1
|
Marzullo P, Gruttadauria M, D’Anna F. Quaternary Ammonium Salts-Based Materials: A Review on Environmental Toxicity, Anti-Fouling Mechanisms and Applications in Marine and Water Treatment Industries. Biomolecules 2024; 14:957. [PMID: 39199346 PMCID: PMC11352365 DOI: 10.3390/biom14080957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
The adherence of pathogenic microorganisms to surfaces and their association to form antibiotic-resistant biofilms threatens public health and affects several industrial sectors with significant economic losses. For this reason, the medical, pharmaceutical and materials science communities are exploring more effective anti-fouling approaches. This review focuses on the anti-fouling properties, structure-activity relationships and environmental toxicity of quaternary ammonium salts (QAS) and, as a subclass, ionic liquid compounds. Greener alternatives such as QAS-based antimicrobial polymers with biocide release, non-fouling (i.e., PEG, zwitterions), fouling release (i.e., poly(dimethylsiloxanes), fluorocarbon) and contact killing properties are highlighted. We also report on dual-functional polymers and stimuli-responsive materials. Given the economic and environmental impacts of biofilms in submerged surfaces, we emphasize the importance of less explored QAS-based anti-fouling approaches in the marine industry and in developing efficient membranes for water treatment systems.
Collapse
Affiliation(s)
- Paola Marzullo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (M.G.); (F.D.)
- Sustainable Mobility Center (Centro Nazionale per la Mobilità Sostenibile—CNMS), Via Durando 39, 20158 Milano, Italy
| | - Michelangelo Gruttadauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (M.G.); (F.D.)
- Sustainable Mobility Center (Centro Nazionale per la Mobilità Sostenibile—CNMS), Via Durando 39, 20158 Milano, Italy
| | - Francesca D’Anna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (M.G.); (F.D.)
- Sustainable Mobility Center (Centro Nazionale per la Mobilità Sostenibile—CNMS), Via Durando 39, 20158 Milano, Italy
| |
Collapse
|
2
|
Mazurkiewicz E, Lamch Ł, Wilk KA, Obłąk E. Anti-adhesive, anti-biofilm and fungicidal action of newly synthesized gemini quaternary ammonium salts. Sci Rep 2024; 14:14110. [PMID: 38898117 PMCID: PMC11187217 DOI: 10.1038/s41598-024-64859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
Newly synthesized gemini quaternary ammonium salts (QAS) with different counterions (bromide, hydrogen chloride, methylcarbonate, acetate, lactate), chain lengths (C12, C14, C16) and methylene linker (3xCH2) were tested. Dihydrochlorides and dibromides with 12 carbon atoms in hydrophobic chains were characterized by the highest biological activity against planktonic forms of yeast and yeast-like fungi. The tested gemini surfactants also inhibited the production of filaments by C. albicans. Moreover, they reduced the adhesion of C. albicans cells to the surfaces of stainless steel, silicone and glass, and slightly to polystyrene. In particular, the gemini compounds with 16-carbon alkyl chains were most effective against biofilms. It was also found that the tested surfactants were not cytotoxic to yeast cells. Moreover, dimethylcarbonate (2xC12MeCO3G3) did not cause hemolysis of sheep erythrocytes. Dihydrochlorides, dilactate and diacetate showed no mutagenic potential.
Collapse
Affiliation(s)
- Edyta Mazurkiewicz
- Department of Physico-Chemistry of Microorganisms, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Łukasz Lamch
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kazimiera A Wilk
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Ewa Obłąk
- Department of Physico-Chemistry of Microorganisms, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| |
Collapse
|
3
|
Cichomski M, Wrońska N, Dudek M, Jędrzejczak A, Lisowska K. Tribological and Antimicrobial Properties of Two-Component Self-Assembled Monolayers Deposited on Ti-Incorporated Carbon Coatings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:422. [PMID: 38255590 PMCID: PMC10817511 DOI: 10.3390/ma17020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
In this work, Ti-incorporated carbon coatings were used as substrates for modification with one- and two-component self-assembled monolayers of organosilane compounds using a polydimethylsiloxane (PDMS) stamp. This enabled the selective functionalization of surfaces with micrometric dimensions. The topography of the modified surfaces was defined using an atomic force microscope (AFM). The effectiveness of the modification was confirmed by measurements of the water contact angle and surface free energy using the Oss and Good method. Using a T-23 microtribometer with counterparts in the shape of balls that were made of steel, silicon nitride (Si3N4), and zirconium dioxide (ZrO2), the tribological properties of the obtained coatings were tested. These investigations showed that modification by using a PDMS stamp makes it possible to produce two-component ultrathin silane layers on Ti-containing carbon substrates. Two-component organosilane layers had higher hydrophobicity, a lower friction coefficient, and a smaller width of wear tracks than the one-component analogs. It was also found that the work of adhesion of the created surfaces had a significant influence on the value of the friction coefficient and the percentage value of the growth inhibition of bacteria.
Collapse
Affiliation(s)
- Michał Cichomski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Poland
| | - Natalia Wrońska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (N.W.); (K.L.)
| | - Mariusz Dudek
- Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland; (M.D.); (A.J.)
| | - Anna Jędrzejczak
- Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland; (M.D.); (A.J.)
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (N.W.); (K.L.)
| |
Collapse
|
4
|
Alfei S. Shifting from Ammonium to Phosphonium Salts: A Promising Strategy to Develop Next-Generation Weapons against Biofilms. Pharmaceutics 2024; 16:80. [PMID: 38258091 PMCID: PMC10819902 DOI: 10.3390/pharmaceutics16010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Since they are difficult and sometimes impossible to treat, infections sustained by multidrug-resistant (MDR) pathogens, emerging especially in nosocomial environments, are an increasing global public health concern, translating into high mortality and healthcare costs. In addition to having acquired intrinsic abilities to resist available antibiotic treatments, MDR bacteria can transmit genetic material encoding for resistance to non-mutated bacteria, thus strongly decreasing the number of available effective antibiotics. Moreover, several pathogens develop resistance by forming biofilms (BFs), a safe and antibiotic-resistant home for microorganisms. BFs are made of well-organized bacterial communities, encased and protected in a self-produced extracellular polymeric matrix, which impedes antibiotics' ability to reach bacteria, thus causing them to lose efficacy. By adhering to living or abiotic surfaces in healthcare settings, especially in intensive care units where immunocompromised older patients with several comorbidities are hospitalized BFs cause the onset of difficult-to-eradicate infections. In this context, recent studies have demonstrated that quaternary ammonium compounds (QACs), acting as membrane disruptors and initially with a low tendency to develop resistance, have demonstrated anti-BF potentialities. However, a paucity of innovation in this space has driven the emergence of QAC resistance. More recently, quaternary phosphonium salts (QPSs), including tri-phenyl alkyl phosphonium derivatives, achievable by easy one-step reactions and well known as intermediates of the Wittig reaction, have shown promising anti-BF effects in vitro. Here, after an overview of pathogen resistance, BFs, and QACs, we have reviewed the QPSs developed and assayed to this end, so far. Finally, the synthetic strategies used to prepare QPSs have also been provided and discussed to spur the synthesis of novel compounds of this class. We think that the extension of the knowledge about these materials by this review could be a successful approach to finding effective weapons for treating chronic infections and device-associated diseases sustained by BF-producing MDR bacteria.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy
| |
Collapse
|
5
|
Xu G, Yang P, Zhang Y, Sun L, Hu X, Zhang W, Tu Y, Tian Y, Li A, Xie X, Gu X. Porous pillararene-based polymer as adsorbent and solid disinfectant for water treatment. CHEMOSPHERE 2023; 341:140056. [PMID: 37696480 DOI: 10.1016/j.chemosphere.2023.140056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/13/2023]
Abstract
Pillararene polymers have been widely used as excellent adsorbents for water treatment, but pillararene polymers with ultra-high specific surface area and versatility are still rarely reported. Herein, a quaternary ammonium salt modified pillar [5] arene polymer, QPBP [5], with specific surface area of 1844 m2 g-1 was successfully synthesized. Since QPBP [5] has abundant different adsorption sites, it exhibits excellent performance for the simultaneously removal of organic pollutants with different charges from water. The selected three model pollutants, Rhodamine B (RhB, positively charged), Sulfamethazine (SMT, electrically neutral) and Fulvic acid (FA, negatively charged), could be rapidly and efficiently removed from water by QPBP [5] within 10 min, which are much faster than them by most of the reported adsorbents. RhB and SMT are mainly adsorbed through hydrophobic interactions with the QPBP [5] surface, while FA is mainly removed through ion exchange. In addition, QPBP [5] also showed excellent reusability and adsorption performance for the environmentally relevant concentration of pollutants. Furthermore, the quaternary ammonium groups on QPBP [5] makes it a solid disinfectant with excellent antibacterial properties. In conclusion, QPBP [5] is a promising multifunctional adsorbent for the treatment of complex pollutants in water.
