1
|
Sharma NK, Vishwakarma J, Rai S, Alomar TS, AlMasoud N, Bhattarai A. Green Route Synthesis and Characterization Techniques of Silver Nanoparticles and Their Biological Adeptness. ACS OMEGA 2022; 7:27004-27020. [PMID: 35967040 PMCID: PMC9366950 DOI: 10.1021/acsomega.2c01400] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/13/2022] [Indexed: 05/13/2023]
Abstract
The development of the most reliable and green techniques for nanoparticle synthesis is an emerging step in the area of green nanotechnology. Many conventional approaches used for nanoparticle (NP) synthesis are expensive, deadly, and nonenvironmental. In this new era of nanotechnology, to overcome such concerns, natural sources which work as capping and reducing agents, including bacteria, fungi, biopolymers, and plants, are suitable candidates for synthesizing AgNPs. The surface morphology and applications of AgNPs are significantly pretentious to the experimental conditions by which they are synthesized. Available scattered information on the synthesis of AgNPs comprises the influence of altered constraints and characterization methods such as FTIR, UV-vis, DLS, SEM, TEM, XRD, EDX, etc. and their properties and applications. This review focuses on all the above-mentioned natural sources that have been used for AgNP synthesis recently. The green routes to synthesize AgNPs have established effective applications in various areas, including biosensors, magnetic resonance imaging (MRI), cancer treatment, surface-enhanced Raman spectroscopy (SERS), antimicrobial agents, drug delivery, gene therapy, DNA analysis, etc. The existing boundaries and prospects for metal nanoparticle synthesis by the green route are also discussed herein.
Collapse
Affiliation(s)
- Nitin Kumar Sharma
- Department
of Chemical Engineering, Indian Institute
of Technology, Kanpur 208016, India
- Shri
Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, India
| | - Jyotsna Vishwakarma
- K. B.
Pharmacy Institute of Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, India
| | - Summi Rai
- Department
of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
| | - Taghrid S. Alomar
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Najla AlMasoud
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ajaya Bhattarai
- Department
of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
- or
| |
Collapse
|
2
|
Saeed Al-Thubaiti K, Khan Z, Ahmad Al-Thabaiti S. Effects of CTAB and SDS on the nucleation and growth of MnO2 and Ag-doped MnO2 nanoparticles formation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Yaseen B, Gangwar C, Kumar I, Sarkar J, Naik RM. Detailed Kinetic and Mechanistic Study for the Preparation of Silver Nanoparticles by a Chemical Reduction Method in the Presence of a Neuroleptic Agent (Gabapentin) at an Alkaline pH and its Characterization. ACS OMEGA 2022; 7:5739-5750. [PMID: 35224334 PMCID: PMC8867805 DOI: 10.1021/acsomega.1c05499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/27/2022] [Indexed: 05/05/2023]
Abstract
For the very first time, a detailed kinetic study for the preparation of silver nanoparticles (silver NPs) by neuroleptic agent gabapentin (GBP) in the absence of a stabilizer has been reported in this investigation. This paper is devoted to the preparation of silver nanoparticles by a chemical reduction method in which gabapentin acts as both a reductant and a stabilizer, and AgNO3 is used as a source of Ag+ ions and NaOH for maintaining the alkaline medium. A UV-visible spectrophotometer is used to monitor the progress of the reaction kinetics in an aqueous medium by changing the concentration of different variables such as AgNO3, NaOH, and gabapentin at 40 °C. It is found that the reaction rate follows a pseudo-first-order reaction. The thermodynamic activation parameters were also studied at five different temperatures (303, 308, 313, 318, and 323 K) and used in the support of the proposed mechanistic scheme for the formation of silver nanoparticles. The prepared silver nanoparticles were characterized using different techniques: UV-visible spectrophotometry, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and powder X-ray diffraction. The average particle size was observed in the range of 5-45 nm.
