1
|
Mittal R, Gupta N. pH-dependent Synthesis and Interactions of Fluorescent L-Histidine Capped Copper Nanoclusters with Metal Ions. J Fluoresc 2024; 34:2085-2092. [PMID: 37698760 DOI: 10.1007/s10895-023-03433-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
In this work, L-Histidine-protected copper nanoclusters synthesized by changing the pH levels of precursor solution have been shown to display different emission wavelengths and intensities. As determined by mass spectrometry, nanoclusters Cu3L2 synthesized at acidic pH have 3 atoms in their core and emit in the greenish-yellow region, and nanoclusters Cu2L2, synthesized in the basic conditions have 2 atoms in their core and emit in the blue-green region. They are expected to have coordination through the carboxylate group and nitrogen of the imidazole ring of histidine ligand, respectively. Metal ions Mg2+, Mn2+, Zn2+, and Pb2+ selectively enhance the interaction between carboxylate - copper metal core and increase the emission intensity of Cu3L2. These metal ions weaken the interaction between imidazole nitrogen and copper metal core and quench the emission intensity of Cu2L2. As synthesized, nanoclusters exhibit good water solubility and photostability, they can act as fluorescent probes to sense the metal ions, therefore, they were utilized for the optical sensing of the mentioned metal ions. Fluorescent nanoclusters were found to sense even a very low concentration of metal ions with a limit of detection (3 σ/slope) in nanomolar range.
Collapse
Affiliation(s)
- Ritika Mittal
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sector-3, Dwarka, Delhi, 110078, India
| | - Nancy Gupta
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sector-3, Dwarka, Delhi, 110078, India.
| |
Collapse
|
2
|
Liu Z, Yan Y, Li J, Zhou W, Gao H, Lu R. Rapid visual dual-mode detection of Zr(IV) based on L-histidine functionalized gold nanoparticles. ANAL SCI 2024; 40:1269-1278. [PMID: 38575844 DOI: 10.1007/s44211-024-00557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
Heavy metal pollution has always been a great threat to human health and safety. Compared with other heavy metals, although zirconium ion (Zr(IV)) is equally harmful, due to the lack of research on Zr(IV) in the biological systems and environment, its detection does not seem to have received the attention it deserves. Herein, a rapid visual dual-mode detection (colorimetric and chrominance method) of Zr(IV) based on L-histidine functionalized gold nanoparticles (HIS-AuNPs) has been reported. AuNPs and HIS-AuNPs before and after adding Zr(IV) were characterized by UV-Vis, TEM, DLS, Zeta potential, EDS and FT-IR, etc. These results showed that L-histidine was successfully modified on the surface of AuNPs by forming a stable Au-N bond, and its modification had little effect on the dispersion degree of AuNPs. After the addition of Zr(IV), interaction of this metal ion with the imidazolyl group on L-histidine can obviously cause the aggregation of HIS-AuNPs within 12 min, and the dispersion state and particle size of HIS-AuNPs can be significantly changed. These two detection modes were established by means of absorbance and color change of solution, and being used in addition and recovery experiments of Zr(IV) in natural water. Under the optimal conditions, these two modes exhibited good linearity within 15-70 and 20-100 μmol L-1, and limit of detection of 2.62 and 6.25 μmol L-1. The proposed method was highly sensitive and selective, which provided a new convenient way to realize the detection of Zr(IV).
Collapse
Affiliation(s)
- Zhili Liu
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Yumei Yan
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Jing Li
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Wenfeng Zhou
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Haixiang Gao
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China
| | - Runhua Lu
- Department of Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, China.