Collapse
Affiliation(s)
- Guizhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Pingping Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yalan Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang 330031, PR China
| | - Lin Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xuejiao Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Wenrui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yizhou Tu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yuansong Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Nanjing University & Yancheng Academy of Environment Protection Technology and Engineering, Nanjing, 210023, PR China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang 330031, PR China; Jiangxi Nanxin Environmental Protection Technology Co. LTD, Jiujiang City of Jiangxi Province, 330300, PR China; Nanjing University & Yancheng Academy of Environment Protection Technology and Engineering, Nanjing, 210023, PR China.
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
6
|
Wang JC, Huang WC, Cheng KF, Liu NT, Wu KH. Past-expiration-date liquid disinfectants to deactivate biological and chemical toxins on building material surfaces. RSC Adv 2023; 13:28904-28911. [PMID: 37795046 PMCID: PMC10545978 DOI: 10.1039/d3ra04965e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
In this study, we evaluated the deactivating efficacy of strong basicity-based (T4-102) and hydrogen peroxide-based (DF-200) disinfectants that were past their expiration date when used to deactivate biological and chemical toxins on building material surfaces. The decontamination efficacies of DF-200 and T4-102 disinfectants against dimethyl methylphosphonate (DMMP) and 2-chloroethyl ethylsulfide (2-CEES) were studied using GC-MS analysis. The bactericidal efficacies of disinfectants against Gram-negative E. coli and P. aeruginosa, and Gram-positive B. subtilis and S. aureus, were assessed in terms of the zone of inhibition, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The results indicated that the deactivation efficacy varied significantly according to the disinfectant amount, contact time, and building material. Higher efficacy of up to 99-100% was observed for biological toxins, despite passing their expiration dates. Approximately 70-78% of deactivation efficacies were observed for disinfectants against DMMP on the tile coupon at 100 μL and 24 h contact time. Moreover, the deactivation efficacy of DF-200 was better than that of T4-102. The data presented here demonstrate that the responders may use past-expiration-date disinfectants for efficacious disinfectaion in large-scale contamination incidents.
Collapse
Affiliation(s)
- Je-Chuang Wang
- Department of Chemistry and Materials Engineering, Chung Cheng Institute of Technology, National Defense University Tahsi Taoyuan 33551 Taiwan
| | - Wen-Chien Huang
- Department of Chemistry and Materials Engineering, Chung Cheng Institute of Technology, National Defense University Tahsi Taoyuan 33551 Taiwan
| | - Ken-Fa Cheng
- Department of Chemistry and Materials Engineering, Chung Cheng Institute of Technology, National Defense University Tahsi Taoyuan 33551 Taiwan
| | - Nien-Tung Liu
- Department of Chemistry and Materials Engineering, Chung Cheng Institute of Technology, National Defense University Tahsi Taoyuan 33551 Taiwan
| | - Kuo-Hui Wu
- Department of Chemistry and Materials Engineering, Chung Cheng Institute of Technology, National Defense University Tahsi Taoyuan 33551 Taiwan
| |
Collapse
|
7
|
Saverina EA, Frolov NA, Kamanina OA, Arlyapov VA, Vereshchagin AN, Ananikov VP. From Antibacterial to Antibiofilm Targeting: An Emerging Paradigm Shift in the Development of Quaternary Ammonium Compounds (QACs). ACS Infect Dis 2023; 9:394-422. [PMID: 36790073 DOI: 10.1021/acsinfecdis.2c00469] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In a previous development stage, mostly individual antibacterial activity was a target in the optimization of biologically active compounds and antiseptic agents. Although this targeting is still valuable, a new trend has appeared since the discovery of superhigh resistance of bacterial cells upon their aggregation into groups. Indeed, it is now well established that the great majority of pathogenic germs are found in the environment as surface-associated microbial communities called biofilms. The protective properties of biofilms and microbial resistance, even to high concentrations of biocides, cause many chronic infections in medical settings and lead to serious economic losses in various areas. A paradigm shift from individual bacterial targeting to also affecting more complex cellular frameworks is taking place and involves multiple strategies for combating biofilms with compounds that are effective at different stages of microbiome formation. Quaternary ammonium compounds (QACs) play a key role in many of these treatments and prophylactic techniques on the basis of both the use of individual antibacterial agents and combination technologies. In this review, we summarize the literature data on the effectiveness of using commercially available and newly synthesized QACs, as well as synergistic treatment techniques based on them. As an important focus, techniques for developing and applying antimicrobial coatings that prevent the formation of biofilms on various surfaces over time are discussed. The information analyzed in this review will be useful to researchers and engineers working in many fields, including the development of a new generation of applied materials; understanding biofilm surface growth; and conducting research in medical, pharmaceutical, and materials sciences. Although regular studies of antibacterial activity are still widely conducted, a promising new trend is also to evaluate antibiofilm activity in a comprehensive study in order to meet the current requirements for the development of highly needed practical applications.
Collapse
Affiliation(s)
- Evgeniya A Saverina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia.,N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | | | | | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
8
|
Singh G, Sharma S, Singh A, Devi A, Gupta S, Malik P, Khurana S, Soni S. Detection of 2,4-dichlorophenoxyacetic acid in water sample by organosilane based silica nanocomposites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159594. [PMID: 36280050 DOI: 10.1016/j.scitotenv.2022.159594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The present study aims to produce nanocomposites of silica based organosilane as sensitive and selective fluorescent sensor for the recognition of 2,4 dichlorophenoxyacetic acid (2,4-D). Hydrazone tethered triazole functionalized organosilane has been synthesized by the condensation reaction of 4-hydroxybenzaldehyde and phenyl hydrazine followed by Cu(I) catalysed cycloaddition of azide with alkyne. The prepared compound has been further grafted over silica surface and the synthesized materials were characterized by FT-IR, NMR (1H and 13C), XRD, mass spectrometry and FE-SEM spectral analyses. The prepared organosilane and its HSNPs have been utilized as an effective emission probe for the selective detection of 2,4 D with good linear relationship in the range of 0-160 μM and 0-115 μM and LOD value of 46 nM and 13.5 nM respectively. In the presence of other active species, the sensor shows minimal interference while the comparison with the previously reported techniques suggests it to be more desirable for the sensitive and selective detection of 2,4 D. Further, the real sample application for detection of 2,4 D was analyzed in field water and the HSNPs based sensing system gave recovery percentage of above 98 %.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Sanjay Sharma
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Akshpreet Singh
- Department of Chemistry, DAV College, Sector-10, Chandigarh 160011, India.
| | - Anita Devi
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Sofia Gupta
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Pooja Malik
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Sumesh Khurana
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Sajeev Soni
- Department of Chemistry, GGDSD College, Sector-32, Chandigarh, India
| |
Collapse
|
9
|
Kaur KD, Habimana O. Death at the interface: Nanotechnology’s challenging frontier against microbial surface colonization. Front Chem 2022; 10:1003234. [PMID: 36311433 PMCID: PMC9613359 DOI: 10.3389/fchem.2022.1003234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
The emergence of antimicrobial-resistant bacterial strains has led to novel approaches for combating bacterial infections and surface contamination. More specifically, efforts in combining nanotechnology and biomimetics have led to the development of next-generation antimicrobial/antifouling nanomaterials. While nature-inspired nanoscale topographies are known for minimizing bacterial attachment through surface energy and physicochemical features, few studies have investigated the combined inhibitory effects of such features in combination with chemical alterations of these surfaces. Studies describing surface alterations, such as quaternary ammonium compounds (QACs), have also gained attention due to their broad spectrum of inhibitory activity against bacterial cells. Similarly, antimicrobial peptides (AMPs) have exhibited their capacity to reduce bacterial viability. To maximize the functionality of modified surfaces, the integration of patterned surfaces and functionalized exteriors, achieved through physical and chemical surface alterations, have recently been explored as viable alternatives. Nonetheless, these modifications are prone to challenges that can reduce their efficacy considerably in the long term. Their effectiveness against a wider array of microbial cells is still a subject of investigation. This review article will explore and discuss the emerging trends in biomimetics and other antimicrobials while raising possible concerns about their limitations and discussing future implications regarding their potential combined applications.
Collapse
Affiliation(s)
- Kiran Deep Kaur
- The School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Olivier Habimana
- Guangdong Technion Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
- *Correspondence: Olivier Habimana,
| |
Collapse
|
10
|
Dawson F, Yew WC, Orme B, Markwell C, Ledesma-Aguilar R, Perry JJ, Shortman IM, Smith D, Torun H, Wells G, Unthank MG. Self-Assembled, Hierarchical Structured Surfaces for Applications in (Super)hydrophobic Antiviral Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10632-10641. [PMID: 35977085 PMCID: PMC9434993 DOI: 10.1021/acs.langmuir.2c01579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/03/2022] [Indexed: 06/15/2023]
Abstract
A versatile method for the creation of multitier hierarchical structured surfaces is reported, which optimizes both antiviral and hydrophobic (easy-clean) properties. The methodology exploits the availability of surface-active chemical groups while also manipulating both the surface micro- and nanostructure to control the way the surface coating interacts with virus particles within a liquid droplet. This methodology has significant advantages over single-tier structured surfaces, including the ability to overcome the droplet-pinning effect and in delivering surfaces with high static contact angles (>130°) and good antiviral efficacy (log kill >2). In addition, the methodology highlights a valuable approach for the creation of mechanically robust, nanostructured surfaces which can be prepared by spray application using nonspecialized equipment.
