1
|
Kanike S, Sarolia J, Toor J, Ray D, Aswal VK, Tiwari S. Loading of alpha-tocopherol in a nonionic microemulsion: phase behaviour and structural characteristics. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Mu H, Sun Q, Xue S, Shi J, Scanlon MG, Wang D, Sun Q. Emulsion-Based Formulations for Delivery of Vitamin E: Fabrication, Characterization, in Vitro Release, Bioaccessibility and Bioavailability. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2011911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Hongyan Mu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Qingrui Sun
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Sophia Xue
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - John Shi
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Martin G. Scanlon
- Faculty of Agricultural and Food Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Deda Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
Eid M, Sobhy R, Zhou P, Wei X, Wu D, Li B. β-cyclodextrin- soy soluble polysaccharide based core-shell bionanocomposites hydrogel for vitamin E swelling controlled delivery. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105751] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Lv S, Zhang Y, Tan H, Zhang R, McClements DJ. Vitamin E Encapsulation within Oil-in-Water Emulsions: Impact of Emulsifier Type on Physicochemical Stability and Bioaccessibility. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1521-1529. [PMID: 30663308 DOI: 10.1021/acs.jafc.8b06347] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The influence of plant-based (gum arabic and quillaja saponin) and animal-based (whey protein isolate, WPI) emulsifiers on the production and stability of vitamin E-fortified emulsions was investigated. Their impact on lipid digestibility and vitamin bioaccessibility was also studied utilizing an in vitro gastrointestinal tract. WPI and saponin produced smaller emulsions than gum arabic. All emulsions had good storage stability at room temperature (4 weeks, pH 7). Saponin- and gum arabic-emulsions were resistant to droplet aggregation from pH 2 to 8 because these emulsifiers generated strong electrosteric repulsion. WPI-coated droplets flocculated around pH 5 due to a reduction in charge near their isoelectric point. Lipid digestion was slower in saponin-emulsions, presumably because the high surface activity of saponins inhibited their removal by bile acids and lipase. Vitamin bioaccessibility was higher in WPI- than in saponin- or gum arabic-emulsions. This information may facilitate the design of more efficacious vitamin-fortified delivery systems.
Collapse
Affiliation(s)
- Shanshan Lv
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering , Northeast Forestry University , Harbin , 150040 , People's Republic of China
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Yanhua Zhang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering , Northeast Forestry University , Harbin , 150040 , People's Republic of China
| | - Haiyan Tan
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering , Northeast Forestry University , Harbin , 150040 , People's Republic of China
| | - Ruojie Zhang
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - David Julian McClements
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
5
|
Wilhelm EA, Vogt AG, Reis AS, Pinz MP, de Souza JF, Haas SE, Pereira AAM, Fajardo AR, Luchese C. The efficacy of microemulsion-based delivery to improve vitamin E properties: evaluation of the antinociceptive, antioxidant, antidepressant- and anxiolytic-like activities in mice. J Pharm Pharmacol 2018; 70:1723-1732. [DOI: 10.1111/jphp.13018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/02/2018] [Indexed: 01/24/2023]
Abstract
Abstract
Objectives
A microemulsion-based delivery system was designed to improve vitamin E (VE) properties, and its antinociceptive, antioxidant, antidepressant- and anxiolytic-like activities in mice were evaluated.
Methods
Male Swiss mice received, by intragastric route, canola oil (20 ml/kg), blank microemulsion (B-ME) (20 ml/kg), VE free (VE-F) (200 mg/kg) or VE microemulsion (VE-ME) (200 mg/kg). In acute treatment, a single dose of treatments was administrated and 30 min after behavioural tests were performed. In the subchronic treatment, mice received such treatments, once a day, for 8 days. On the eighth day, behavioural tests were performed.
Key findings
In the subchronic treatment, VE-ME increased entries and spent time in the open arms in the elevated plus-maze test and decreased the immobility time in the tail suspension test, but no change was found after acute treatment. Acute and subchronic treatments with VE-ME increased response latency to thermal stimulus in the hot-plate test. VE-ME decreased the thiobarbituric acid reactive species levels in the acute and subchronic protocols. Additionally, in subchronic treatment, VE-ME increased renal catalase activity, but VE-F reduced its activity.
Conclusions
Vitamin E-microemulsions showed antioxidant, antinociceptive, antidepressant- and anxiolytic-like actions; thus, ME-based delivery improved pharmacological properties of VE.