| |
Collapse
|
3
|
Rai A, Seena S, Gagliardi T, Palma PJ. Advances in the design of amino acid and peptide synthesized gold nanoparticles for their applications. Adv Colloid Interface Sci 2023; 318:102951. [PMID: 37392665 DOI: 10.1016/j.cis.2023.102951] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
The field of therapeutics and diagnostics is advanced by nanotechnology-based approaches including the spatial-temporal release of drugs, targeted delivery, enhanced accumulation of drugs, immunomodulation, antimicrobial action, and high-resolution bioimaging, sensors and detection. Various compositions of nanoparticles (NPs) have been developed for biomedical applications; however, gold NPs (Au NPs) have attracted tremendous attention due to their biocompatibility, easy surface functionalization and quantification. Amino acids and peptides have natural biological activities as such, their activities enhance several folds in combination with NPs. Although peptides are extensively used to produce various functionalities of Au NPs, amino acids have also gained similar interests in producing amino acid-capped Au NPs due to the availability of amine, carboxyl and thiol functional groups. Henceforth, a comprehensive review is needed to timely bridge the synthesis and the applications of amino acid and peptide-capped Au NPs. This review aims to describe the synthesis mechanism of Au NPs using amino acids and peptides along with their applications in antimicrobial, bio/chemo-sensors, bioimaging, cancer therapy, catalysis, and skin regeneration. Moreover, the mechanisms of various activities of amino acid and peptide capped-Au NPs are presented. We believe this review will motivate researchers to better understand the interactions and long-term activities of amino acid and peptide-capped Au NPs for their success in various applications.
Collapse
Affiliation(s)
- Akhilesh Rai
- CNC- Center for Neuroscience and Cell Biology and Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal.
| | - Sahadevan Seena
- MARE - Marine and Environmental Sciences Centre, ARNET-Aquatic Research Network, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - Paulo J Palma
- Faculty of Medicine, University of Coimbra, Portugal
| |
Collapse
|
4
|
Boas D, Remennik S, Reches M. Peptide-capped Au and Ag nanoparticles: Detection of heavy metals and photochemical core/shell formation. J Colloid Interface Sci 2023; 631:66-76. [DOI: 10.1016/j.jcis.2022.10.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022]
|
5
|
Ditta SA, Yaqub A, Tanvir F, Rashid M, Ullah R, Zubair M, Ali S, Anjum KM. Gold nanoparticles capped with L-glycine, L-cystine, and L-tyrosine: toxicity profiling and antioxidant potential. JOURNAL OF MATERIALS SCIENCE 2023; 58:2814-2837. [PMID: 36743265 PMCID: PMC9888356 DOI: 10.1007/s10853-023-08209-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Biomolecules-based surface modifications of nanomaterials may yield effective and biocompatible nanoconjugates. This study was designed to evaluate gold nanoconjugates (AuNCs) for their altered antioxidant potential. Gold nanoparticles (AuNPs) and their conjugates gave SPR peaks in the ranges of 512-525 nm, with red or blueshift for different conjugates. Cys-AuNCs demonstrated enhanced (p < 0.05) and Gly-AuNCs (p > 0.05) displayed reduced DPPH activity. Gly-AuNCs and Tyr-AuNCs displayed enhanced ferric-reducing power and hydrogen peroxide scavenging activity, respectively. Cadmium-intoxicated mice were exposed to gold nanomaterials, and the level of various endogenous parameters, i.e., CAT, GST, SOD, GSH, and MTs, was evaluated. GSH and MTs in liver tissues of the cadmium-exposed group (G2) were elevated (p < 0.05), while other groups showed nonsignificance deviations than the control group. It is concluded that these nanoconjugates might provide effective nanomaterials for biomedical applications. However, more detailed studies for their safety profiling are needed before their practical applications.
Collapse
Affiliation(s)
- Sarwar Allah Ditta
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Atif Yaqub
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Fouzia Tanvir
- Department of Zoology, University of Okara, Okara, 56300 Pakistan
| | - Muhammad Rashid
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Rehan Ullah
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Muhammad Zubair
- Department of Wildlife and Ecology, The University of Veterinary and Animal Sciences, Lahore, 54000 Pakistan
| | - Shaista Ali
- Department of Chemistry, Government College University, Lahore, 54000 Pakistan
| | - Khalid Mahmood Anjum
- Department of Wildlife and Ecology, The University of Veterinary and Animal Sciences, Lahore, 54000 Pakistan
| |
Collapse
|
6
|
Colorimetric sensor arrays for the differentiation of baijiu based on amino-acid-modified gold nanoparticles. Sci Rep 2022; 12:18596. [PMID: 36329105 PMCID: PMC9633599 DOI: 10.1038/s41598-022-21234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
It is of great significance for quality control to realize the discrimination for baijiu from different brands and origins. Strong-aroma-type baijiu (SAB), one of the most important Chinese aroma-type baijiu, exhibits the largest variety and market share. In this study, we proposed colorimetric sensor arrays based on gold nanoparticles (AuNPs) modified with different amino acids (AAs) to recognize the organic acids, and further distinguish different SABs. Three representative AAs, namely methionine (Met), tryptophan (Trp), and histidine (His), were selected to modify the AuNPs surface. The investigation of the effect of the main ingredients of SAB on AA@AuNPs aggregation confirmed that this aggregation mainly resulted from organic acids. Moreover, this aggregation was successfully used for differentiating 11 organic acids. Different pH conditions can not only cause changes of the content of organic acids in baijiu, but also disrupt the balance among flavor substances of baijiu to some extent. Consequently, the AA@AuNPs arrays under two pH conditions have been successfully applied to distinguish 14 kinds of SABs from different brands and origins. The proposed colorimetric sensor method is simple, rapid, and visualized and provides a potential application prospect for the quality control of baijiu and other alcoholic beverages.