Collapse
Affiliation(s)
- Frances Dawson
- Northumbria
University, Newcastle
upon Tyne NE1 8ST, U.K.
| | - Wen C. Yew
- Northumbria
University, Newcastle
upon Tyne NE1 8ST, U.K.
| | - Bethany Orme
- Northumbria
University, Newcastle
upon Tyne NE1 8ST, U.K.
| | | | - Rodrigo Ledesma-Aguilar
- Institute
for Multiscale Thermofluids (IMT), School of Engineering, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JL, Scotland, U.K.
| | | | - Ian M. Shortman
- Defence
Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, U.K.
| | - Darren Smith
- Northumbria
University, Newcastle
upon Tyne NE1 8ST, U.K.
| | - Hamdi Torun
- Northumbria
University, Newcastle
upon Tyne NE1 8ST, U.K.
| | - Gary Wells
- Institute
for Multiscale Thermofluids (IMT), School of Engineering, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JL, Scotland, U.K.
| | | |
Collapse
|
11
|
Enhanced surface coverage of anchoring quaternary ammonium salts (AQAS) on oxygen-plasma treated quartz substrates. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Rukmanikrishnan B, Lee J. Montmorillonite clay and quaternary ammonium silane-reinforced pullulan/agar-based nanocomposites and their properties for packaging applications. Int J Biol Macromol 2021; 191:956-963. [PMID: 34571125 DOI: 10.1016/j.ijbiomac.2021.09.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/24/2021] [Accepted: 09/19/2021] [Indexed: 01/13/2023]
Abstract
Synergistic combinations of pullulan, agar, montmorillonite (MMT) clay, and quaternary ammonium silane (QAS)-based (Pullulan/agar/MMT clay/QAS) active nanocomposites were prepared by a simple, cost-effective method. The Pullulan/agar/MMT clay/QAS nanocomposites were studied via Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction analyses. The concentration of MMT clay played a very important role in the properties of the nanocomposites. However, the transparency of the composite was not significantly affected by the addition of MMT clay. The ultraviolet (UV) transmittance of Pullulan/agar/MMT clay/QAS was in the range of 91.4-79.8 at 600 nm. The thermal and mechanical properties were significantly improved by the MMT clay. The tensile strength and elongation at break of the composites were in the range of 23.8-39.7 MPa and 37.2-26.9%, respectively. The long alkyl chain in QAS significantly improved the hydrophobic nature of the Pullulan/agar/MMT clay nanocomposites, impacting the contact angle (66.2-71.2°), water vapor permeability (3.17-2.20 × 10-9 g/m2 Pa·s), and swelling ratio (1837-836%). The combination of Pullulan/agar/MMT clay/QAS had a synergistic effect on the rheological properties. MMT clay and QAS significantly increased the viscosity, storage, and loss modulus of the hydrogel composites. With the addition of QAS, the Pullulan/agar/MMT clay nanocomposites showed good antimicrobial activity against gram-positive and gram-negative pathogens.
Collapse
Affiliation(s)
| | - Jaewoong Lee
- Department of Fiber System Engineering, Yeungnam University, South Korea.
| |
Collapse
|
13
|
Jann J, Drevelle O, Chen XG, Auclair-Gilbert M, Soucy G, Faucheux N, Fortier LC. Rapid antibacterial activity of anodized aluminum-based materials impregnated with quaternary ammonium compounds for high-touch surfaces to limit transmission of pathogenic bacteria. RSC Adv 2021; 11:38172-38188. [PMID: 35498065 PMCID: PMC9044312 DOI: 10.1039/d1ra07159a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Infections caused by multidrug-resistant bacteria are a major public health problem. Their transmission is strongly linked to cross contamination via inert surfaces, which can serve as reservoirs for pathogenic microorganisms. To address this problem, antibacterial materials applied to high-touch surfaces have been developed. However, reaching a rapid and lasting effectiveness under real life conditions of use remains challenging. In the present paper, hard-anodized aluminum (AA) materials impregnated with antibacterial agents (quaternary ammonium compounds (QACs) and/or nitrate silver (AgNO3)) were prepared and characterized. The thickness of the anodized layer was about 50 μm with pore diameter of 70 nm. AA with QACs and/or AgNO3 had a water contact angle varying between 45 and 70°. The antibacterial activity of the materials was determined under different experimental settings to better mimic their use, and included liquid, humid, and dry conditions. AA-QAC surfaces demonstrated excellent efficiency, killing >99.9% of bacteria in 5 min on a wide range of Gram-positive (Staphylococcus aureus, Clostridioides difficile, vancomycin-resistant Enterococcus faecium) and Gram-negative (streptomycin-resistant Salmonella typhimurium and encapsulated Klebsiella pneumoniae) pathogens. AA-QACs showed a faster antibacterial activity (from 0.25 to 5 min) compared with antibacterial copper used as a reference (from 15 min to more than 1 h). We show that to maintain their high performance, AA-QACs should be used in low humidity environments and should be cleaned with solutions composed of QACs. Altogether, AA-QAC materials constitute promising candidates to prevent the transmission of pathogenic bacteria on high-touch surfaces.
Collapse
Affiliation(s)
- Jessica Jann
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Canada .,Clinical Research Center of Centre Hospitalier Universitaire de Sherbrooke 12e Avenue N Sherbrooke Québec J1H 5N4 Canada.,Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke 3201 rue Jean Mignault Sherbrooke Québec J1E 4K8 Canada
| | - Olivier Drevelle
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Canada
| | - X Grant Chen
- Department of Applied Science, University of Quebec in Chicoutimi Saguenay Quebec G7H 2B1 Canada
| | | | - Gervais Soucy
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Canada
| | - Nathalie Faucheux
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke 2500 boul. de l'Université Sherbrooke Québec J1K 2R1 Canada .,Clinical Research Center of Centre Hospitalier Universitaire de Sherbrooke 12e Avenue N Sherbrooke Québec J1H 5N4 Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke 3201 rue Jean Mignault Sherbrooke Québec J1E 4K8 Canada
| |
Collapse
|
14
|
Vereshchagin AN, Frolov NA, Egorova KS, Seitkalieva MM, Ananikov VP. Quaternary Ammonium Compounds (QACs) and Ionic Liquids (ILs) as Biocides: From Simple Antiseptics to Tunable Antimicrobials. Int J Mol Sci 2021; 22:6793. [PMID: 34202677 PMCID: PMC8268321 DOI: 10.3390/ijms22136793] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Quaternary ammonium compounds (QACs) belong to a well-known class of cationic biocides with a broad spectrum of antimicrobial activity. They are used as essential components in surfactants, personal hygiene products, cosmetics, softeners, dyes, biological dyes, antiseptics, and disinfectants. Simple but varied in their structure, QACs are divided into several subclasses: Mono-, bis-, multi-, and poly-derivatives. Since the beginning of the 20th century, a significant amount of work has been dedicated to the advancement of this class of biocides. Thus, more than 700 articles on QACs were published only in 2020, according to the modern literature. The structural variability and diverse biological activity of ionic liquids (ILs) make them highly prospective for developing new types of biocides. QACs and ILs bear a common key element in the molecular structure-quaternary positively charged nitrogen atoms within a cyclic or acyclic structural framework. The state-of-the-art research level and paramount demand in modern society recall the rapid development of a new generation of tunable antimicrobials. This review focuses on the main QACs exhibiting antimicrobial and antifungal properties, commercial products based on QACs, and the latest discoveries in QACs and ILs connected with biocide development.
Collapse
Affiliation(s)
- Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (N.A.F.); (K.S.E.); (M.M.S.)
| | | | | | | | - Valentine P. Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (N.A.F.); (K.S.E.); (M.M.S.)
| |
Collapse
|
15
|
Borjihan Q, Dong A. Design of nanoengineered antibacterial polymers for biomedical applications. Biomater Sci 2021; 8:6867-6882. [PMID: 32756731 DOI: 10.1039/d0bm00788a] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pathogenic bacteria have become global threats to public health. Since the advent of antibiotics about 100 years ago, their use has been embraced with great enthusiasm because of their effective treatment of bacterial infections. However, the evolution of pathogenic bacteria with resistance to conventional antibiotics has resulted in an urgent need for the development of a new generation of antibiotics. The use of antimicrobial polymers offers the promise of enhancing the efficacy of antimicrobial agents. Of the various antibacterial polymers that effectively eradicate pathogenic bacteria, those that are nanoengineered have garnered significant research interest in their design and biomedical applications. Because of their high surface area and high reactivity, these polymers show greater antibacterial activity than conventional antibacterial agents, by inhibiting the growth or destroying the cell membrane of pathogenic bacteria. This review summarizes several strategies for designing nanoengineered antibacterial polymers, explores the factors that affect their antibacterial properties, and examines key features of their design. It then comments briefly on the future prospects for nanoengineered antibacterial polymers. This review thus provides a feasible guide to developing nanoengineered antibacterial polymers by presenting both broad and in-depth bench research, and it offers suggestions for their potential in biomedical applications.
