1
|
Fernández L, Reviglio AL, Heredia DA, Morales GM, Santo M, Otero L, Alustiza F, Liaudat AC, Bosch P, Larghi EL, Bracca AB, Kaufman TS. Langmuir-Blodgett monolayers holding a wound healing active compound and its effect in cell culture. A model for the study of surface mediated drug delivery systems. Heliyon 2021; 7:e06436. [PMID: 33763610 PMCID: PMC7973310 DOI: 10.1016/j.heliyon.2021.e06436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022] Open
Abstract
Langmuir and Langmuir-Blodgett films holding a synthetic bioinspired wound healing active compound were used as drug-delivery platforms. Palmitic acid Langmuir monolayers were able to incorporate 2-methyltriclisine, a synthetic Triclisine derivative that showed wound healing activity. The layers proved to be stable and the nanocomposites were transferred to solid substrates. Normal human lung cells (Medical Research Council cell strain 5, MRC-5) were grown over the monomolecular Langmuir-Blodgett films that acted as a drug reservoir and delivery system. The proliferation and migration of the cells were clearly affected by the presence of 2-methyltriclisine in the amphiphilic layers. The methodology is proposed as a simple and reliable model for the study of the effects of bioactive compounds over cellular cultures.
Collapse
Affiliation(s)
- Luciana Fernández
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Ana Lucía Reviglio
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Daniel A. Heredia
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Gustavo M. Morales
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Marisa Santo
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Luis Otero
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Fabrisio Alustiza
- Grupo de Sanidad Animal, INTA Estación Experimental Agropecuaria Marcos Juárez, X2580, Marcos Juárez, Argentina
| | - Ana Cecilia Liaudat
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Pablo Bosch
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal 3, X5804BYA, Río Cuarto, Argentina
| | - Enrique L. Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Andrea B.J. Bracca
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Teodoro S. Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| |
Collapse
|
2
|
Sharma V, Mamontov E, Tyagi M. Effects of NSAIDs on the nanoscopic dynamics of lipid membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183100. [DOI: 10.1016/j.bbamem.2019.183100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/16/2019] [Accepted: 09/19/2019] [Indexed: 01/30/2023]
|
3
|
Stability and softening of a lipid monolayer in the presence of a pain-killer drug. Colloids Surf B Biointerfaces 2015; 132:34-44. [DOI: 10.1016/j.colsurfb.2015.04.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 11/21/2022]
|
4
|
Majumdar A, Kundu D, Sarkar M. Differential Effect of Oxicam Non-Steroidal Anti-Inflammatory Drugs on Membranes and Their Consequence on Membrane Fusion. J Phys Chem B 2015; 119:9627-39. [PMID: 26147344 DOI: 10.1021/acs.jpcb.5b03918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are the most commonly used analgesics and antipyretics, which form an interesting drug group because of their new and alternate functions. The ability of the NSAIDs belonging to the oxicam chemical group to induce membrane fusion at low physiologically relevant concentrations is a new function that has drawn considerable attention. Membrane fusion is dependent on the interplay of physicochemical properties of both drugs and membranes. Here, we have elucidated the effects of different oxicam drugs, Meloxicam, Piroxicam, Tenoxicam, Lornoxicam, and Isoxicam, on an identical membrane-mimetic system. This highlights only the differential effects of the drugs on drug-membrane interactions, which in turn modulate their role as membrane fusogens. The partitioning behavior and the location of the drugs in dimyristoylphosphatidylcholine vesicles have been studied using second-derivative absorption spectroscopy, fluorescence quenching, steady-state fluorescence anisotropy, and time-resolved fluorescence lifetime measurements. Fusion kinetics has been monitored by fluorescence assays and dynamic light scattering was used to provide a snapshot of the vesicle diameter distribution at different time points. The differential perturbing effect of the drugs on the membrane is dependent both on their partitioning and location. Although partitioning governs the extent of fusion, the location modulates the rates of each step.
Collapse
Affiliation(s)
- Anupa Majumdar
- †Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India
| | - Debjyoti Kundu
- ‡Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Munna Sarkar
- †Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India
| |
Collapse
|
5
|
Majumdar A, Chakraborty S, Sarkar M. Modulation of non steroidal anti-inflammatory drug induced membrane fusion by copper coordination of these drugs: anchoring effect. J Phys Chem B 2014; 118:13785-99. [PMID: 25380501 DOI: 10.1021/jp5086087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Membrane fusion, an integral event in several biological processes, is characterized by several intermediate steps guided by specific energy barriers. Hence, it requires the aid of fusogens to complete the process. Common fusogens, such as proteins/peptides, have the ability to overcome theses barriers by their conformational reorganization, an advantage not shared by small drug molecules. Hence, drug induced fusion at physiologically relevant drug concentrations is rare and occurs only in the case of the oxicam group of non steroidal anti-inflammatory drugs (NSAIDs). To use drugs to induce and control membrane fusion in various biochemical processes requires the understanding of how different parameters modulate fusion. Also, fusion efficacy needs to be enhanced. Here we have synthesized and used Cu(II) complexes of fusogenic oxicam NSAIDs, Meloxicam and Piroxicam, to induce fusion in model membranes monitored by using DSC, TEM, steady-state, and time-resolved spectroscopy. The ability of the complexes to anchor apposing model membranes to initiate/facilitate fusion has been demonstrated. This results in better fusion efficacy compared to the bare drugs. These complexes can take the fusion to its final step. Unlike other designed membrane anchors, the role of molecular recognition and strength of interaction between molecular partners is obliterated for these preformed Cu(II)-NSAIDs.