Collapse
|
4
|
Durán-Toro V, Rezwan K, Bühring SI, Maas M. Arsenic and sulfur nanoparticle synthesis mimicking environmental conditions of submarine shallow-water hydrothermal vents. J Environ Sci (China) 2022; 111:301-312. [PMID: 34949360 DOI: 10.1016/j.jes.2021.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 06/14/2023]
Abstract
Arsenic and sulfur mineralization is a natural phenomenon occurring in hydrothermal systems where parameters like temperature and organic matter (OM) can influence the mobilization of the toxic metalloid in marine environments. In the present study we analyze the influence of temperature and OM (particularly sulfur-containing additives) on As and S precipitation based on the recent discovery of As-rich nanoparticles in the hydrothermal system near the coast of the Greek island Milos. To this end, we experimentally recreate the formation of amorphous colloidal particles rich in As and S via acidification (pH 3-4) of aqueous precursors at various temperatures. At higher temperatures, we observe the formation of monodisperse particles within the first 24 h of the experiment, generating colloidal particles with diameters close to 160 nm. The S:As ratio and particle size of the synthetized particles closely correlates with values for AsxSy particles detected in the hydrothermal system off Milos. Furthermore, organic sulfur containing additives (cysteine and glutathione, GSH) are a key factor in the process of nucleation and growth of amorphous colloidal AsxSy particles and, together with the temperature gradient present in shallow hydrothermal vents, dictate the stabilization of As-bearing nanomaterials in the environment. Based on these findings, we present a simple model that summarizes our new insights into the formation and mobility of colloidal As in aquatic ecosystems. In this context, amorphous AsxSy particles can present harmful effects to micro- and macro-biota not foreseen in bulk As material.
Collapse
Affiliation(s)
- Vicente Durán-Toro
- MARUM ‒ Center for Marine Environmental Sciences, University of Bremen, Bremen 28359, Germany.
| | - Kurosch Rezwan
- Advanced Ceramics, University of Bremen, Bremen 28359, Germany; MAPEX - Center for Materials and Processes, University of Bremen, Bremen 28359, Germany
| | - Solveig I Bühring
- MARUM ‒ Center for Marine Environmental Sciences, University of Bremen, Bremen 28359, Germany
| | - Michael Maas
- Advanced Ceramics, University of Bremen, Bremen 28359, Germany; MAPEX - Center for Materials and Processes, University of Bremen, Bremen 28359, Germany.
| |
Collapse
|
5
|
Abutbul RE, Golan Y. 'Beneficial impurities' in colloidal synthesis of surfactant coated inorganic nanoparticles. NANOTECHNOLOGY 2021; 32:102001. [PMID: 33305737 DOI: 10.1088/1361-6528/abc0c7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colloidal synthesis of nanoparticles (NP) has advanced tremendously over the past 25 years, with an increasing number of research papers introducing nanomaterials with a variety of compositions, shapes, sizes, and phases. Although much progress has been achieved, commonly used synthetic procedures often fail to reproduce results, and the fine details of the syntheses are often disregarded. Reproducibility issues in synthesis can be ascribed to the effects of impurities, trace amounts of chemical moieties which significantly affect the reaction products. Impurities in NP synthesis are rarely reported or regularly studied, despite their impact, deleterious, or beneficial. This topical review discusses several case studies of colloidal NP synthesis where the sources and the chemistry of impurities are highlighted, and their role is examined.
Collapse
Affiliation(s)
- Ran Eitan Abutbul
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yuval Golan
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
6
|
Pem B, Toma M, Vrček V, Vinković Vrček I. Combined NMR and Computational Study of Cysteine Oxidation during Nucleation of Metallic Clusters in Biological Systems. Inorg Chem 2021; 60:4144-4161. [PMID: 33657797 DOI: 10.1021/acs.inorgchem.1c00321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The widespread biomedical applications of silver and gold nanoparticles (AgNPs and AuNPs, respectively) prompt the need for mechanistic evaluation of their interaction with biomolecules. In biological media, metallic NPs are known to transform by various pathways, especially in the presence of thiols. The interplay between metallic NPs and thiols may lead to unpredictable consequences for the health status of an organism. This study explored the potential events occurring during biotransformation, dissolution, and reformation of NPs in the thiol-rich biological media. The study employed a model system evaluating the interaction of cysteine with small-sized AgNPs and AuNPs. The interplay of cysteine on transformation and reformation pathways of these NPs was experimentally investigated by nuclear magnetic resonance (NMR) spectroscopy and supported by light scattering techniques and transmission electron microscopy (TEM). As the main outcome, Ag- or Au-catalyzed oxidation of cysteine to cystine was found to occur through generation of reactive oxygen species (ROS). Computational simulations confirmed this mechanism and the role of ROS in the oxidative dimerization of biothiol during NPs reformation. The obtained results represent valuable mechanistic data about the complex events during the transport of metallic NPs in thiol-rich biological systems that should be considered for the future biomedical applications of metal-based nanomaterials.