Collapse
Affiliation(s)
- Ethel A Wilhelm
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Ane G Vogt
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Angélica S Reis
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Mikaela P Pinz
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Jaqueline F de Souza
- Laboratório de Tecnologia e Desenvolvimento de Materiais Poliméricos e Compósitos (LaCoPol), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Sandra E Haas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, Brazil
| | | | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Materiais Poliméricos e Compósitos (LaCoPol), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Cristiane Luchese
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| |
Collapse
|
6
|
Saxena V, Hasan A, Sharma S, Pandey LM. Edible oil nanoemulsion: An organic nanoantibiotic as a potential biomolecule delivery vehicle. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1332625] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Varun Saxena
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - Abshar Hasan
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - Swati Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - Lalit M. Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
| |
Collapse
|
7
|
Gadalla HH, El-Gibaly I, Soliman GM, Mohamed FA, El-Sayed AM. Amidated pectin/sodium carboxymethylcellulose microspheres as a new carrier for colonic drug targeting: Development and optimization by factorial design. Carbohydr Polym 2016; 153:526-534. [DOI: 10.1016/j.carbpol.2016.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022]
|
8
|
Abaee A, Madadlou A. Niosome-loaded cold-set whey protein hydrogels. Food Chem 2016; 196:106-13. [DOI: 10.1016/j.foodchem.2015.09.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 11/27/2022]
|
9
|
Parthasarathi S, Muthukumar SP, Anandharamakrishnan C. The influence of droplet size on the stability, in vivo digestion, and oral bioavailability of vitamin E emulsions. Food Funct 2016; 7:2294-302. [DOI: 10.1039/c5fo01517k] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vitamin E (α-tocopherol) is a nutraceutical compound, which has been shown to possess potent antioxidant and anticancer activity.
Collapse
Affiliation(s)
- S. Parthasarathi
- Department of Food Engineering
- CSIR-Central Food Technological Research Institute
- Mysore-570 020
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - S. P. Muthukumar
- Animal House Facility
- CSIR-Central Food Technological Research Institute
- Mysore-570 020
- India
| | - C. Anandharamakrishnan
- Department of Food Engineering
- CSIR-Central Food Technological Research Institute
- Mysore-570 020
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
10
|
Taguchi Y, Saito N, Uchida A, Tanaka M. Preparation of Thermosensitive Microcapsules Containing Water Soluble Powder by Melting Dispersion Cooling Method. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jeas.2016.63006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Simon LC, Stout RW, Sabliov C. Bioavailability of Orally Delivered Alpha-Tocopherol by Poly(Lactic-Co-Glycolic) Acid (PLGA) Nanoparticles and Chitosan Covered PLGA Nanoparticles in F344 Rats. Nanobiomedicine (Rij) 2016; 3:8. [PMID: 29942383 PMCID: PMC5998269 DOI: 10.5772/63305] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/24/2016] [Indexed: 01/20/2023] Open
Abstract
It is hypothesized that the bioavailability of αT (alpha-tocopherol), an antioxidant, can be improved when delivered by poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) and chitosan covered PLGA nanoparticles (PLGA-Chi NPs), and that the mucoadhesive properties of chitosan may enhance absorption of αT. PLGA and PLGA-Chi NPs were characterized by measuring entrapment efficiency, size, polydispersity, and zeta potential. Nanoparticle physical stability, chemical stability of entrapped αT, and release kinetics were also measured. Pharmacokinetic studies were conducted by administering PLGA (αT) NPs, PLGA-Chi (αT) NPs, and free αT via oral gavage in rats. The size and zeta potential of the two particle systems were 97.87 ± 2.63 nm and -36.2 ± 1.31 mV for PLGA(αT) NPs, and 134 ± 2.05 nm and 38.0 ± 2.90 mV for PLGA-Chi (αT) nanoparticles in DI water. The particle systems showed to be stable during various in vitro assays. Bioavailability of nanodelivered αT was improved compared to the free αT, by 170% and 121% for PLGA and PLGA-Chi NPs, respectively. It was concluded that while chitosan did not further improved bioavailability of αT, PLGA NPs protected the entrapped drug from the GI environment degradation and proved to be an effective delivery system for αT.