Collapse
Affiliation(s)
- Qinggele Borjihan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| | | |
Collapse
|
16
|
Saravanan M, Belete MA, Niguse S, Tsegay E, Araya T, Hadush B, Nigussie K, Prakash P. Antimicrobial Resistance and Antimicrobial Nanomaterials. HANDBOOK OF RESEARCH ON NANO-STRATEGIES FOR COMBATTING ANTIMICROBIAL RESISTANCE AND CANCER 2021:1-28. [DOI: http:/doi:10.4018/978-1-7998-5049-6.ch001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Back in the mid-nineties, the discovery of antimicrobials denoted a profound and remarkable achievement in medicine which was capable of saving lives. However, recently, antimicrobial resistance became a major global issue facing modern medicine and significantly increased among bacteria, fungi, and viruses which results in reduced efficacy of many clinically important and lifesaving antimicrobials. The growing rise of antimicrobial resistance inflicts a remarkable economic and social burden on the health care system globally. The replacement of conventional antimicrobials by new technology to counteract and lessen antimicrobial resistance is currently ongoing. Nanotechnology is an advanced approach to overcome challenges of such resisted conventional drug delivery systems mainly based on the development and fabrication of nanoparticulate structures. Numerous forms of nanoparticulate systems have been discovered and tried as prospective drug delivery systems, comprising organic and inorganic nanoparticles.
Collapse
Affiliation(s)
- Muthupandian Saravanan
- Mekelle University, Ethiopia & Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), India
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Saravanan M, Belete MA, Niguse S, Tsegay E, Araya T, Hadush B, Nigussie K, Prakash P. Antimicrobial Resistance and Antimicrobial Nanomaterials. HANDBOOK OF RESEARCH ON NANO-STRATEGIES FOR COMBATTING ANTIMICROBIAL RESISTANCE AND CANCER 2021. [DOI: 10.4018/978-1-7998-5049-6.ch001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Back in the mid-nineties, the discovery of antimicrobials denoted a profound and remarkable achievement in medicine which was capable of saving lives. However, recently, antimicrobial resistance became a major global issue facing modern medicine and significantly increased among bacteria, fungi, and viruses which results in reduced efficacy of many clinically important and lifesaving antimicrobials. The growing rise of antimicrobial resistance inflicts a remarkable economic and social burden on the health care system globally. The replacement of conventional antimicrobials by new technology to counteract and lessen antimicrobial resistance is currently ongoing. Nanotechnology is an advanced approach to overcome challenges of such resisted conventional drug delivery systems mainly based on the development and fabrication of nanoparticulate structures. Numerous forms of nanoparticulate systems have been discovered and tried as prospective drug delivery systems, comprising organic and inorganic nanoparticles.
Collapse
Affiliation(s)
- Muthupandian Saravanan
- Mekelle University, Ethiopia & Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), India
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ojha N, Das N. Fabrication and characterization of biodegradable PHBV/SiO 2 nanocomposite for thermo-mechanical and antibacterial applications in food packaging. IET Nanobiotechnol 2020; 14:785-795. [PMID: 33399109 DOI: 10.1049/iet-nbt.2020.0066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the present study, biogenic silica nanoparticles (bSNPs) were synthesized from groundnut shells, and thoroughly characterized to understand its phase, and microstructure properties. The biopolymer was synthesized from yeast Wickerhamomyces anomalus and identified as Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by GC-MS and NMR analysis. The bSNPs were reinforced to fabricate PHBV/SiO2 nanocomposites via solution casting technique. The fabricated PHBV/SiO2 nanocomposites revealed intercalated hybrid interaction between the bSNPs and PHBV matrix through XRD analysis. PHBV/SiO2 nanocomposites showed significant improvement in physical, chemical, thermo-mechanical and biodegradation properties as compared to the bare PHBV. The cell viability study revealed excellent biocompatibility against L929 mouse fibroblast cells. The antibacterial activity of PHBV/SiO2 nanocomposites was found to be progressively improved upon increasing bSNPs concentration against E. coli and S. aureus.
Collapse
Affiliation(s)
- Nupur Ojha
- Bioremediation Laboratory, Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Nilanjana Das
- Bioremediation Laboratory, Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
19
|
Tomina V, Furtat IM, Lebed AP, Kotsyuda SS, Kolev H, Kanuchova M, Behunova DM, Vaclavikova M, Melnyk IV. Diverse Pathway to Obtain Antibacterial and Antifungal Agents Based on Silica Particles Functionalized by Amino and Phenyl Groups with Cu(II) Ion Complexes. ACS OMEGA 2020; 5:15290-15300. [PMID: 32637802 PMCID: PMC7331045 DOI: 10.1021/acsomega.0c01335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/02/2020] [Indexed: 05/09/2023]
Abstract
Production of environmentally friendly multitasking materials is among the urgent challenges of chemistry and ecotechnology. The current research paper describes the synthesis of amino-/silica and amino-/phenyl-/silica particles using a one-pot sol-gel technique. CHNS analysis and titration demonstrated a high content of functional groups, while scanning electron microscopy revealed their spherical form and ∼200 nm in size. X-ray photoelectron spectroscopy data testified that hydrophobic groups reduced the number of water molecules and protonated amino groups on the surface, increasing the portion of free amino groups. The complexation with Cu(II) cations was used to analyze the sorption capacity and reactivity of the aminopropyl groups and to enhance the antimicrobial action of the samples. Antibacterial activities of suspensions of aminosilica particles and their derivative forms containing adsorbed copper(II) ions were assayed against Gram-positive (Staphylococcus aureus ATCC 25923) and Gram-negative bacteria (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853). Meanwhile, antifungal activity was tested against fungi (Candida albicans UCM Y-690). According to zeta potential measurements, its value could be depended on the suspension concentration, and it was demonstrated that the positively charged suspension had higher antibacterial efficiency. SiO2/-C6H5/-NH2 + Cu(II) sample's water suspension (1%) showed complete growth inhibition of the bacterial culture on the solid medium. The antimicrobial activity could be due to occurrence of multiple and nonspecific interactions between the particle surfaces and the surface layers of bacteria or fungi.
Collapse
Affiliation(s)
- Veronika
V. Tomina
- Chuiko
Institute of Surface Chemistry of NAS of Ukraine, General Naumov str. 17, Kyiv 03164, Ukraine
| | - Iryna M. Furtat
- National
University of Kyiv-Mohyla Academy, Skovorody str. 2, Kyiv 04070, Ukraine
| | - Anastasia P. Lebed
- National
University of Kyiv-Mohyla Academy, Skovorody str. 2, Kyiv 04070, Ukraine
| | - Sofiya S. Kotsyuda
- Chuiko
Institute of Surface Chemistry of NAS of Ukraine, General Naumov str. 17, Kyiv 03164, Ukraine
- National
University of Kyiv-Mohyla Academy, Skovorody str. 2, Kyiv 04070, Ukraine
| | - Hristo Kolev
- Institute
of Catalysis BAS, Acad.
G. Bonchev str. 11, Sofia 1113, Bulgaria
| | - Maria Kanuchova
- Technical
University of Kosice, Letna str. 9, Kosice 04200, Slovak Republi
| | | | | | - Inna V. Melnyk
- Chuiko
Institute of Surface Chemistry of NAS of Ukraine, General Naumov str. 17, Kyiv 03164, Ukraine
- Institute
of Geotechnics, SAS, 45, Watsonova, Kosice 04001, Slovak Republic
| |
Collapse
|
20
|
Active delivery of antimicrobial nanoparticles into microbial cells through surface functionalization strategies. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Hu X, Xu G, Zhang H, Li M, Tu Y, Xie X, Zhu Y, Jiang L, Zhu X, Ji X, Li Y, Li A. Multifunctional β-Cyclodextrin Polymer for Simultaneous Removal of Natural Organic Matter and Organic Micropollutants and Detrimental Microorganisms from Water. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12165-12175. [PMID: 32057224 DOI: 10.1021/acsami.0c00597] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Natural organic matter (NOM), organic micropollutants (OMPs), and detrimental microorganisms are three major pollutants that affect water quality. To remove these pollutants, a quaternary ammonium-functionalized β-cyclodextrin polymer (β-CDP) is successfully synthesized in the aqueous phase. The N2 and CO2 adsorption/desorption analysis showed that the polymer mainly contains ultra-micropores (<1 nm), with a Langmuir surface area of 89 m2 g-1. Two kinds of NOM, humic acid and fulvic acid, and five OMPs, 2-naphthol (2-NO), 3-phenylphenol (3-PH), 2,4,6-trichlorophenol (2,4,6-TCP), bisphenol A (BPA), and bisphenol S (BPS), were selected as model pollutants to study the performance of β-CDP and three kinds of commercial adsorbents, including granular activated carbon, DARCO-AC, and two resins, XAD-4 and D-201, were used for comparison. The polymer shows ultrarapid adsorption kinetics for the removal of these pollutants, with pseudo-second-order rate constants two to three orders of magnitude higher than that of the commercial activated carbon and resins. Due to the different adsorption sites of NOM and OMPs, β-CDP can simultaneously remove these pollutants without competitive adsorption. The maximum adsorption capacity of β-CDP for HA, FA, 2-NO, 3-PH, 2,4,6-TCP, BPA, and BPS based on the Langmuir model is 40, 166, 74, 101, 108, 103, and 117 mg g-1, respectively. After use, the polymer can be easily regenerated at room temperature. In addition, β-CDP also showed excellent bactericidal properties due to the quaternary ammonium groups. At a concentration of 15 g L-1, β-CDP can remove 98% of the tested Escherichia coli. Moreover, the synthesis of β-CDP is simple, green, and easy to industrialize. All of these findings indicate that β-CDP, as an ideal multifunctional material, presents potential for practical applications for water treatment and disinfection.