Collapse
|
7
|
Khan W, Jamila N, Khan N, Masood R, Wen Nee T, Bibi N, Ho Hong J, Atlas A. Application of Forsskaolea tenacissima mediated gold nanoparticles in dyes discolouration, antibiotics removal, and metal ions detection. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Li S, Li G, Shi H, Yang M, Tan W, Wang H, Yang W. A fluorescent probe based on tryptophan-coated silver nanoclusters for copper (II) ions detection and bioimaging in cells. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Zhang B, Liu W, Wu X, Zhu J, Hu W, El Jaouhari A, Liu X. Facile Preparation of Fluorescent Carbon Dots from Glutathione and l-Tryptophan for Sensitive and Selective Off/On Detection of Fe 3+ Ions in Serum and Their Bioimaging Application. ACS OMEGA 2022; 7:7853-7864. [PMID: 35284715 PMCID: PMC8912430 DOI: 10.1021/acsomega.1c06757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
In the past decade, carbon dots (CDs) have attracted considerable attention due to their excellent properties such as low toxicity, good biocompatibility, good fluorescence imaging, etc. Here, glutathione and l-tryptophan were used as carbon sources to hydrothermally synthesize CDs for sensitive and selective off/on detection of Fe3+ ions. The CDs are spherical nanoparticles with an average particle size of 3.8 nm and the presence of organic groups such as hydroxyl, carboxyl, sulfhydryl, and amino groups on their surface. The experiment results display that Fe3+ ions can be selectively and sensitively detected by quenching the fluorescence of CDs. Moreover, the fluorescence of the CDs+Fe3+ system can be restored after adding ascorbic acid. Thus, an off/on fluorescent probe for the determination of Fe3+ can be formed using the as-synthesized CDs solution. The CDs show a good linear range of 0-13.89 mM and a 0.0331 μM limit of detection for Fe3+, and the most probable mechanism concluded from ultraviolet-visible spectroscopy, electrospray ionization-mass spectrometry, and fluorescence spectrophotometry is a mixed static and dynamic quenching. Furthermore, the cytotoxicity experiment results show that CDs have low toxicity and can be used for intracellular imaging.
Collapse
|
10
|
Histidine Functionalized Gold Nanoparticles for Screening Aminoglycosides and Nanomolar Level Detection of Streptomycin in Water, Milk, and Whey. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aminoglycoside (AMG) antibiotics are being applied to treat infections caused by Gram-negative bacteria, mainly in livestock, and are prescribed only in severe cases because of their adverse impacts on human health and the environment. Monitoring antibiotic residues in dairy products relies on the accessibility of portable and efficient analytical techniques. Presently, high-throughput screening techniques have been proposed to detect several antimicrobial drugs having identical structural and functional features. The L-histidine functionalized gold nanoparticles (His@AuNPs) do not form a complex with other tested antibiotic classes but show high selectivity for AMG antibiotics. We used ligand-induced aggregation of His@AuNPs as a rapid and sensitive localized surface plasmon resonance (LSPR) assay for AMG antibiotics, producing longitudinal extinction shifts at 660 nm. Herein, we explore the practical application of His@AuNPs to detect streptomycin spiked in water, milk, and whey fraction of milk with nanomolar level sensitivity. The ability of the analytical method to recognize target analytes sensitively and rapidly is of great significance to perform monitoring, thus would certainly reassure widespread use of AMG antibiotics. The biosynthesis of hybrid organic–inorganic metal nanoparticles like His@AuNPs with desired size distribution, stability, and specific host–guest recognition proficiency, would further facilitate applications in various other fields.