Collapse
Affiliation(s)
- Anupa Majumdar
- Chemical Sciences Division, Saha Institute of Nuclear Physics , 1/AF, Bidhannagar, Kolkata-700064, India
| | | | | |
Collapse
|
6
|
Pereira-Leite C, Nunes C, Reis S. Interaction of nonsteroidal anti-inflammatory drugs with membranes: in vitro assessment and relevance for their biological actions. Prog Lipid Res 2013; 52:571-84. [PMID: 23981364 DOI: 10.1016/j.plipres.2013.08.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/01/2013] [Accepted: 08/16/2013] [Indexed: 12/12/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used drugs in the world due to their anti-inflammatory, analgesic and antipyretic properties. Nevertheless, the consumption of these drugs is still associated with the occurrence of a wide spectrum of adverse effects. Regarding the major role of membranes in cellular events, the hypothesis that the biological actions of NSAIDs may be related to their effect at the membrane level has triggered the in vitro assessment of NSAIDs-membrane interactions. The use of membrane mimetic models, cell cultures, a wide range of experimental techniques and molecular dynamics simulations has been providing significant information about drugs partition and location within membranes and also about their effect on diverse membrane properties. These studies have indeed been providing evidences that the effect of NSAIDs at membrane level may be an additional mechanism of action and toxicity of NSAIDs. In fact, the pharmacokinetic properties of NSAIDs are closely related to the ability of these drugs to interact and overcome biological membranes. Moreover, the therapeutic actions of NSAIDs may also result from the indirect inhibition of cyclooxygenase due to the disturbing effect of NSAIDs on membrane properties. Furthermore, increasing evidences suggest that the disordering effects of these drugs on membranes may be in the basis of the NSAIDs-induced toxicity in diverse organ systems. Overall, the study of NSAIDs-membrane interactions has proved to be not only important for the better understanding of their pharmacological actions, but also for the rational development of new approaches to overcome NSAIDs adverse effects.
Collapse
Affiliation(s)
- Catarina Pereira-Leite
- REQUIMTE, Laboratório de Química Aplicada, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | | | | |
Collapse
|
7
|
In Vitro Assessment of NSAIDs-Membrane Interactions: Significance for Pharmacological Actions. Pharm Res 2013; 30:2097-107. [DOI: 10.1007/s11095-013-1066-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
|
8
|
Nunes C, Brezesinski G, Pereira-Leite C, Lima JLFC, Reis S, Lúcio M. NSAIDs interactions with membranes: a biophysical approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10847-58. [PMID: 21790169 DOI: 10.1021/la201600y] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This work focuses on the interaction of four representative NSAIDs (nimesulide, indomethacin, meloxicam, and piroxicam) with different membrane models (liposomes, monolayers, and supported lipid bilayers), at different pH values, that mimic the pH conditions of normal (pH 7.4) and inflamed cells (pH 5.0). All models are composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) which is a representative phospholipid of most cellular membranes. Several biophysical techniques were employed: Fluorescence steady-state anisotropy to study the effects of NSAIDs in membrane microviscosity and thus to assess the main phase transition of DPPC, surface pressure-area isotherms to evaluate the adsorption and penetration of NSAIDs into the membrane, IRRAS to acquire structural information of DPPC monolayers upon interaction with the drugs, and AFM to study the changes in surface topography of the lipid bilayers caused by the interaction with NSAIDs. The NSAIDs show pronounced interactions with the lipid membranes at both physiological and inflammatory conditions. Liposomes, monolayers, and supported lipid bilayers experiments allow the conclusion that the pH of the medium is an essential parameter when evaluating drug-membrane interactions, because it conditions the structure of the membrane and the ionization state of NSAIDs, thereby influencing the interactions between these drugs and the lipid membranes. The applied models and techniques provided detailed information about different aspects of the drug-membrane interaction offering valuable information to understand the effect of these drugs on their target membrane-associated enzymes and their side effects at the gastrointestinal level.