Collapse
Affiliation(s)
- Xuejiao Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, P. R. China
| | - Guizhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, P. R. China
| | - Huaicheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, P. R. China
| | - Meng Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, P. R. China
| | - Yizhou Tu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, P. R. China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, P. R. China
| | - Yuanting Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, P. R. China
| | - Lu Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, P. R. China
| | - Xingqi Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, P. R. China
| | - Xiaowen Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, P. R. China
| | - Yan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, P. R. China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, P. R. China
| |
Collapse
|
22
|
Modification of polyvinylidene fluoride membrane by quaternary ammonium compounds loaded on silica nanopollens for mitigating biofouling. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Anchoring N-Halo (sodium dichloroisocyanurate) on the nano-Fe3O4 surface as “chlorine reservoir”: Antibacterial properties and wastewater treatment. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
24
|
Fabrication of Robust Multifaceted Textiles by Application of Functionalized TiO2 Nanoparticles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123799] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
25
|
Wu KH, Chang YC, Wang JC. Preparation of polyoxometalate-doped aminosilane-modified silicate hybrid as a new barrier of chem-bio toxicant. J Inorg Biochem 2019; 199:110788. [PMID: 31362174 PMCID: PMC7112521 DOI: 10.1016/j.jinorgbio.2019.110788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/23/2023]
Abstract
Nanohybrid membranes based on the Keggin-type polyoxometalate (POM) H5PV2Mo10O40 and aminosilane-modified silicate (Ormosil and Ormosil(NR4+Cl-)) hybrids were synthesized as a new barrier to protect against simulants of chemical and biological toxicant. The 31P NMR and XPS results indicated that POM was bound to the Ormosil and Ormosil(NR4+Cl-) hybrids after impregnation. The antibacterial effects of the hybrids and hybrid-impregnated fabrics against Gram-negative and Gram-positive bacteria were investigated with zone of inhibition, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and plate-counting method. The MIC/MBC values of Ormosil(NR4+Cl-)/POM and Ormosil/POM against bacteria were 0.267/2.67 and 2.67/26.7, respectively, and the percentage reduction of bacteria was approximately 100% after 20 laundry cycles of their fabrics. The reaction products and mechanisms of the adsorptive degradation of 2-chloroethylethylsulfide (CEES) by hybrids were investigated with 13C NMR. The results of this study showed that POM-doped Ormosil systems are capable of destroying bacteria and CEES.
Collapse
Affiliation(s)
- Kuo-Hui Wu
- Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan 33551, Taiwan.
| | - Yin-Chiung Chang
- Department of Chemical Engineering, Army Academy, Zhongli, Taoyuan 32093, Taiwan
| | - Je-Chuang Wang
- Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan 33551, Taiwan
| |
Collapse
|
26
|
Diaz D, Church J, Young M, Kim KT, Park J, Hwang YB, Santra S, Lee WH. Silica-quaternary ammonium "Fixed-Quat" nanofilm coated fiberglass mesh for water disinfection and harmful algal blooms control. J Environ Sci (China) 2019; 82:213-224. [PMID: 31133266 DOI: 10.1016/j.jes.2019.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Intensification of pollution loading worldwide has promoted an escalation of different types of disease-causing microorganisms, such as harmful algal blooms (HABs), instigating detrimental impacts on the quality of receiving surface waters. Formation of unwanted disinfection by-products (DBPs) resulting from conventional disinfection technologies reveals the need for the development of new sustainable alternatives. Quaternary Ammonium Compounds (QACs) are cationic surfactants widely known for their effective biocidal properties at the ppm level. In this study, a novel silica-based antimicrobial nanofilm was developed using a composite of silica-modified QAC (Fixed-Quat) and applied to a fiberglass mesh as an active surface via sol-gel technique. The synthesized Fixed-Quat nanocoating was found to be effective against E. coli with an inactivation rate of 1.3 × 10-3 log reduction/cm min. The Fixed-Quat coated fiberglass mesh also demonstrated successful control of Microcystis aeruginosa with more than 99% inactivation after 10 hr of exposure. The developed antimicrobial mesh was also evaluated with wild-type microalgal species collected in a water body experiencing HABs, obtaining a 97% removal efficiency. Overall, the silica-functionalized Fixed-Quat nanocoating showed promising antimicrobial properties for water disinfection and HABs control, while decreasing concerns related to DBPs formation and the possible release of toxic nanomaterials into the environment.
Collapse
Affiliation(s)
- Daniela Diaz
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, 12800 Pegasus Drive, Orlando, FL 32816, USA.
| | - Jared Church
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, 12800 Pegasus Drive, Orlando, FL 32816, USA
| | - Mikaeel Young
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA; Burnett School of Biomedical Sciences, University of Central Florida, 6850 Lake Nona Blvd, Orlando, FL 32827, USA
| | - Keug Tae Kim
- Department of Environmental & Energy Engineering, Suwon University, 17 Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do 445-743, Republic of Korea
| | - Jungsu Park
- K-water Institute, Korea Water Resources Corporation, 200 Sintanjin-Ro, Daedeok-Gu, Daejeon 34350, Republic of Korea
| | - Yun Bin Hwang
- Department of Environmental & Energy Engineering, Suwon University, 17 Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do 445-743, Republic of Korea
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA; Burnett School of Biomedical Sciences, University of Central Florida, 6850 Lake Nona Blvd, Orlando, FL 32827, USA; Department of Material Science and Engineering, 4000 Central Florida Blvd, University of Central Florida, Orlando, FL 32816, USA; Department of Chemistry, 4111 Libra Drive, University of Central Florida, Orlando, FL 32816, USA
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, 12800 Pegasus Drive, Orlando, FL 32816, USA.
| |
Collapse
|
27
|
Kavukçu S, Çamlar SA, Soylu A. Can Nanotechnology Antimicrobial Underpant Prevent Bacterial Contamination in Bag Urine Samples: Results of a Preliminary Study. Indian J Pediatr 2019; 86:666. [PMID: 30989476 DOI: 10.1007/s12098-019-02948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/01/2019] [Indexed: 02/08/2023]
Affiliation(s)
- Salih Kavukçu
- Division of Pediatric Nephrology, Department of Pediatrics, Medical Faculty of Dokuz Eylul University, Izmir, Turkey
| | - Seçil Arslansoyu Çamlar
- Division of Pediatric Nephrology, Department of Pediatrics, Medical Faculty of Dokuz Eylul University, Izmir, Turkey.
| | - Alper Soylu
- Division of Pediatric Nephrology, Department of Pediatrics, Medical Faculty of Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
28
|
New Stable Isotope Labeling Strategy in Quaternary Ammonium–Functionalized Magnetic Nanoparticles for the Analysis of Perfluorocarboxylic Acid in Cod Liver Oil. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01516-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Preparation and antibacterial effects of Ag/AgCl-doped quaternary ammonium-modified silicate hybrid antibacterial material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:177-184. [DOI: 10.1016/j.msec.2018.12.142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 01/22/2023]
|
30
|
Quaternary Ammonium Compounds-Modified Halloysite and Its Antifungal Performance. SPRINGER PROCEEDINGS IN PHYSICS 2019. [DOI: 10.1007/978-981-13-5947-7_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Obłąk E, Piecuch A, Rewak-Soroczyńska J, Paluch E. Activity of gemini quaternary ammonium salts against microorganisms. Appl Microbiol Biotechnol 2018; 103:625-632. [PMID: 30460534 DOI: 10.1007/s00253-018-9523-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022]
Abstract
Quaternary ammonium salts (QAS), as the surface active compounds, are widely used in medicine and industry. Their common application is responsible for the development of microbial resistance to QAS. To overcome, this issue novel surfactants, including gemini-type ones, were developed. These unique compounds are built of two hydrophilic and two hydrophobic parts. The double-head double-tail type of structure enhances their physicochemical properties (like surface activity) and biological activity and makes them a potential candidate for new drugs and disinfectants. Antimicrobial activity is mainly attributed to the biocidal action towards bacteria and fungi in their planktonic and biofilm forms, but the mode of action of gemini QAS is not yet fully understood. Moreover, gemini surfactants are of particular interest towards their application as gene carriers. Cationic charge of gemini QAS and their ability to form liposomes facilitate DNA compaction and transfection of the target cells. Multifunctional nature of gemini QAS is the reason of the long-standing research on mainly their structure-activity relationship.