Collapse
|
11
|
Mohammed Asik R, Manikkaraja C, Tamil Surya K, Suganthy N, Priya Aarthy A, Mathe D, Sivakumar M, Archunan G, Padmanabhan P, Gulyas B. Anticancer Potential of L-Histidine-Capped Silver Nanoparticles against Human Cervical Cancer Cells (SiHA). NANOMATERIALS 2021; 11:nano11113154. [PMID: 34835918 PMCID: PMC8618575 DOI: 10.3390/nano11113154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
This study reports the synthesis of silver nanoparticles using amino acid L-histidine as a reducing and capping agent as an eco-friendly approach. Fabricated L-histidine-capped silver nanoparticles (L-HAgNPs) were characterized by spectroscopic and microscopic studies. Spherical shaped L-HAgNPs were synthesized with a particle size of 47.43 ± 19.83 nm and zeta potential of -20.5 ± 0.95 mV. Results of the anticancer potential of L-HAgNPs showed antiproliferative effect against SiHa cells in a dose-dependent manner with an IC50 value of 18.25 ± 0.36 µg/mL. Fluorescent microscopic analysis revealed L-HAgNPs induced reactive oxygen species (ROS) mediated mitochondrial dysfunction, leading to activation of apoptotic pathway and DNA damage eventually causing cell death. To conclude, L-HAgNPs can act as promising candidates for cervical cancer therapy.
Collapse
Affiliation(s)
- Rajmohamed Mohammed Asik
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, India; (R.M.A.); (C.M.); (K.T.S.)
| | - Chidhambaram Manikkaraja
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, India; (R.M.A.); (C.M.); (K.T.S.)
| | - Karuppusamy Tamil Surya
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, India; (R.M.A.); (C.M.); (K.T.S.)
| | - Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, India;
| | - Archunan Priya Aarthy
- Department of Obstetrics and Gynecology, Rabindra Nath Tagore Medical College, Udaipur 313001, India;
| | - Domokos Mathe
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary;
- CROmed Translational Research Centers Ltd., 1094 Budapest, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), 1094 Budapest, Hungary
| | | | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, India; (R.M.A.); (C.M.); (K.T.S.)
- Dean-Research, Marudupandiyar College, Thanjavur 613403, India
- Correspondence: (G.A.); (P.P.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore;
- Cognitive Neuroimaging Centre, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
- Correspondence: (G.A.); (P.P.)
| | - Balazs Gulyas
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore;
- Cognitive Neuroimaging Centre, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| |
Collapse
|
12
|
Liu L, Jiang H, Wang X. Functionalized gold nanomaterials as biomimetic nanozymes and biosensing actuators. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Water-soluble luminescent gold nanoclusters reduced and protected by histidine for sensing of barbaloin and temperature. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Govindaraju K, Vasantharaja R, Uma Suganya K, Anbarasu S, Revathy K, Pugazhendhi A, Karthickeyan D, Singaravelu G. Unveiling the anticancer and antimycobacterial potentials of bioengineered gold nanoparticles. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Elumalai S, Bathir Jaber S, Chandrasekaran S, Ogawa M. An experimental and steered molecular dynamics simulation approach to histidine assisted liquid-phase exfoliation of graphite into few-layer graphene. Phys Chem Chem Phys 2020; 22:9910-9914. [PMID: 32255462 DOI: 10.1039/d0cp01033b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A simple and green approach to exfoliate graphite in water was developed by its reaction with an amino acid, histidine (His), resulting in the spatial expansion of the interlayer space. Subsequent sonication led to few-layered nanosheets of graphene in water. Steered molecular dynamics (MD) simulations revealed that the exfoliating graphene sheet underwent sheered motion before completely scaling off from the other layer.
Collapse
Affiliation(s)
- Satheeshkumar Elumalai
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, 555 Moo 1 Payupnai, Rayong 21210, Thailand.
| | - Simahudeen Bathir Jaber
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India
| | | | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, 555 Moo 1 Payupnai, Rayong 21210, Thailand.
