1
|
Marques-Santos LF, Grassi G, Bergami E, Faleri C, Balbi T, Salis A, Damonte G, Canesi L, Corsi I. Cationic polystyrene nanoparticle and the sea urchin immune system: biocorona formation, cell toxicity, and multixenobiotic resistance phenotype. Nanotoxicology 2018; 12:847-867. [DOI: 10.1080/17435390.2018.1482378] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- L. F. Marques-Santos
- Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - G. Grassi
- Department of Physical, Earth and Environmental Sciences-DSFTA, University of Siena, Siena, Italy
| | - E. Bergami
- Department of Physical, Earth and Environmental Sciences-DSFTA, University of Siena, Siena, Italy
| | - C. Faleri
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Genoa, Italy
| | - T. Balbi
- Department of Life Sciences-DSV, University of Siena, Siena, Italy
| | - A. Salis
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - G. Damonte
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - L. Canesi
- Department of Life Sciences-DSV, University of Siena, Siena, Italy
| | - I. Corsi
- Department of Physical, Earth and Environmental Sciences-DSFTA, University of Siena, Siena, Italy
| |
Collapse
|
2
|
Chen S, Annesley SJ, Jasim RAF, Musco VJ, Sanislav O, Fisher PR. The Parkinson's disease-associated protein DJ-1 plays a positive nonmitochondrial role in endocytosis in Dictyostelium cells. Dis Model Mech 2017; 10:1261-1271. [PMID: 28819044 PMCID: PMC5665451 DOI: 10.1242/dmm.028084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 08/14/2017] [Indexed: 01/01/2023] Open
Abstract
The loss of function of DJ-1 caused by mutations in DJ1 causes a form of familial Parkinson's disease (PD). However, the role of DJ-1 in healthy and in PD cells is poorly understood. Even its subcellular localization in mammalian cells is uncertain, with both cytosolic and mitochondrial locations having been reported. We show here that DJ-1 is normally located in the cytoplasm in healthy Dictyostelium discoideum cells. With its unique life cycle, straightforward genotype-phenotype relationships, experimental accessibility and genetic tractability, D.discoideum offers an attractive model to investigate the roles of PD-associated genes. Furthermore, the study of mitochondrial biology, mitochondrial genome transcription and AMP-activated protein kinase-mediated cytopathologies in mitochondrial dysfunction have been well developed in this organism. Unlike mammalian systems, Dictyostelium mitochondrial dysfunction causes a reproducible and readily assayed array of aberrant phenotypes: defective phototaxis, impaired growth, normal rates of endocytosis and characteristic defects in multicellular morphogenesis. This makes it possible to study whether the underlying cytopathological mechanisms of familial PD involve mitochondrial dysfunction. DJ-1 has a single homologue in the Dictyostelium genome. By regulating the expression level of DJ-1 in D. discoideum, we show here that in unstressed cells, DJ-1 is required for normal rates of endocytic nutrient uptake (phagocytosis and, to a lesser extent, pinocytosis) and thus growth. Reduced expression of DJ-1 had no effect on phototaxis in the multicellular migratory ‘slug’ stage of the life cycle, but resulted in thickened stalks in the final fruiting bodies. This pattern of phenotypes is distinct from that observed in Dictyostelium to result from mitochondrial dyfunction. Direct measurement of mitochondrial respiratory function in intact cells revealed that DJ-1 knockdown stimulates whereas DJ-1 overexpression inhibits mitochondrial activity. Together, our results suggest positive roles for DJ-1 in endocytic pathways and loss-of-function cytopathologies that are not associated with impaired mitochondrial function. Editor's choice: The Dictyostelium homologue of the Parkinson's disease-associated protein DJ-1 is located in the cytosol, and its loss causes cytopathological defects in endocytic and autophagic cell death pathways, but stimulates respiration by functionally normal mitochondrial respiratory complexes.
