipase was immobilized on the PD/AgNPs complex surface via covalent bonds to form a tailor-made biocatalyst consisting of immobilized lipase/PD/AgNPs complex (LPA). The formation and morphology of each composition were characterized by UV-Vis spectroscopy and scanning electron microscope (SEM). Significantly, gas chromatography analysis showed a remarkable biodiesel production yield of 95% by using the LPA complex at 40°C for 6-hours reaction time, whereas the yield was 86% when using free lyophilized lipase. The LPA complex was apparently reusable after 7 batches and the latter conversion rate of soybean oil was decreased by only 27%.
Collapse
|
10
|
Ozyilmaz E, Sayin S, Arslan M, Yilmaz M. Improving catalytic hydrolysis reaction efficiency of sol–gel-encapsulated Candida rugosa lipase with magnetic β-cyclodextrin nanoparticles. Colloids Surf B Biointerfaces 2014; 113:182-9. [DOI: 10.1016/j.colsurfb.2013.08.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/07/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
|
11
|
Veesar IA, Memon S, Syed MN. Synthetic p-tetrasulphonatocalix[4]arene as novel excipient for lipase-complex. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Feng X, Patterson DA, Balaban M, Emanuelsson EAC. Characterization of tributyrin hydrolysis by immobilized lipase on woolen cloth using conventional batch and novel spinning cloth disc reactors. Chem Eng Res Des 2013. [DOI: 10.1016/j.cherd.2013.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Enzymatic activity studies of Pseudomonas cepacia lipase adsorbed onto copolymer supports containing β-cyclodextrin. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Ak G, Aktuna Y, Kartal F, Kilinc A. The effect of pretreatment with substrates on the activity of immobilized pancreatic lipase. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 42:146-50. [DOI: 10.3109/21691401.2013.764312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Feng X, Patterson DA, Balaban M, Emanuelsson EAC. Enabling the utilization of wool as an enzyme support: Enhancing the activity and stability of lipase immobilized onto woolen cloth. Colloids Surf B Biointerfaces 2013; 102:526-33. [DOI: 10.1016/j.colsurfb.2012.08.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/21/2012] [Accepted: 08/25/2012] [Indexed: 10/27/2022]
|
16
|
Abstract
Enzyme immobilization has been investigated to improve lipase properties over the past few decades. Different methods and various carriers have been employed to immobilize enzyme. However, the application of enzymatic technology in large scale is rarely seen during the industrial process. The main obstacles are a high cost of the immobilization and the poor performance of immobilized lipase. This review focuses on the current status of enzyme immobilization, which aims to summarize the latest research on the parameters affecting the performance of immobilized enzyme. Particularly, the effect of immobilization methods, immobilization carriers, and enzyme loading has been discussed.
Collapse
|
17
|
Jung YR, Shin HY, Song YS, Kim SB, Kim SW. Enhancement of immobilized enzyme activity by pretreatment of β-glucosidase with cellobiose and glucose. J IND ENG CHEM 2012. [DOI: 10.1016/j.jiec.2011.11.133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
18
|
Fu G, Yue X, Dai Z. Glucose biosensor based on covalent immobilization of enzyme in sol–gel composite film combined with Prussian blue/carbon nanotubes hybrid. Biosens Bioelectron 2011; 26:3973-6. [DOI: 10.1016/j.bios.2011.03.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 03/05/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
|
19
|
Ozturk TK, Kilinc A. Immobilization of lipase in organic solvent in the presence of fatty acid additives. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Bayramoglu G, Arica MY. Reversible immobilization of catalase on fibrous polymer grafted and metal chelated chitosan membrane. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2009.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Boscolo B, Trotta F, Ghibaudi E. High catalytic performances of Pseudomonas fluorescens lipase adsorbed on a new type of cyclodextrin-based nanosponges. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2009.10.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|