| |
Collapse
|
16
|
Sultana S, Alzahrani N, Alzahrani R, Alshamrani W, Aloufi W, Ali A, Najib S, Siddiqui NA. Stability issues and approaches to stabilised nanoparticles based drug delivery system. J Drug Target 2020; 28:468-486. [PMID: 31984810 DOI: 10.1080/1061186x.2020.1722137] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nanoparticles form the fundamental building blocks for many exciting applications in various scientific disciplines due to its unique features such as large surface to mass ratio, targeting potential, ability to adsorbed and carry other compound which makes them suitable for biomedical applications. However, the problem of the large-scale synthesis of nanoparticles remains challenging due to physical instability associated with nanoparticles which lead to generation of aggregates particles with high polydispersity index (PDI) indicating low particle homogeneity and eventually loss of their special nanoscale properties. The stabilisation concept can be generated by repulsive electrostatic force, which nanoparticles experience, when they are surrounded by a double layer of electric charges. Selection of proper stabiliser will govern the stability of NPs and ultimately development of optimised drug delivery system. This review summarises mechanism of physical instability issues likely to be encountered during the development of nanoformulations. It also discusses potential stabilising agents used so far and their mechanism in achieving stable nanosystems.
Collapse
Affiliation(s)
| | | | | | | | - Waad Aloufi
- Pharmaceutics, Taif University, Taif, Saudi Arabia
| | - Amena Ali
- Pharmaceutical Chemistry, Taif University, Taif, Saudi Arabia
| | - Shehla Najib
- Pharmacognosy and Phytochemistry, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
17
|
Ungor D, Dékány I, Csapó E. Reduction of Tetrachloroaurate(III) Ions With Bioligands: Role of the Thiol and Amine Functional Groups on the Structure and Optical Features of Gold Nanohybrid Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1229. [PMID: 31470660 PMCID: PMC6780550 DOI: 10.3390/nano9091229] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022]
Abstract
In this review, the presentation of the synthetic routes of plasmonic gold nanoparticles (Au NPs), fluorescent gold nanoclusters (Au NCs), as well as self-assembled Au-containing thiolated coordination polymers (Au CPs) was highlighted. We exclusively emphasize the gold products that are synthesized by the spontaneous interaction of tetrachloroaurate(III) ions (AuCl4¯) with bioligands using amine and thiolate derivatives, including mainly amino acids. The dominant role of the nature of the applied reducing molecules as well as the experimental conditions (concentration of the precursor metal ion, molar ratio of the AuCl4¯ ions and biomolecules; pH, temperature, etc.) of the syntheses on the size and structure-dependent optical properties of these gold nanohybrid materials have been summarized. While using the same reducing and stabilizing biomolecules, the main differences on the preparation conditions of Au NPs, Au NCs, and Au CPs have been interpreted and the reducing capabilities of various amino acids and thiolates have been compared. Moreover, various fabrication routes of thiol-stabilized plasmonic Au NPs, as well as fluorescent Au NCs and self-assembled Au CPs have been presented via the formation of -(Au(I)-SR)n- periodic structures as intermediates.
Collapse
Affiliation(s)
- Ditta Ungor
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. square 1, Szeged, Hungary
| | - Imre Dékány
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. square 1, Szeged, Hungary
| | - Edit Csapó
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. square 1, Szeged, Hungary.
- MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, University of Szeged, H-6720 Dóm square 8, Szeged, Hungary.
| |
Collapse
|
18
|
Trapani M, Castriciano MA, Romeo A, De Luca G, Machado N, Howes BD, Smulevich G, Scolaro LM. Nanohybrid Assemblies of Porphyrin and Au 10 Cluster Nanoparticles. NANOMATERIALS 2019; 9:nano9071026. [PMID: 31323800 PMCID: PMC6669571 DOI: 10.3390/nano9071026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/26/2022]
Abstract
The interaction between gold sub-nanometer clusters composed of ten atoms (Au10) and tetrakis(4-sulfonatophenyl)porphyrin (TPPS) was investigated through various spectroscopic techniques. Under mild acidic conditions, the formation, in aqueous solutions, of nanohybrid assemblies of porphyrin J-aggregates and Au10 cluster nanoparticles was observed. This supramolecular system tends to spontaneously cover glass substrates with a co-deposit of gold nanoclusters and porphyrin nanoaggregates, which exhibit circular dichroism (CD) spectra reflecting the enantiomorphism of histidine used as capping and reducing agent. The morphology of nanohybrid assemblies onto a glass surface was revealed by atomic force microscopy (AFM), and showed the concomitant presence of gold nanoparticles with an average size of 130 nm and porphyrin J-aggregates with lengths spanning from 100 to 1000 nm. Surface-enhanced Raman scattering (SERS) was observed for the nanohybrid assemblies.