Collapse
Affiliation(s)
- Ewa Obłąk
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| | - Agata Piecuch
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Justyna Rewak-Soroczyńska
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Emil Paluch
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| |
Collapse
|
32
|
Qian Y, Cui H, Shi R, Guo J, Wang B, Xu Y, Ding Y, Mao H, Yan F. Antimicrobial anionic polymers: the effect of cations. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.07.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Elena P, Miri K. Formation of contact active antimicrobial surfaces by covalent grafting of quaternary ammonium compounds. Colloids Surf B Biointerfaces 2018; 169:195-205. [DOI: 10.1016/j.colsurfb.2018.04.065] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 12/13/2022]
|
34
|
Somasundaram S. Silane coatings of metallic biomaterials for biomedical implants: A preliminary review. J Biomed Mater Res B Appl Biomater 2018; 106:2901-2918. [PMID: 30091505 DOI: 10.1002/jbm.b.34151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 02/24/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
Abstract
In response to increased attention in literature, this work provides a qualitative review surrounding the application of silane-based coatings of metallic biomaterials for biomedical implants. Included herein is both a brief summary of existing knowledge and concepts regarding silane-based thin films, along with an analysis of recent peer-reviewed publications and advances towards their practical application for biomedical coatings. Specifically, the review identifies innovative silane-based coatings according to their molecular identity and film structure and analyses their impact on the biocorrosion resistance, protein adsorption, cell viability, and antimicrobial properties of the overall coated implant. It is shown that a range of common silanes clearly exhibit promising properties for biomedical implant coatings, but further work is needed, particularly on mechanisms of physiological interaction and characteristic effects of silane functional groups, before seeing clinical use. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2901-2918, 2018.
Collapse
Affiliation(s)
- Sahadev Somasundaram
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Queensland, Australia
| |
Collapse
|
35
|
Das B, Moumita S, Ghosh S, Khan MI, Indira D, Jayabalan R, Tripathy SK, Mishra A, Balasubramanian P. Biosynthesis of magnesium oxide (MgO) nanoflakes by using leaf extract of Bauhinia purpurea and evaluation of its antibacterial property against Staphylococcus aureus. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:436-444. [PMID: 30033274 DOI: 10.1016/j.msec.2018.05.059] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/22/2018] [Accepted: 05/17/2018] [Indexed: 01/11/2023]
Abstract
Nanobiotechnology has become a newly evolving field of interest in biomedical applications due to its biocompatibility and non-toxic nature towards the environment. Metal and metal oxide nanoparticles have been widely used as an antibacterial agent due to the emergence of antibiotic resistant pathogens, which leads to the outbreak of infectious diseases. In the present paper, biogenic synthesis of magnesium oxide (MgO) nanoflakes is reported by using Bauhinia purpurea leaf extract through alkaline precipitation method along with its detailed characterization. The average size of synthesized nanoflakes was found to be around 11 nm. Electron microscopy was used to investigate the morphology of the MgO nanoflakes. Additionally, the presence of antioxidants, phenolics and flavonoids in B. purpurea leaf extract has been studied by using different assays, which suggested the efficacy of leaf extract as a potential reducing agent for MgO nanoflakes synthesis. Antibacterial activity of synthesized MgO nanoflakes was investigated against Staphylococcus aureus, a gram positive bacteria known to cause various infections in humans. Results suggested the high efficacy of MgO nanoflakes as a potential antibacterial agent against S. aureus at meager dose size (250 μg/ml) and possible mode of action was investigated through surface morphology analysis of bacterial cells by field emission scanning electron microscopy.
Collapse
Affiliation(s)
- Bhaskar Das
- Bioenergy and Environmental Laboratory, Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sahoo Moumita
- Food Microbiology and Bioprocess Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Soumen Ghosh
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Md Imran Khan
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Dash Indira
- Food Microbiology and Bioprocess Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - R Jayabalan
- Food Microbiology and Bioprocess Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| | - Suraj K Tripathy
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Amrita Mishra
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - P Balasubramanian
- Bioenergy and Environmental Laboratory, Department of Biotechnology & Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
36
|
Wu Y, Chen L, Long X, Zhang X, Pan B, Qian J. Multi-functional magnetic water purifier for disinfection and removal of dyes and metal ions with superior reusability. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:160-167. [PMID: 29310038 DOI: 10.1016/j.jhazmat.2017.12.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/14/2017] [Accepted: 12/13/2017] [Indexed: 05/09/2023]
Abstract
It is of great practical importance but rarely reported to design a multifunctional scavenger for water purification. In this study, we describe a sophisticated preparation of an inorganic/organic composite sample for the simultaneous removal of anionic dyes and metal ions, as well as disinfection. The sample has a stable structure formed by the covalent connection between a magnetic silica (MS) core and a polyethylenimine derived quaternary ammonium compound (QAC) corona. We characterized the sample in details by SEM, TEM, EDX, FT-IR, XRD, TGA, VSM, and zeta potential. Our QAC-MS sample exhibited superior performance and reusability in the disinfection and adsorption experiments towards acid fuchsin and Cu2+. With the virtue of easy separation from solution, our sample should be an ideal candidate for water purification application.
Collapse
Affiliation(s)
- Yao Wu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Lei Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Xuwei Long
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jieshu Qian
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
37
|
Hwang G, Koltisko B, Jin X, Koo H. Nonleachable Imidazolium-Incorporated Composite for Disruption of Bacterial Clustering, Exopolysaccharide-Matrix Assembly, and Enhanced Biofilm Removal. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38270-38280. [PMID: 29020439 DOI: 10.1021/acsami.7b11558] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface-grown bacteria and production of an extracellular polymeric matrix modulate the assembly of highly cohesive and firmly attached biofilms, making them difficult to remove from solid surfaces. Inhibition of cell growth and inactivation of matrix-producing bacteria can impair biofilm formation and facilitate removal. Here, we developed a novel nonleachable antibacterial composite with potent antibiofilm activity by directly incorporating polymerizable imidazolium-containing resin (antibacterial resin with carbonate linkage; ABR-C) into a methacrylate-based scaffold (ABR-modified composite; ABR-MC) using an efficient yet simplified chemistry. Low-dose inclusion of imidazolium moiety (∼2 wt %) resulted in bioactivity with minimal cytotoxicity without compromising mechanical integrity of the restorative material. The antibiofilm properties of ABR-MC were assessed using an exopolysaccharide-matrix-producing (EPS-matrix-producing) oral pathogen (Streptococcus mutans) in an experimental biofilm model. Using high-resolution confocal fluorescence imaging and biophysical methods, we observed remarkable disruption of bacterial accumulation and defective 3D matrix structure on the surface of ABR-MC. Specifically, the antibacterial composite impaired the ability of S. mutans to form organized bacterial clusters on the surface, resulting in altered biofilm architecture with sparse cell accumulation and reduced amounts of EPS matrix (versus control composite). Biofilm topology analyses on the control composite revealed a highly organized and weblike EPS structure that tethers the bacterial clusters to each other and to the surface, forming a highly cohesive unit. In contrast, such a structured matrix was absent on the surface of ABR-MC with mostly sparse and amorphous EPS, indicating disruption in the biofilm physical stability. Consistent with lack of structural organization, the defective biofilm on the surface of ABR-MC was readily detached when subjected to low shear stress, while most of the biofilm biomass remained on the control surface. Altogether, we demonstrate a new nonleachable antibacterial composite with excellent antibiofilm activity without affecting its mechanical properties, which may serve as a platform for development of alternative antifouling biomaterials.
Collapse
Affiliation(s)
- Geelsu Hwang
- Biofilm Research Laboratories, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania , 240 South 40th Street, Levy Building Room 417, Philadelphia, Pennsylvania 19104, United States
| | - Bernard Koltisko
- Dentsply Sirona , 38 West Clarke Avenue, Milford, Delaware 19963, United States
| | - Xiaoming Jin
- Dentsply Sirona , 38 West Clarke Avenue, Milford, Delaware 19963, United States
| | - Hyun Koo
- Biofilm Research Laboratories, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania , 240 South 40th Street, Levy Building Room 417, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
38
|
Long-acting and broad-spectrum antimicrobial electrospun poly (ε-caprolactone)/gelatin micro/nanofibers for wound dressing. J Colloid Interface Sci 2017; 509:275-284. [PMID: 28915485 DOI: 10.1016/j.jcis.2017.08.092] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 12/19/2022]
Abstract
Trimethoxysilylpropyl octadecyldimethyl ammonium chloride (QAS), which forms facile bonds with hydroxyl groups, acts asa cationic antibacterial agent. In this work, QAS was introduced into a polycaprolactone (PCL)/gelatin hybrid in increasing concentrations to fabricate a long-acting and broad-spectrum antimicrobial micro/nanofiber membrane as a novel wound dressing. The physical interactions and chemical bonding between QAS/PCL and QAS/gelatin were demonstrated by infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS. Measured water contact angle between the PCL-gelatin/QAS (PG-Q) nanofiber membranes suggested a hydrophobic surface, which has been shown to aid in removal of wound dressings. The mechanical strength of the membranes was sufficient to meet the clinical requirements. Furthermore, the 15% QAS (PG-Q15) and 20% QAS (PG-Q20) formulated nanofiber membranes showed a considerable increase in their bacteriostatic activity towards Staphylococcus aureus (gram-positive) and Pseudomonas aeruginosa (gram-negative) bacteria, suggesting a broad-spectrum bactericidal effect by the PG-Q membranes. The PG-Q membranes with various QAS formulations demonstrated little cytotoxicity. Therefore, the long-acting and broad-spectrum antimicrobial electrospun PG-Q micro/nanofibers membrane demonstrate potential efficacy asan antibacterial wound dressing.