Collapse
Affiliation(s)
- Barbara Pem
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Mateja Toma
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Valerije Vrček
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Electrokinetic properties of cysteine-stabilized silver nanoparticles dispersed in suspensions and deposited on solid surfaces in the form of monolayers. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Self-assembly of cysteine-functionalized silver nanoparticles at solid/liquid interfaces. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.08.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Khan Z, Al-Thabaiti SA. Green synthesis of zero-valent Fe-nanoparticles: Catalytic degradation of rhodamine B, interactions with bovine serum albumin and their enhanced antimicrobial activities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:259-267. [DOI: 10.1016/j.jphotobiol.2018.02.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 01/10/2023]
|
10
|
Zaheer Z, Aazam ES. Seedless synthesis of nanocomposites, optical properties, and effects of additives on their surface resonance plasmon bands. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 182:87-94. [PMID: 28402909 DOI: 10.1016/j.saa.2017.03.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 06/07/2023]
Abstract
The work describes an easy seedless competitive chemical reduction method for the synthesis of Ag@Au/Ag bimetallic nanoparticles by mixing AgNO3, HAuCl4 and cysteine. Transmission electron microscope (TEM) images show that the large number of irregular, cross-linking, and aggregated Ag@Au/Ag are formed in a reaction mixture (HAuCl4+AgNO3+cysteine), whereas flower-like nanocomposites are obtained in presence of cetyltrimethylammonium bromide (CTAB), which acted as a shape-directing agent. Optical images reveal that the initially reaction proceeds through formation of purple color, which changes into dark brown color with the reaction time, indicating the formation of Ag@Au/Ag nanocomposites. The Ag+ has strong tendency to form complex with cysteine. Firstly, the reduction of Ag+ ions to Ag0 occurred by the HS group of the cysteine-Ag complex. Secondly, AuCl4- ions adsorbed on the positive surface of Ag0, which undergoes reduction by potential deposition, and leads to the formation of Ag@Au/Ag bimetallic nanoparticles. Inorganic electrolytes (NaCl, NaBr, NaNO3 and Na2SO4) have significant impact on the stability and aggregation of Ag@Au/Ag nanocomposites.
Collapse
Affiliation(s)
- Zoya Zaheer
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21413, Saudi Arabia.
| | - Elham Shafik Aazam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21413, Saudi Arabia
| |
Collapse
|
11
|
Khan Z, Hussain JI, Hashmi AA, AL-Thabaiti SA. Preparation and characterization of silver nanoparticles using aniline. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2013.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
12
|
|
13
|
Azodi M, Sultan Y, Ghoshal S. Dissolution Behavior of Silver Nanoparticles and Formation of Secondary Silver Nanoparticles in Municipal Wastewater by Single-Particle ICP-MS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:13318-13327. [PMID: 27993044 DOI: 10.1021/acs.est.6b03957] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ag nanoparticles (nAg) are used in various consumer products and a significant fraction is eventually discharged with municipal wastewater (WW). In this study we assessed the release of Ag from polyvinylpyrrolidone (PVP)- and citrate-coated 80 nm nAg in aerobic WW effluent and mixed liquor and the related changes in nAg size, using single particle ICP-MS (spICP-MS). The concentration of dissolved (nonparticulate) Ag in WW effluent was 0.89 ± 0.05 ppb at 168 h and was 71% lower than in deionized (DI) water, in batch reactors spiked with 5 × 106 PVP-nAg particles/mL (10 μg/L), an environmentally relevant concentration. Dissolved Ag in WW was partly reformed into ∼22 nm nAgxSy by inorganic sulfides and organosulfur dissolved organic carbon (DOC) after 120 h, whereas the parent nAg mean diameter decreased to 65.89 ± 0.9 nm. Reformation of nAgxSy from Ag+ also occurred in cysteine solutions but not in DI water, or humic and fulvic acid solutions. Dissolution experiments with nAg in WW mixed liquor showed qualitatively similar dissolution trends. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS) analyses indicated binding of thiol- and amine-containing DOC as well as inorganic sulfides with nAg. Those WW components, as well as limited dissolved oxygen, decreased dissolution in WW.