Collapse
Affiliation(s)
- Lacey C. Simon
- Department of Biological and Agricultural Engineering, Louisiana State University A&M and LSU Agricultural Center, USA
| | - Rhett W. Stout
- Department of Pathobiological Sciences, Louisiana State University A&M, USA
| | - Cristina Sabliov
- Department of Biological and Agricultural Engineering, Louisiana State University A&M and LSU Agricultural Center, USA
| |
Collapse
|
12
|
Ngwuluka NC, Choonara YE, Kumar P, du Toit LC, Modi G, Pillay V. An optimized gastroretentive nanosystem for the delivery of levodopa. Int J Pharm 2015; 494:49-65. [DOI: 10.1016/j.ijpharm.2015.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 12/15/2022]
|
13
|
Li B, Guan L, Wang K, Zhang D, Wang W, Liu F. Formula and process optimization of controlled-release microcapsules prepared using a coordination assembly and the response surface methodology. J Appl Polym Sci 2015. [DOI: 10.1002/app.42865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- BeiXing Li
- Key Laboratory of Pesticide Toxicology & Application Technique, Department of Plant Protection; Shandong Agricultural University; Tai'an Shandong People's Republic of China
- Research Center of Pesticide Environmental Toxicology; Shandong Agricultural University; Tai'an Shandong People's Republic of China
| | - Lei Guan
- Key Laboratory of Pesticide Toxicology & Application Technique, Department of Plant Protection; Shandong Agricultural University; Tai'an Shandong People's Republic of China
| | - Kai Wang
- Key Laboratory of Pesticide Toxicology & Application Technique, Department of Plant Protection; Shandong Agricultural University; Tai'an Shandong People's Republic of China
| | - DaXia Zhang
- Key Laboratory of Pesticide Toxicology & Application Technique, Department of Plant Protection; Shandong Agricultural University; Tai'an Shandong People's Republic of China
- Research Center of Pesticide Environmental Toxicology; Shandong Agricultural University; Tai'an Shandong People's Republic of China
| | - WeiChang Wang
- Key Laboratory of Pesticide Toxicology & Application Technique, Department of Plant Protection; Shandong Agricultural University; Tai'an Shandong People's Republic of China
| | - Feng Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, Department of Plant Protection; Shandong Agricultural University; Tai'an Shandong People's Republic of China
| |
Collapse
|
14
|
The effects of particle size on the physicochemical properties of optimized astaxanthin-rich Xanthophyllomyces dendrorhous-loaded microparticles. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2013.09.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
2013 IFT International Food Nanoscience Conference: Proceedings. Compr Rev Food Sci Food Saf 2014; 13:190-228. [DOI: 10.1111/1541-4337.12055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 11/26/2022]
|
16
|
Liu F, Jiang Y, Du B, Chai Z, Jiao T, Zhang C, Ren F, Leng X. Design and characterization of controlled-release edible packaging films prepared with synergistic whey-protein polysaccharide complexes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5824-5833. [PMID: 23718814 DOI: 10.1021/jf4009923] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper describes an investigation into the properties of a doubly emulsified film incorporated with protein-polysaccharide microcapsules, which serves as a multifunctional food packaging film prepared using common edible materials in place of petroleum--based plastics. The relationships between the microstructural properties and controlled release features of a series of water-in-oil-in-water (W/O/W) microcapsulated edible films prepared in thermodynamically incompatible conditions were analyzed. The hydrophilic riboflavin (V(B2)) nano-droplets (13-50 nm) dispersed in α-tocopherol (V(E)) oil phase were embedded in whey protein-polysaccharide (WPs) microcapsules with a shell thickness of 20-56 nm. These microcapsules were then integrated in 103 μm thick WPs films. Different polysaccharides, including gum arabic (GA), low-methoxyl pectin (LMP), and κ-carrageenan (KCG), exhibited different in vitro synergistic effects on the ability of both films to effect enteric controlled release of both vitamins. GA, which showed a strong emulsifying ability, also showed better control of V(E) than other polysaccharides, and the highly charged KCG showed better control of V(B2) than GA did.