Collapse
|
39
|
Gkana EN, Doulgeraki AI, Chorianopoulos NG, Nychas GJE. Anti-adhesion and Anti-biofilm Potential of Organosilane Nanoparticles against Foodborne Pathogens. Front Microbiol 2017; 8:1295. [PMID: 28744277 PMCID: PMC5504163 DOI: 10.3389/fmicb.2017.01295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/27/2017] [Indexed: 12/04/2022] Open
Abstract
Nowadays, modification of surfaces by nanoparticulate coatings is a simple process that may have applications in reducing the prevalence of bacterial cells both on medical devices and food processing surfaces. To this direction, biofilm biological cycle of Salmonella Typhimurium, Listeria monocytogenes, Escherichia coli O157:H7, Staphylococcus aureus, and Yersinia enterocolitica on stainless steel and glass surfaces, with or without nanocoating was monitored. To achieve this, four different commercial nanoparticle compounds (two for each surface) based on organo-functionalized silanes were selected. In total 10 strains of above species (two for each species) were selected to form biofilms on modified or not, stainless steel or glass surfaces, incubated at 37°C for 72 h. Biofilm population was enumerated by bead vortexing-plate counting method at four time intervals (3, 24, 48, and 72 h). Organosilane based products seemed to affect bacterial attachment on the inert surfaces and/or subsequent biofilm formation, but it was highly dependent on the species and material of surfaces involved. Specifically, reduced bacterial adhesion (at 3 h) of Salmonella and E. coli was observed (P < 0.05) in nanocoating glass surfaces in comparison with the control ones. Moreover, fewer Salmonella and Yersinia biofilm cells were enumerated on stainless steel coupons coated with organosilanes, than on non-coated surfaces at 24 h (P < 0.05). This study gives an insight to the efficacy of organosilanes based coatings against biofilm formation of foodborne pathogens, however, further studies are needed to better understand the impact of surface modification and the underlying mechanisms which are involved in this phenomenon.
Collapse
Affiliation(s)
- Eleni N. Gkana
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of AthensAthens, Greece
| | - Agapi I. Doulgeraki
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of AthensAthens, Greece
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETERAthens, Greece
| | - Nikos G. Chorianopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETERAthens, Greece
| | - George-John E. Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of AthensAthens, Greece
| |
Collapse
|
40
|
Cao W, Zhang Y, Wang X, Chen Y, Li Q, Xing X, Xiao Y, Peng X, Ye Z. Development of a novel resin-based dental material with dual biocidal modes and sustained release of Ag + ions based on photocurable core-shell AgBr/cationic polymer nanocomposites. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:103. [PMID: 28534286 DOI: 10.1007/s10856-017-5918-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Research on the incorporation of cutting-edge nano-antibacterial agent for designing dental materials with potent and long-lasting antibacterial property is demanding and provoking work. In this study, a novel resin-based dental material containing photocurable core-shell AgBr/cationic polymer nanocomposite (AgBr/BHPVP) was designed and developed. The shell of polymerizable cationic polymer not only provided non-releasing antibacterial capability for dental resins, but also had the potential to polymerize with other methacrylate monomers and prevented nanoparticles from aggregating in the resin matrix. As a result, incorporation of AgBr/BHPVP nanocomposites did not adversely affect the flexural strength and modulus but greatly increased the Vicker's hardness of resin disks. By continuing to release Ag+ ions without the impact of anaerobic environment, resins containing AgBr/BHPVP nanoparticles are particularly suitable to combat anaerobic cariogenic bacteria. By reason of the combined bactericidal effect of the contact-killing cationic polymers and the releasing-killing Ag+ ions, AgBr/BHPVP-containing resin disks had potent bactericidal activity against S. mutans. The long-lasting antibacterial activity was also achieved through the sustained release of Ag+ ions due to the core-shell structure of the nanocomposites. The results of macrophage cytotoxicity showed that the cell viability of dental resins loading less than 1.0 wt% AgBr/BHPVP was close to that of neat resins. The AgBr/BHPVP-containing dental resin with dual bactericidal capability and long term antimicrobial effect is a promising material aimed at preventing second caries and prolonging the longevity of resin composite restorations.
Collapse
Affiliation(s)
- Weiwei Cao
- College of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei St, , 210094, Nanjing, China
| | - Yu Zhang
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, 650032, Kunming, China
| | - Xi Wang
- College of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei St, , 210094, Nanjing, China
| | - Yinyan Chen
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, 650032, Kunming, China
| | - Qiang Li
- College of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei St, , 210094, Nanjing, China
| | - Xiaodong Xing
- College of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei St, , 210094, Nanjing, China.
| | - Yuhong Xiao
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, 650032, Kunming, China.
- Center for Dental Research, School of dentistry, Loma Linda University, Loma Linda, California, 92350, USA.
| | - Xuefeng Peng
- College of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei St, , 210094, Nanjing, China
| | - Zhiwen Ye
- College of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei St, , 210094, Nanjing, China
| |
Collapse
|
41
|
Jiao Y, Niu LN, Ma S, Li J, Tay FR, Chen JH. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog Polym Sci 2017; 71:53-90. [PMID: 32287485 PMCID: PMC7111226 DOI: 10.1016/j.progpolymsci.2017.03.001] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/20/2022]
Abstract
Microbial infections affect humans worldwide. Many quaternary ammonium compounds have been synthesized that are not only antibacterial, but also possess antifungal, antiviral and anti-matrix metalloproteinase capabilities. Incorporation of quaternary ammonium moieties into polymers represents one of the most promising strategies for preparation of antimicrobial biomaterials. Various polymerization techniques have been employed to prepare antimicrobial surfaces with quaternary ammonium functionalities; in particular, syntheses involving controlled radical polymerization techniques enable precise control over macromolecular structure, order and functionality. Although recent publications report exciting advances in the biomedical field, some of these technological developments have also been accompanied by potential toxicological and antimicrobial resistance challenges. Recent evidenced-based data on the biomedical applications of antimicrobial quaternary ammonium-containing biomaterials that are based on randomized human clinical trials, the golden standard in contemporary medicinal science, are included in the present review. This should help increase visibility, stimulate debates and spur conversations within a wider scientific community on the implications and plausibility for future developments of quaternary ammonium-based antimicrobial biomaterials.
Collapse
Affiliation(s)
- Yang Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
- Department of Stomatology, PLA Army General Hospital, 100700, Beijing, China
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Sai Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Jing Li
- Department of Orthopaedic Oncology, Xijing Hospital Affiliated to the Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Franklin R. Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Corresponding authors.
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
- Corresponding authors.
| |
Collapse
|
42
|
Zhang X, Brodus D, Hollimon V, Hu H. A brief review of recent developments in the designs that prevent bio-fouling on silicon and silicon-based materials. Chem Cent J 2017; 11:18. [PMID: 28261323 PMCID: PMC5318316 DOI: 10.1186/s13065-017-0246-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 02/14/2017] [Indexed: 12/26/2022] Open
Abstract
Silicon and silicon-based materials are essential to our daily life. They are widely used in healthcare and manufacturing. However, silicon and silicon-based materials are susceptible to bio-fouling, which is of great concern in numerous applications. To date, interdisciplinary research in surface science, polymer science, biology, and engineering has led to the implementation of antifouling strategies for silicon-based materials. However, a review to discuss those antifouling strategies for silicon-based materials is lacking. In this article, we summarized two major approaches involving the functionalization of silicon and silicon-based materials with molecules exhibiting antifouling properties, and the fabrication of silicon-based materials with nano- or micro-structures. Both approaches lead to a significant reduction in bio-fouling. We critically reviewed the designs that prevent fouling due to proteins, bacteria, and marine organisms on silicon and silicon-based materials. Graphical abstractStrategies used in the designs that prevent bio-fouling on silicon and silicon-based materials.
Collapse
Affiliation(s)
- Xiaoning Zhang
- Department of Mathematics, Sciences and Technology, Paine College, 1235 Fifteenth Street, Augusta, GA 30901 USA
| | - DaShan Brodus
- Department of Mathematics, Sciences and Technology, Paine College, 1235 Fifteenth Street, Augusta, GA 30901 USA
| | - Valerie Hollimon
- Department of Mathematics, Sciences and Technology, Paine College, 1235 Fifteenth Street, Augusta, GA 30901 USA
| | - Hongmei Hu
- Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan, 316021 China
| |
Collapse
|
43
|
Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes. Molecules 2016; 21:E836. [PMID: 27355939 PMCID: PMC6273897 DOI: 10.3390/molecules21070836] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 01/17/2023] Open
Abstract
Antimicrobial substances may be synthetic, semisynthetic, or of natural origin (i.e., from plants and animals). Antimicrobials are considered "miracle drugs" and can determine if an infected patient/animal recovers or dies. However, the misuse of antimicrobials has led to the development of multi-drug-resistant bacteria, which is one of the greatest challenges for healthcare practitioners and is a significant global threat. The major concern with the development of antimicrobial resistance is the spread of resistant organisms. The replacement of conventional antimicrobials by new technology to counteract antimicrobial resistance is ongoing. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug resistance. Nanomaterials have tremendous potential in both the medical and veterinary fields. Several nanostructures comprising metallic particles have been developed to counteract microbial pathogens. The effectiveness of nanoparticles (NPs) depends on the interaction between the microorganism and the NPs. The development of effective nanomaterials requires in-depth knowledge of the physicochemical properties of NPs and the biological aspects of microorganisms. However, the risks associated with using NPs in healthcare need to be addressed. The present review highlights the antimicrobial effects of various nanomaterials and their potential advantages, drawbacks, or side effects. In addition, this comprehensive information may be useful in the discovery of broad-spectrum antimicrobial drugs for use against multi-drug-resistant microbial pathogens in the near future.