Collapse
Affiliation(s)
- Mehrnoosh Azodi
- Department of Civil Engineering, McGill University , Montreal, Quebec, Canada
| | - Yasir Sultan
- Environment and Climate Change Canada , Gatineau, Quebec, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University , Montreal, Quebec, Canada
| |
Collapse
|
14
|
Khan Z, Obaid AY. Seedless, copper-induced synthesis of stable Ag/Cu bimetallic nanoparticles and their optical properties. RSC Adv 2016. [DOI: 10.1039/c5ra26732c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this study, we demonstrate a sensitive and selective method for the seedless synthesis of Ag@Cu bimetallic nano-structured material based on the competitive coordination chemistry of cysteine with Cu2+ and Ag+.
Collapse
Affiliation(s)
- Zaheer Khan
- Department of Chemistry
- Faculty of Science
- King Abdulaziz University
- Jeddah
- Saudi Arabia
| | - Abdullah Yousif Obaid
- Department of Chemistry
- Faculty of Science
- King Abdulaziz University
- Jeddah
- Saudi Arabia
| |
Collapse
|
15
|
Biosynthesis of silver nanoparticles and its antibacterial and antifungal activities towards Gram-positive, Gram-negative bacterial strains and different species of Candida fungus. Bioprocess Biosyst Eng 2015; 38:1773-81. [PMID: 26017756 DOI: 10.1007/s00449-015-1418-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
Biomimetic and economic method for the synthesis of silver nanoparticles (AgNPs) with controlled size has been reported in presence of shape-directing cetlytrimethylammonium bromide (CTAB). Biochemical reduction of Ag(+) ions in micellar solution with an aqueous lemon extract produced spherical and polyhedral AgNPs with size ranging from 15 to 30 nm. The influence of [CTAB] and [lemon extract] on the size of particles, fraction of metallic silver and their antimicrobial properties is discussed. The AgNPs were evaluated for their antimicrobial activities (antibacterial and antifungal) against different pathogenic organisms. For this purpose, AgNPs were tested against two model bacteria (Staphylococcus aureus (MTCC3160) and Escherichia coli (MTCC405)) and three species of Candida fungus (Candida albicans (ATCC90028), Candida glabrata (ATCC90030) and Candida tropicalis (ATCC750). AgNPs were found to be highly toxic towards both bacteria. The inhibition action was due to the structural changes in the protein cell wall.
Collapse
|
16
|
Suchomel P, Kvitek L, Panacek A, Prucek R, Hrbac J, Vecerova R, Zboril R. Comparative study of antimicrobial activity of AgBr and Ag nanoparticles (NPs). PLoS One 2015; 10:e0119202. [PMID: 25781988 PMCID: PMC4363559 DOI: 10.1371/journal.pone.0119202] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/11/2015] [Indexed: 11/30/2022] Open
Abstract
The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60–70 nm) were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120–130 nm). The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends – the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains.