Collapse
Affiliation(s)
- Mariachiara Trapani
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina V. le F. Stagno D'Alcontres, 3198166 Messina, Italy
| | - Maria Angela Castriciano
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina V. le F. Stagno D'Alcontres, 3198166 Messina, Italy.
| | - Andrea Romeo
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina V. le F. Stagno D'Alcontres, 3198166 Messina, Italy
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali and C.I.R.C.M.S.B., University of Messina V. le F. Stagno D'Alcontres, 3198166 Messina, Italy
| | - Giovanna De Luca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali and C.I.R.C.M.S.B., University of Messina V. le F. Stagno D'Alcontres, 3198166 Messina, Italy
| | - Nelson Machado
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (Fi), Italy
| | - Barry D Howes
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (Fi), Italy
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (Fi), Italy
| | - Luigi Monsù Scolaro
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina V. le F. Stagno D'Alcontres, 3198166 Messina, Italy.
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali and C.I.R.C.M.S.B., University of Messina V. le F. Stagno D'Alcontres, 3198166 Messina, Italy.
| |
Collapse
|
19
|
Biao L, Tan S, Meng Q, Gao J, Zhang X, Liu Z, Fu Y. Green Synthesis, Characterization and Application of Proanthocyanidins-Functionalized Gold Nanoparticles. NANOMATERIALS 2018; 8:nano8010053. [PMID: 29361727 PMCID: PMC5791140 DOI: 10.3390/nano8010053] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 11/16/2022]
Abstract
Green synthesis of gold nanoparticles using plant extracts is one of the more promising approaches for obtaining environmentally friendly nanomaterials for biological applications and environmental remediation. In this study, proanthocyanidins-functionalized gold nanoparticles were synthesized via a hydrothermal method. The obtained gold nanoparticles were characterized by ultraviolet and visible spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray diffraction (XRD) measurements. UV-Vis and FTIR results indicated that the obtained products were mainly spherical in shape, and that the phenolic hydroxyl of proanthocyanidins had strong interactions with the gold surface. TEM and XRD determination revealed that the synthesized gold nanoparticles had a highly crystalline structure and good monodispersity. The application of proanthocyanidins-functionalized gold nanoparticles for the removal of dyes and heavy metal ions Ni2+, Cu2+, Cd2+ and Pb2+ in an aqueous solution was investigated. The primary results indicate that proanthocyanidins-functionalized gold nanoparticles had high removal rates for the heavy metal ions and dye, which implies that they have potential applications as a new kind of adsorbent for the removal of contaminants in aqueous solution.
Collapse
Affiliation(s)
- Linhai Biao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- State Engineering Laboratory of Bio-Resource Eco-Utilization, Harbin 150040, China.
| | - Shengnan Tan
- Analysis and Test Center, Northeast Forestry University, Harbin 150040, China.
| | - Qinghuan Meng
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- State Engineering Laboratory of Bio-Resource Eco-Utilization, Harbin 150040, China.
| | - Jing Gao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- State Engineering Laboratory of Bio-Resource Eco-Utilization, Harbin 150040, China.
| | - Xuewei Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- State Engineering Laboratory of Bio-Resource Eco-Utilization, Harbin 150040, China.
| | - Zhiguo Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- State Engineering Laboratory of Bio-Resource Eco-Utilization, Harbin 150040, China.
| | - Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- State Engineering Laboratory of Bio-Resource Eco-Utilization, Harbin 150040, China.
| |
Collapse
|
20
|
Csapó E, Ungor D, Kele Z, Baranyai P, Deák A, Juhász Á, Janovák L, Dékány I. Influence of pH and aurate/amino acid ratios on the tuneable optical features of gold nanoparticles and nanoclusters. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Datta LP, Chatterjee A, Acharya K, De P, Das M. Enzyme responsive nucleotide functionalized silver nanoparticles with effective antimicrobial and anticancer activity. NEW J CHEM 2017. [DOI: 10.1039/c6nj02955h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Enzyme responsive, water soluble, stable nucleotide coated silver nanoparticles have been synthesized with efficient antimicrobial and anticancer activity.