Collapse
Affiliation(s)
| | - Mallappa Kumara Swamy
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Darul Ehsan 43400, Malaysia.
| | - Uma Rani Sinniah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Darul Ehsan 43400, Malaysia.
| | - Ali Ghasemzadeh
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Darul Ehsan 43400, Malaysia.
| |
Collapse
|
44
|
Zhang X, Qian J, Pan B. Fabrication of Novel Magnetic Nanoparticles of Multifunctionality for Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:881-9. [PMID: 26695341 DOI: 10.1021/acs.est.5b04539] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Efficient and powerful water purifiers are in increasing need because we are facing a more and more serious problem of water pollution. Here, we demonstrate the design of versatile magnetic nanoadsorbents (M-QAC) that exhibit excellent disinfection and adsorption performances at the same time. The M-QAC is constructed by a Fe3O4 core surrounded by a polyethylenimine-derived corona. When dispersed in water, the M-QAC particles are able to interact simultaneously with multiple contaminants, including pathogens and heavy metallic cations and anions, in minutes. Subsequently, the M-QACs along with those contaminants can be easily removed and recollected by using a magnet. Meanwhile, the mechanisms of disinfection are investigated by using TEM and SEM, and the adsorption mechanisms are analyzed by XPS. In a practical application, M-QACs are applied to polluted river water 8000-fold greater in mass, producing clean water with the concentrations of all major pollutants below the drinking water standard of China. The adsorption ability of M-QAC could be regenerated for continuous use in a facile manner. With more virtues, such as low-cost fabrication and easy scaling up, the M-QAC have been shown to be a very promising multifunctional water purifier with rational design and to have great potential for real water purification applications.
Collapse
Affiliation(s)
- Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, P.R. China
| | - Jieshu Qian
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Xiao Ling Wei 200, Nanjing, 210094, P.R. China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, P.R. China
| |
Collapse
|
45
|
Xu Q, Yang C, Hedrick JL, Yang YY. Antimicrobial silica particles synthesized via ring-opening grafting of cationic amphiphilic cyclic carbonates: effects of hydrophobicity and structure. Polym Chem 2016. [DOI: 10.1039/c6py00194g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this study, cationic amphiphilic cyclic carbonates with varying hydrophobicity and structure were synthesized and grafted onto silica particles to impart antimicrobial properties.
Collapse
Affiliation(s)
- Qingxing Xu
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| | - Chuan Yang
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| | | | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| |
Collapse
|
46
|
Li H, Bao H, Bok KX, Lee CY, Li B, Zin MT, Kang L. High durability and low toxicity antimicrobial coatings fabricated by quaternary ammonium silane copolymers. Biomater Sci 2016; 4:299-309. [DOI: 10.1039/c5bm00353a] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Novel quaternary ammonium silane (QAS) antimicrobial copolymers with improved biocompatibility can form transparent and durable coatingsviaa thermal-curing process.
Collapse
Affiliation(s)
- Hairui Li
- Department of Pharmacy
- National University of Singapore
- Singapore 117543
- 3M Innovation Singapore
- Singapore 738205
| | | | - Ke Xin Bok
- Department of Pharmacy
- National University of Singapore
- Singapore 117543
| | | | - Bo Li
- 3M Innovation Singapore
- Singapore 738205
| | - Melvin T. Zin
- 3M Innovation Singapore
- Singapore 738205
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
| | - Lifeng Kang
- Department of Pharmacy
- National University of Singapore
- Singapore 117543
| |
Collapse
|
47
|
Covalent immobilization of lysozyme onto woven and knitted crimped polyethylene terephthalate grafts to minimize the adhesion of broad spectrum pathogens. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:78-87. [DOI: 10.1016/j.msec.2015.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/11/2015] [Accepted: 08/04/2015] [Indexed: 12/27/2022]
|
48
|
Schifman LA, Kasaraneni VK, Sullivan RK, Oyanedel-Craver V, Boving TB. New Antimicrobially Amended Media for Improved Nonpoint Source Bacterial Pollution Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14383-14391. [PMID: 26562065 DOI: 10.1021/acs.est.5b03782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nonpoint source pollution (NPS) such as stormwater runoff may introduce high loads of bacteria, impairing surface water bodies. The existing filter materials in stormwater best management practices (BMP) are typically not designed to inactivate bacteria. Herein, novel filtration media were extensively tested for microbial load reduction in stormwater runoff. Red cedar wood chips (RC) were amended with different loadings of either 3-(trihydroxysilyl) propyldimethyloctadecyl ammonium chloride (TPA) or silver nanoparticles (AgNP). Under batch conditions at 25 °C, log10 removal values (LRV) up to 3.71 ± 0.38 (mean ± standard error) for TPA-RC and 2.25 ± 1.00 for AgNP-RC were achieved for Escherichia coli (E. coli), whereas unmodified RC achieved less than 0.5 LRV. Similar trends were observed at 17.5 °C, however at low temperature (10 °C) no statistically significant difference in E. coli inactivation between modified and unmodified RC was detected. Inactivation kinetic studies show that TPA-RC has higher inactivation rate constants compared to AgNP-RC. Under dynamic flow conditions a mass balance approach indicates that even after remobilization up to 99.8% of E. coli removal using 9 mg/g TPA-RC compared to 64.8% for unmodified RC. This study demonstrates that RC wood chips amended with antimicrobial compounds show promising applications as filtration material for the reduction of microbiological contamination load in stormwater runoff.
Collapse
Affiliation(s)
- Laura A Schifman
- Department of Geosciences, University of Rhode Island , Kingston Rhode Island 02881, United States
- Department of Civil and Environmental Engineering, University of Rhode Island , Kingston Rhode Island 02881, United States
| | - Varun K Kasaraneni
- Department of Civil and Environmental Engineering, University of Rhode Island , Kingston Rhode Island 02881, United States
| | - Ryan K Sullivan
- Department of Geosciences, University of Rhode Island , Kingston Rhode Island 02881, United States
| | - Vinka Oyanedel-Craver
- Department of Civil and Environmental Engineering, University of Rhode Island , Kingston Rhode Island 02881, United States
| | - Thomas B Boving
- Department of Geosciences, University of Rhode Island , Kingston Rhode Island 02881, United States
- Department of Civil and Environmental Engineering, University of Rhode Island , Kingston Rhode Island 02881, United States
| |
Collapse
|
49
|
Yatvin J, Gao J, Locklin J. Durable defense: robust and varied attachment of non-leaching poly"-onium" bactericidal coatings to reactive and inert surfaces. Chem Commun (Camb) 2015; 50:9433-42. [PMID: 24882521 DOI: 10.1039/c4cc02803a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Developing antimicrobial coatings to eliminate biotic contamination is a critical need for all surfaces, including medical, industrial, and domestic materials. The wide variety of materials used in these fields, from natural polymers to metals, require coatings that not only are antimicrobial, but also contain different surface chemistries for covalent immobilization. Alkyl "-onium" salts are potent biocides that have defied bacterial resistance mechanisms when confined to an interface. In this feature article, we highlight the various methods used to covalently immobilize bactericidal polymers to different surfaces and further examine the mechanistic aspects of biocidal action with these surface bound poly"-onium" salts.
Collapse
Affiliation(s)
- Jeremy Yatvin
- Department of Chemistry, College of Engineering, and Nanoscale Science and Engineering Center, 220 Riverbend Rd., Athens, GA, USA.
| | | | | |
Collapse
|
50
|
Yu Q, Wu Z, Chen H. Dual-function antibacterial surfaces for biomedical applications. Acta Biomater 2015; 16:1-13. [PMID: 25637065 DOI: 10.1016/j.actbio.2015.01.018] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 12/24/2014] [Accepted: 01/16/2015] [Indexed: 12/12/2022]
Abstract
Bacterial attachment and the subsequent formation of biofilm on surfaces of synthetic materials pose a serious problem in both human healthcare and industrial applications. In recent decades, considerable attention has been paid to developing antibacterial surfaces to reduce the extent of initial bacterial attachment and thereby to prevent subsequent biofilm formation. Briefly, there are three main types of antibacterial surfaces: bactericidal surfaces, bacteria-resistant surfaces, and bacteria-release surfaces. The strategy adopted to develop each type of surface has inherent advantages and disadvantages; many efforts have been focused on the development of novel antibacterial surfaces with dual functionality. In this review, we highlight the recent progress made in the development of dual-function antibacterial surfaces for biomedical applications. These surfaces are based on the combination of two strategies into one system, which can kill attached bacteria as well as resisting or releasing bacteria. Perspectives on future research directions for the design of dual-function antibacterial surfaces are also provided.
Collapse
|