Collapse
Affiliation(s)
- Petr Suchomel
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University Olomouc, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, Czech Republic
| | - Libor Kvitek
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University Olomouc, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, Czech Republic
- * E-mail:
| | - Ales Panacek
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University Olomouc, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, Czech Republic
| | - Robert Prucek
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University Olomouc, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, Czech Republic
| | - Jan Hrbac
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, Czech Republic
| | - Renata Vecerova
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University Olomouc, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, Czech Republic
| |
Collapse
|
17
|
Bashir O, Hussain S, Khan Z, AL-Thabaiti SA. Encapsulation of silver nanocomposites and effects of stabilizers. Carbohydr Polym 2014; 107:167-73. [DOI: 10.1016/j.carbpol.2014.02.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/11/2014] [Accepted: 02/15/2014] [Indexed: 10/25/2022]
|
18
|
Paredes D, Ortiz C, Torres R. Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA). Int J Nanomedicine 2014; 9:1717-29. [PMID: 24729707 PMCID: PMC3979799 DOI: 10.2147/ijn.s57156] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been shown great interest because of their potential antibacterial effect. Recently, this has been increased due to resistance in some pathogenic bacteria strains to conventional antibiotics, which has initiated new studies to search for more effective treatments against resistant microorganisms. For these reasons, AgNPs have become an important approach for applications in nanobiotechnology in the development of antibiotic treatment of different bacterial infections. This study was aimed at synthesizing AgNPs using cysteine as a reducer agent and cetyl-tri-methyl-ammonium bromide as a stabilizer in order to obtain more efficient treatment against the pathogen bacteria Escherichia coli O157:H7. These AgNPs were characterized through UV-Vis spectroscopy, transmission electron microscopy, and dynamic light scattering. From these analyses, formation of spherical nanoparticles with an average size of 55 nm was confirmed. Finally, minimal inhibitory concentration (MIC) and minimal bactericide concentration (MBC) of these AgNPs against pathogenic strains E. coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA) were determined in both solid and liquid media. MIC and MBC values were around 0.25 μg/mL and 1 μg/mL, respectively. These parameters were comparable to those reported in the literature and were even more effective than other synthesized AgNPs.
Collapse
Affiliation(s)
- Daissy Paredes
- Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, Colombia
| | - Claudia Ortiz
- Escuela de Bacteriología y Laboratorio Clínico, Facultad de Salud, Universidad Industrial de Santander, Colombia
| | - Rodrigo Torres
- Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, Colombia
| |
Collapse
|
19
|
Extracellular biosynthesis of silver nanoparticles: effects of shape-directing cetyltrimethylammonium bromide, pH, sunlight and additives. Bioprocess Biosyst Eng 2013; 37:953-64. [PMID: 24096857 DOI: 10.1007/s00449-013-1067-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/19/2013] [Indexed: 01/19/2023]
Abstract
The work reported in this paper describes the preparation, morphology, stability and sensitivity of Ag-nanoparticles towards sunlight using Allium sativum, garlic extract for the first time. The synthesized silver particles show an intense surface plasmon resonance band in the visible region at 410 nm. The position of the wavelength maxima, blue and red shift, strongly depends on the sunlight and pH. TEM analysis revealed the presence of spherical, different size (from 5.0 to 30 nm) and garlic constituents bio-conjugated, stabilized and/or layered silver nanoparticles. The concentrations of garlic extract, cetyltrimethylammonium bromide, Ag(+) ions and reaction time play vital roles for nucleus formation and the growth processes. Sulfur-containing biomolecules of extract, especially cysteine, are responsible for the reduction of Ag(+) ions into metallic Ag(0). The agglomeration number of the silver nanoparticles (N Ag) and the average number of free electrons per particle (n fe) are calculated and discussed.
Collapse
|
20
|
Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev 2013; 113:4708-54. [PMID: 23488929 DOI: 10.1021/cr300288v] [Citation(s) in RCA: 512] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sonja Eckhardt
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| | | | | | | | | | | |
Collapse
|
21
|
Soni SS, Vekariya RL, Aswal VK. Ionic liquid induced sphere-to-ribbon transition in the block copolymer mediated synthesis of silver nanoparticles. RSC Adv 2013. [DOI: 10.1039/c3ra41138a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Khan Z, Al-Thabaiti SA, Al-Nowaiser F, Obaid AY, Al-Youbi AO, Malik MA. Kinetics of silver nanoparticle growth in aqueous polymer solutions. ARAB J CHEM 2012. [DOI: 10.1016/j.arabjc.2010.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
23
|
Khan MM, Kalathil S, Lee JT, Cho MH. Synthesis of Cysteine Capped Silver Nanoparticles by Electrochemically Active Biofilm and their Antibacterial Activities. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.8.2592] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Shape-directing role of cetyltrimethylammonium bromide in the green synthesis of Ag-nanoparticles using Neem (Azadirachta indica) leaf extract. Colloids Surf B Biointerfaces 2012; 95:229-34. [DOI: 10.1016/j.colsurfb.2012.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 02/29/2012] [Accepted: 03/02/2012] [Indexed: 11/17/2022]
|
25
|
Liu H, Ye Y, Chen J, Lin D, Jiang Z, Liu Z, Sun B, Yang L, Liu J. In situ photoreduced silver nanoparticles on cysteine: an insight into the origin of chirality. Chemistry 2012; 18:8037-41. [PMID: 22639423 DOI: 10.1002/chem.201200397] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Indexed: 11/09/2022]
Abstract
A delicate system, that is, in situ photoreduced silver metal nanoparticles (NPs) formed from a combination of Ag(+) complexes with L- or D-cysteine, enables the introduction of chirality. This chirality is essentially programmed by a synergetic interplay between the CO(2)(-) and NH(3)(+) groups on cysteine, rather than the formation of a chiral metal core (see figure).