Collapse
Affiliation(s)
- Suwei Chen
- Department of Microbiology, Faculty of Science, Technology and Engineering, La Trobe University, VIC 3086, Australia.,School of Modern Agriculture and Biological Science and Technology, Ankang University, Shaanxi 725000, PRC
| | - Sarah J Annesley
- Department of Microbiology, Faculty of Science, Technology and Engineering, La Trobe University, VIC 3086, Australia
| | - Rasha A F Jasim
- Department of Microbiology, Faculty of Science, Technology and Engineering, La Trobe University, VIC 3086, Australia.,Department of Laboratory and Clinical Sciences, College of Pharmacy, University of Babylon, PO Box 4, Hilla, Iraq
| | - Vanessa J Musco
- Department of Microbiology, Faculty of Science, Technology and Engineering, La Trobe University, VIC 3086, Australia
| | - Oana Sanislav
- Department of Microbiology, Faculty of Science, Technology and Engineering, La Trobe University, VIC 3086, Australia
| | - Paul R Fisher
- Department of Microbiology, Faculty of Science, Technology and Engineering, La Trobe University, VIC 3086, Australia
| |
Collapse
|
3
|
Dumas F, Haanappel E. Lipids in infectious diseases - The case of AIDS and tuberculosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1636-1647. [PMID: 28535936 DOI: 10.1016/j.bbamem.2017.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/11/2017] [Accepted: 05/14/2017] [Indexed: 02/07/2023]
Abstract
Lipids play a central role in many infectious diseases. AIDS (Acquired Immune Deficiency Syndrome) and tuberculosis are two of the deadliest infectious diseases to have struck mankind. The pathogens responsible for these diseases, Human Immunodeficiency Virus-1 and Mycobacterium tuberculosis, rely on lipids and on lipid membrane properties to gain access to their host cells, to persist in them and ultimately to egress from their hosts. In this Review, we discuss the life cycles of these pathogens and the roles played by lipids and membranes. We then give an overview of therapies that target lipid metabolism, modulate host membrane properties or implement lipid-based drug delivery systems. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Fabrice Dumas
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France.
| | - Evert Haanappel
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
4
|
Renukaradhya GJ, Narasimhan B, Mallapragada SK. Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation. J Control Release 2015; 219:622-631. [PMID: 26410807 PMCID: PMC4760633 DOI: 10.1016/j.jconrel.2015.09.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/14/2022]
Abstract
Vaccine development has had a huge impact on human health. However, there is a significant need to develop efficacious vaccines for several existing as well as emerging respiratory infectious diseases. Several challenges need to be overcome to develop efficacious vaccines with translational potential. This review focuses on two aspects to overcome some barriers - 1) the development of nanoparticle-based vaccines, and 2) the choice of suitable animal models for respiratory infectious diseases that will allow for translation. Nanoparticle-based vaccines, including subunit vaccines involving synthetic and/or natural polymeric adjuvants and carriers, as well as those based on virus-like particles offer several key advantages to help overcome the barriers to effective vaccine development. These include the ability to deliver combinations of antigens, target the vaccine formulation to specific immune cells, enable cross-protection against divergent strains, act as adjuvants or immunomodulators, allow for sustained release of antigen, enable single dose delivery, and potentially obviate the cold chain. While mouse models have provided several important insights into the mechanisms of infectious diseases, they are often a limiting step in translation of new vaccines to the clinic. An overview of different animal models involved in vaccine research for respiratory infections, with advantages and disadvantages of each model, is discussed. Taken together, advances in nanotechnology, combined with the right animal models for evaluating vaccine efficacy, has the potential to revolutionize vaccine development for respiratory infections.