Collapse
Affiliation(s)
- Lakshmi Priya Datta
- Department of Nanoscience and Technology
- JIS College of Engineering
- Kalyani-741235
- India
| | - Ananya Chatterjee
- Centre of Advanced Study
- Department of Botany
- University of Calcutta
- Kolkata – 700019
- India
| | - Krishnendu Acharya
- Centre of Advanced Study
- Department of Botany
- University of Calcutta
- Kolkata – 700019
- India
| | - Priyadarsi De
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur – 741246
- India
| | - Mahuya Das
- Department of Nanoscience and Technology
- JIS College of Engineering
- Kalyani-741235
- India
| |
Collapse
|
22
|
Csapó E, Ungor D, Juhász Á, Tóth GK, Dékány I. Gold nanohybrid systems with tunable fluorescent feature: Interaction of cysteine and cysteine-containing peptides with gold in two- and three-dimensional systems. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Nivedhini Iswarya C, Kiruba Daniel SCG, Sivakumar M. Studies on l-histidine capped Ag and Au nanoparticles for dopamine detection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 75:393-401. [PMID: 28415477 DOI: 10.1016/j.msec.2016.11.102] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/13/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
Abstract
This work demonstrates the effective surface functionalization of Ag, Au and bimetallic Ag-Au nanoparticles using l-histidine for colorimetric detection of dopamine (DA) which plays majorly in recognizing the neurological disorder. l-Histidine (l-His) capped Ag, Au, and bimetallic Ag-Au nanoparticles are characterized using physico-chemical techniques. The optical behaviour of nanoparticles has been analysed at various time intervals using UV-Vis absorption spectroscopy. FT-IR results provide the evidence of chemical bonding between l-histidine and metal nanoparticles. Its structure with the capping of l-His was clearly shown in HR-TEM images. The average size of nanoparticles has calculated from TEM image fringes are 11nm, 5nm and 6.5nm respectively, matches with crystals size calculated from X-ray diffraction pattern. Enhanced optical nature of nanoparticles provides the best platform to develop a colorimetric-based biosensor for DA detection. After addition of DA, a rapid colour change has been noted in colloids of nanoparticles. The substantial changes in absorbance and λmax in metal nanoparticles respect to DA concentration have been observed and formulated. This is one of the successive methods for trace level determination of DA and will be going to a significant material for designing biosensor to determine DA in real extracellular body fluids.
Collapse
Affiliation(s)
| | - S C G Kiruba Daniel
- Division of Nanoscience and Technology, Anna University-BIT Campus, Tiruchirappalli 620024, India
| | - Muthusamy Sivakumar
- Division of Nanoscience and Technology, Anna University-BIT Campus, Tiruchirappalli 620024, India; Department of Chemistry, Anna University-BIT Campus, Tiruchirappalli 620024, India.
| |
Collapse
|
24
|
|
25
|
Nidya M, Umadevi M, Rajkumar BJM. Structural, morphological and optical studies of l-cysteine modified silver nanoparticles and its application as a probe for the selective colorimetric detection of Hg(2+). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 133:265-271. [PMID: 24950383 DOI: 10.1016/j.saa.2014.04.193] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/27/2014] [Accepted: 04/30/2014] [Indexed: 06/03/2023]
Abstract
We report an extensive study on the evolution of a highly facile, selective colorimetric probe for Hg(2+) detection using cysteine modified silver nanoparticles. The nanoparticles are stable in a basic medium and the Surface Enhanced Raman Spectrum (SERS) reveal that the cysteine is bound to the Ag surface through the thiolate moiety with the charged carboxylate group pointing outwards in a morphology that lends itself to sensor applications. In the presence of Hg(2+), the absorption peak is quenched resulting in a drastic colour change. The sensor displays high selectivity to Hg(2+) over other metallic ions.
Collapse
Affiliation(s)
- M Nidya
- P.G. & Research Department of Physics, Lady Doak College, Madurai 625002, Tamil Nadu, India
| | - M Umadevi
- Department of Physics, Mother Teresa Women's University, Kodaikanal 624102, Tamil Nadu, India
| | - Beulah J M Rajkumar
- P.G. & Research Department of Physics, Lady Doak College, Madurai 625002, Tamil Nadu, India.