Collapse
Affiliation(s)
- Fei Liu
- CAU & ACC Joint Laboratory of Space Food; Key Laboratory of Functional Dairy Science of Beijing and Ministry of Education; College of Food Science & Nutritional Engineering; The National Dairy Industry Technology System-Beijing Innovation Team (NDITS-BIT); Beijing Higher Institution Engineering Research Center of Animal Product; China Agricultural University ; No.17 Qinghua East Road, Haidian, Beijing 100083, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
García P, Vega J, Jimenez P, Santos J, Robert P. Alpha-tocopherol microspheres with cross-linked and acetylated inulin and their release profile in a hydrophilic model. EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201200109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Paula García
- Facultad de Ciencias Químicas y Farmacéuticas; Departamento de Ciencia de los Alimentos y Tecnología Química; Universidad de Chile; Santiago; Chile
| | - Juan Vega
- Facultad de Ciencias Químicas y Farmacéuticas; Departamento de Ciencia de los Alimentos y Tecnología Química; Universidad de Chile; Santiago; Chile
| | - Paula Jimenez
- Facultad de Medicina; Departamento de Nutrición; Universidad de Chile; Santiago; Chile
| | - José Santos
- Facultad de Química; Departamento de Química-Física; Pontificia Universidad Católica de Chile; Santiago; Chile
| | - Paz Robert
- Facultad de Ciencias Químicas y Farmacéuticas; Departamento de Ciencia de los Alimentos y Tecnología Química; Universidad de Chile; Santiago; Chile
| |
Collapse
|
18
|
Ribeiro A, Sandez-Macho I, Casas M, Alvarez-Pérez S, Alvarez-Lorenzo C, Concheiro A. Poloxamine micellar solubilization of α-tocopherol for topical ocular treatment. Colloids Surf B Biointerfaces 2013; 103:550-7. [DOI: 10.1016/j.colsurfb.2012.10.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/04/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
|
19
|
Li B, Jiang Y, Liu F, Chai Z, Li Y, Li Y, Leng X. Synergistic effects of whey protein-polysaccharide complexes on the controlled release of lipid-soluble and water-soluble vitamins in W1/O/W2 double emulsion systems. Int J Food Sci Technol 2011. [DOI: 10.1111/j.1365-2621.2011.02832.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study. Colloids Surf B Biointerfaces 2011; 85:145-52. [PMID: 21440424 DOI: 10.1016/j.colsurfb.2011.02.020] [Citation(s) in RCA: 416] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/01/2011] [Accepted: 02/04/2011] [Indexed: 11/21/2022]
Abstract
Chitosan (CS) nanoparticles coated with zein has been newly demonstrated as a promising encapsulation and delivery system for hydrophilic nutrient with enhanced bioactivities in our previous study. In this study, a hydrophobic nutrient, α-tocopherol (TOC), was successfully encapsulated into zein/CS complex. The fabrication parameters, including zein concentration, zein/CS weight ratio, and TOC loading percentage, were systematically investigated. The physicochemical and structural analysis showed that the electrostatic interactions and hydrogen bonds were major forces responsible for complex formation. The scanning electron microscopy study revealed the spherical nature with smooth surface of complex. TOC encapsulation was also evidenced by differential scanning calorimetry. The particle size and zeta potential of the complex varied from 200 to 800 nm and +22.8 to +40.9 mV, respectively. The kinetic release profile of the TOC showed burst effect followed by slow release. Compared with zein nanoparticles, zein/CS complex provided better protection of TOC release against gastrointestinal conditions, due to CS coatings. Zein/CS complex is believed to be a promising delivery system for supplementation or treatment of hydrophobic nutrients or drugs.
Collapse
|
21
|
Lee JS, Kim GH, Lee HG. Characteristics and antioxidant activity of Elsholtzia splendens extract-loaded nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:3316-3321. [PMID: 20187637 DOI: 10.1021/jf904091d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Elsholtzia splendens extract-loaded chitosan nanoparticles prepared by ionic gelation were characterized by particle size, zeta potential, entrapment efficiency, and loading efficiency. As the initial concentration of E. splendens extract was increased, the loading efficiency and zeta potential significantly increased, whereas the entrapment efficiency and particle size significantly decreased. The optimum concentration of E. splendens extract for maximum loading efficiency was found to be 0.8 mg/mL. Both free E. splendens extract and E. splendens extract-loaded chitosan nanoparticles showed concentration-dependent antioxidant activity. However, the lipid peroxidation inhibitory activity of E. splendens extract was effectively enhanced when it was entrapped within chitosan nanoparticles. Chitosan nanoparticle encapsulation is therefore a potentially valuable technique for improving the antioxidant activity of E. splendens extract.
Collapse
Affiliation(s)
- Ji-Soo Lee
- Department of Food and Nutrition, Hanyang University, Seoul, Republic of Korea
| | | | | |
Collapse
|