Collapse
Affiliation(s)
- Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
5
|
Arima H, Hayashi Y, Higashi T, Motoyama K. Recent advances in cyclodextrin delivery techniques. Expert Opin Drug Deliv 2015; 12:1425-41. [DOI: 10.1517/17425247.2015.1026893] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Dwivedi V, Manickam C, Binjawadagi B, Joyappa D, Renukaradhya GJ. Biodegradable nanoparticle-entrapped vaccine induces cross-protective immune response against a virulent heterologous respiratory viral infection in pigs. PLoS One 2012; 7:e51794. [PMID: 23240064 PMCID: PMC3519908 DOI: 10.1371/journal.pone.0051794] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/09/2012] [Indexed: 01/10/2023] Open
Abstract
Biodegradable nanoparticle-based vaccine development research is unexplored in large animals and humans. In this study, we illustrated the efficacy of nanoparticle-entrapped UV-killed virus vaccine against an economically important respiratory viral disease of pigs called porcine reproductive and respiratory syndrome virus (PRRSV). We entrapped PLGA [poly (lactide-co-glycolides)] nanoparticles with killed PRRSV antigens (Nano-KAg) and detected its phagocytosis by pig alveolar macrophages. Single doses of Nano-KAg vaccine administered intranasally to pigs upregulated innate and PRRSV specific adaptive responses. In a virulent heterologous PRRSV challenge study, Nano-KAg vaccine significantly reduced the lung pathology and viremia, and the viral load in the lungs. Immunologically, enhanced innate and adaptive immune cell population and associated cytokines with decreased secretion of immunosuppressive mediators were observed at both mucosal sites and blood. In summary, we demonstrated the benefits of intranasal delivery of nanoparticle-based viral vaccine in eliciting cross-protective immune response in pigs, a potential large animal model.
Collapse
Affiliation(s)
- Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States, and Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Cordelia Manickam
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States, and Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Basavaraj Binjawadagi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States, and Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Dechamma Joyappa
- Foot and Mouth Disease Laboratory, Indian Veterinary Research Institute, Hebbal, Bengaluru, India
| | - Gourapura J. Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States, and Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
7
|
The Wingless homolog Wnt5a stimulates phagocytosis but not bacterial killing. Proc Natl Acad Sci U S A 2012; 109:16600-5. [PMID: 23012420 DOI: 10.1073/pnas.1207789109] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phagocytosis is a primary defense program orchestrated by monocytes/macrophages. Unregulated phagocytosis can lead to pathological conditions. In the current study we have demonstrated that Wnt5a stimulates phagocytosis through PI3 kinase-Rac1 and lipid-raft-dependent processes. Wnt5a-mediated augmentation in phagocytosis is suppressed by blocking expression of the putative Wnt5a receptor Frizzled 5. Enhanced phagocytosis of bacteria by Wnt5a-Fz5 signaling increases the secretion of proinflammatory cytokines, but not the bacterial killing rate. Furthermore, a small molecule inhibitor of Wnt production, IWP-2, which reduces secretion of functionally active Wnt5a, not only suppresses both phagocytosis and the secretion of proinflammatory cytokines but also accelerates the bacterial killing rate.
Collapse
|
8
|
Streptococcus suis capsular polysaccharide inhibits phagocytosis through destabilization of lipid microdomains and prevents lactosylceramide-dependent recognition. Infect Immun 2011; 80:506-17. [PMID: 22124659 DOI: 10.1128/iai.05734-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Streptococcus suis type 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans. S. suis infects the host through the respiratory route, reaches the bloodstream, and persists until breaching into the central nervous system. The capsular polysaccharide (CPS) of S. suis type 2 is considered a key virulence factor of the bacteria. Though CPS allows S. suis to adhere to the membrane of cells of the immune system, it provides protection against phagocytosis. In fact, nonencapsulated mutants are easily internalized and killed by macrophages and dendritic cells. The objective of this work was to study the molecular mechanisms by which the CPS of S. suis prevents phagocytosis. By using latex beads covalently linked with purified CPS, it was shown that CPS itself was sufficient to inhibit entry of both latex beads and bystander fluorescent beads into macrophages. Upon contact with macrophages, encapsulated S. suis was shown to destabilize lipid microdomains at the cell surface, to block nitric oxide (NO) production during infection, and to prevent lactosylceramide accumulation at the phagocytic cup during infection. In contrast, the nonencapsulated mutant was easily internalized via lipid rafts, in a filipin-sensitive manner, leading to lactosylceramide recruitment and strong NO production. This is the first report to identify a role for CPS in lipid microdomain stability and to recognize an interaction between S. suis and lactosylceramide in phagocytes.
Collapse
|
9
|
Hirota K, Hasegawa T, Nakajima T, Makino K, Terada H. Phagostimulatory effect of uptake of PLGA microspheres loaded with rifampicin on alveolar macrophages. Colloids Surf B Biointerfaces 2011; 87:293-8. [DOI: 10.1016/j.colsurfb.2011.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 05/17/2011] [Accepted: 05/18/2011] [Indexed: 11/27/2022]
|