| |
Collapse
|
26
|
Cai H, Yao P. Gold nanoparticles with different amino acid surfaces: serum albumin adsorption, intracellular uptake and cytotoxicity. Colloids Surf B Biointerfaces 2014; 123:900-6. [PMID: 25466455 DOI: 10.1016/j.colsurfb.2014.10.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/01/2014] [Accepted: 10/21/2014] [Indexed: 12/18/2022]
Abstract
Gold nanoparticles with aspartate, glycine, leucine, lysine, and serine surfaces were produced from the mixed solutions of HAuCl4 and respective amino acids via UV irradiation. The amino acids bind to the nanoparticle surfaces via amine groups and their carboxylic groups extend out to stabilize the nanoparticles. The nanoparticles have diameters of 15-47 nm in pH 7.4 aqueous solution and have diameters of 62-73 nm after 48 h incubation in cell culture containing serum. The nanoparticles adsorb human and bovine serum albumins on their surfaces by specific interactions, characterized by the intrinsic fluorescence quenching of the albumins. The albumin adsorption effectively decreases the aggregation of the nanoparticles in cell culture and also decreases the intracellular uptake of the nanoparticles. The gold nanoparticles produced from leucine and lysine, which have amphiphilic groups on their surfaces, present better biocompatibility than the other gold nanoparticles.
Collapse
Affiliation(s)
- Huanxin Cai
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Ping Yao
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
27
|
Synthesis of polyethylenimine (PEI) functionalized silver nanoparticles by a hydrothermal method and their antibacterial activity study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:31-7. [DOI: 10.1016/j.msec.2014.05.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 03/30/2014] [Accepted: 05/06/2014] [Indexed: 11/15/2022]
|
28
|
Berghian-Grosan C, Olenic L, Katona G, Perde-Schrepler M, Vulcu A. L-Leucine for gold nanoparticles synthesis and their cytotoxic effects evaluation. Amino Acids 2014; 46:2545-52. [PMID: 25092048 DOI: 10.1007/s00726-014-1814-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/14/2014] [Indexed: 11/25/2022]
Abstract
This work reports the preparation of water-soluble leucine capped gold nanoparticles by two single-step synthesis methods. The first procedure involves a citrate reduction approach where the citrate is used as reducing agent and leucine as capping/stabilizing agent. Different sizes of gold nanoparticles, citrate reduced and stabilized by leucine, Leu-AuNPs-C, with the mean diameters in the range of 21-56 nm, were obtained by varying the macroscopic parameters such as: concentration of the gold precursor solution, Au (III):citrate molar ratio and leucine pH. In the second procedure, leucine acts both as reducing and stabilizing agent, allowing us to obtain spherical gold nanoparticles, Leu-AuNPs, with a majority of 80 % (with the mean diameter of 63 nm). This proves that leucine is an appropriate reductant for the formation of water-soluble and stable gold nanoparticles colloids. The characterization of the leucine coated gold nanoparticles was carried out by TEM, UV-Vis and FT-IR analysis. The cytotoxic effect of Leu-AuNPs-C and Leu-AuNPs was also evaluated.
Collapse
Affiliation(s)
- Camelia Berghian-Grosan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293, Cluj-Napoca, Romania,
| | | | | | | | | |
Collapse
|
29
|
Sanader Ž, Mitrić R, Bonačić-Koutecký V, Bellina B, Antoine R, Dugourd P. The nature of electronic excitations at the metal–bioorganic interface illustrated on histidine–silver hybrids. Phys Chem Chem Phys 2014; 16:1257-61. [DOI: 10.1039/c3cp52712c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
El-Safty SA, Hoa ND, Shenashen MA. Topical Developments of Nanoporous Membrane Filters for Ultrafine Noble Metal Nanoparticles. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200629] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Liu Z, Xing Z, Zu Y, Tan S, Zhao L, Zhou Z, Sun T. Synthesis and characterization of L-histidine capped silver nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2012.01.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Ma P, Wu Y, Fu Z, Wang W. Fabrication of hierarchical ZnO architectures by a biomineralization process. ADV POWDER TECHNOL 2012. [DOI: 10.1016/j.apt.2011.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Zhao J, Huang Z, Zeng J, Deng M, Yin G, Liao X, Gu J. Histidine-Assisted Synthesis and Cellular Compatibility of Magnetic Cobalt Oxide Nanoparticles at Room Temperature. J Inorg Organomet Polym Mater 2011. [DOI: 10.1007/s10904-011-9611-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
34
|
Hamaguchi K, Kawasaki H, Arakawa R. Photochemical synthesis of glycine-stabilized gold nanoparticles and its heavy-metal-induced aggregation behavior. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2010.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|