Collapse
Affiliation(s)
- Honglin Liu
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Csapó E, Patakfalvi R, Hornok V, Tóth LT, Sipos A, Szalai A, Csete M, Dékány I. Effect of pH on stability and plasmonic properties of cysteine-functionalized silver nanoparticle dispersion. Colloids Surf B Biointerfaces 2012; 98:43-9. [PMID: 22652358 DOI: 10.1016/j.colsurfb.2012.03.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/10/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
Citrate-stabilized spherical silver nanoparticles (Ag NPs) with d=8.25±1.25 nm diameter were prepared and functionalized with L-cysteine (Cys) in aqueous dispersion. The nanosilver-cysteine interactions have been investigated by Raman and (1)H NMR spectroscopy. The effect of pH on stability of biofunctionalized Ag NPs was investigated. The cysteine-capped nanosilver dispersions remain stable at higher pH (pH>7), while the degree of aggregation increased as the pH decreased. Below pH ~7, the characteristic surface plasmon band of bare silver nanoparticles was back-shifted from λ(measured)(bareAgNP)=391 nm to λ(measured)(1)=387-391 nm, while the presence of a new band at λ(measured)(2)=550-600 nm was also observed depending on pH. Finite element method (FEM) was applied to numerically compute the absorption spectra of aqueous dispersions containing bare and cysteine-functionalized Ag NPs at different pH. Both the dynamic light scattering (DLS) measurements, Zeta potential values and the transmission electron microscopic (TEM) images confirmed our supposition. Namely, electrostatic interaction arose between the deprotonated carboxylate (COO(-)) and protonated amino groups (NH(3)(+)) of the amino acid resulting in cross-linking network of the Ag NPs between pH ~3 and 7. If the pH is measurable lower than ~3, parallel with the protonation of citrate and L-cysteine molecules the connection of the particles via l-cysteine is partly decomposed resulting in decrease of second plasmon band intensity.
Collapse
Affiliation(s)
- Edit Csapó
- Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Furutani M, Kudo K. A trifunctional photopatterning component derived from cysteine: fabrication of a deposited silver micropattern. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm13448a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Khan Z, Al-Nowaiser FM. Effect of Poly(Vinyl Alcohol) on the Size, Shape, and Rate of Silver Nanoparticles Formation. J DISPER SCI TECHNOL 2011. [DOI: 10.1080/01932691.2010.505875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Khan Z, AL-Thabaiti SA, Obaid AY, Khan ZA, Al-Youbi AO. Effects of solvents on the stability and morphology of CTAB-stabilized silver nanoparticles. Colloids Surf A Physicochem Eng Asp 2011. [DOI: 10.1016/j.colsurfa.2011.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Silver nanoplates and nanowires by a simple chemical reduction method. Colloids Surf B Biointerfaces 2011; 86:87-92. [DOI: 10.1016/j.colsurfb.2011.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 03/17/2011] [Indexed: 11/23/2022]
|
31
|
Growth of Ag-nanoparticles using aspartic acid in aqueous solutions. J Colloid Interface Sci 2011; 354:190-5. [DOI: 10.1016/j.jcis.2010.10.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 10/20/2010] [Accepted: 10/21/2010] [Indexed: 11/18/2022]
|
32
|
Preparation and characterization of silver nanoparticles by chemical reduction method. Colloids Surf B Biointerfaces 2011; 82:513-7. [DOI: 10.1016/j.colsurfb.2010.10.008] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 10/05/2010] [Indexed: 11/23/2022]
|