Collapse
Affiliation(s)
- Cláudia Nunes
- REQUIMTE, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
9
|
Mondal Roy S, Sarkar M. Membrane fusion induced by small molecules and ions. J Lipids 2011; 2011:528784. [PMID: 21660306 PMCID: PMC3108104 DOI: 10.1155/2011/528784] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/28/2011] [Accepted: 02/25/2011] [Indexed: 01/11/2023] Open
Abstract
Membrane fusion is a key event in many biological processes. These processes are controlled by various fusogenic agents of which proteins and peptides from the principal group. The fusion process is characterized by three major steps, namely, inter membrane contact, lipid mixing forming the intermediate step, pore opening and finally mixing of inner contents of the cells/vesicles. These steps are governed by energy barriers, which need to be overcome to complete fusion. Structural reorganization of big molecules like proteins/peptides, supplies the required driving force to overcome the energy barrier of the different intermediate steps. Small molecules/ions do not share this advantage. Hence fusion induced by small molecules/ions is expected to be different from that induced by proteins/peptides. Although several reviews exist on membrane fusion, no recent review is devoted solely to small moleculs/ions induced membrane fusion. Here we intend to present, how a variety of small molecules/ions act as independent fusogens. The detailed mechanism of some are well understood but for many it is still an unanswered question. Clearer understanding of how a particular small molecule can control fusion will open up a vista to use these moleucles instead of proteins/peptides to induce fusion both in vivo and in vitro fusion processes.
Collapse
Affiliation(s)
- Sutapa Mondal Roy
- Chemical Sciences Division, Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata 700064, India
| | - Munna Sarkar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata 700064, India
| |
Collapse
|
10
|
Mondal S, Sarkar M. Non-Steroidal Anti-Inflammatory Drug Induced Membrane Fusion: Concentration and Temperature Effects. J Phys Chem B 2009; 113:16323-31. [DOI: 10.1021/jp9069527] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sutapa Mondal
- Chemical Sciences Division, Saha Institute of Nuclear Physics 1/AF, Bidhannagar, Kolkata-700064, India
| | - Munna Sarkar
- Chemical Sciences Division, Saha Institute of Nuclear Physics 1/AF, Bidhannagar, Kolkata-700064, India
| |
Collapse
|
11
|
Aoki PHB, Alessio P, Rodríguez-Méndez ML, De Saja Saez JA, Constantino CJL. Taking advantage of electrostatic interactions to grow Langmuir-Blodgett films containing multilayers of the phospholipid dipalmitoylphosphatidylglycerol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:13062-13070. [PMID: 19601609 DOI: 10.1021/la901923v] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The use of phospholipids as mimetic systems for studies involving the cell membrane is a well-known approach. In this context, the Langmuir and Langmuir-Blodgett (LB) methods are among the main techniques used to produce ordered layers of phospholipids structured as mono- or bilayers on water subphase and solid substrates. However, the difficulties of producing multilayer LB films of phospholipids restrict the application of this technique depending on the sensitivity of the experimental analysis to be conducted. Here, an alternative approach is used to produce LB films containing multilayers of the negative phospholipid dipalmitoylphosphatidylglycerol (DPPG). Inspired by the electrostatic layer-by-layer (LbL) technique, DPPG multilayer LB films were produced by transferring the DPPG Langmuir monolayers from the water subphase containing low concentrations of the cationic polyelectrolyte poly(allylamine hydrochloride) (PAH) onto solid substrates. Fourier transform infrared (FTIR) absorption spectroscopy revealed that the interactions between the NH(3)(+) (PAH) and PO(4)(-) (DPPG) groups might be the main driving forces that allow growth of these LB films. Besides, ultraviolet-visible (UV-vis) absorption spectroscopy showed that the multilayer LB films can be grown in a controlled way in terms of thickness at nanometer scale. Cyclic voltammetry showed that DPPG and PAH are more packed in the LB than LbL films. The latter finding is related to the distinct molecular architecture of the films since DPPG is structured as monolayers in the LB films and multilamellar vesicles in the LbL films. Despite the interaction with PAH, cyclic voltammetry also showed that DPPG retains its biological activity in LB films, which is a key factor since this makes DPPG a suitable material in sensing applications. Therefore, multilayer LB films were deposited onto Pt interdigitated electrodes forming sensing units, which were applied in the detection of a phenothiazine compound [methylene blue (MB)] using impedance spectroscopy. The performance of DPPG in single-layer and multilayer LB films was compared to the performance of sensing unities composed of DPPG in single-layer and multilayer LbL films, showing the importance of both the thickness and the molecular architecture of the thin films. As found in a previous work for LbL films, the high sensitivity reached by these sensing units is intimately related to changes in the morphology of the film as evidenced by the micro-Raman technique. Finally, the interaction between MB and the (DPPG+PAH) LB films was complemented by pi-A isotherms and surface-enhanced resonance Raman scattering (SERRS).
Collapse
Affiliation(s)
- Pedro H B Aoki
- Departamento de Física, Química e Biologia, Faculdade de Ciências e Tecnologia, UNESP, 19060-900 Presidente Prudente, SP, Brazil
| | | | | | | | | |
Collapse
|
12
|
Philosof-Mazor L, Volinsky R, Jopp J, Blumberg P, Rapaport H, Marquez VE, Jelinek R. Lipid-Modulated Pharmacophore Nanorods Assembled at the Air/Water Interface. Chemphyschem 2009; 10:2615-9. [DOI: 10.1002/cphc.200900539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|