1
|
Mileti O, Baldino N, Luzzi S, Lupi FR, Gabriele D. Interfacial Rheological Study of β-Casein/Pectin Mixtures at the Air/Water Interface. Gels 2024; 10:41. [PMID: 38247764 PMCID: PMC10815610 DOI: 10.3390/gels10010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Colloidal food products, such as emulsions, foams, gels, and dispersions, are complex systems that need the presence of stabilizing agents to enable their formation and provide stability. Proteins are often used for food foams and emulsions because of their ability to lower interfacial tension and make viscoelastic interfaces. Generally, to improve the resistance against rupture, polysaccharides are used in association with the proteins. Pectin is a complex polysaccharide that can help to stabilize foams or emulsions. This work aims at studying the mechanical resistance of the interface formed by mixtures of β-casein and pectin at high and low methoxylation degrees at the air/water interface using dilatational and shear kinematics. Frequency sweep tests, in the linear region, were performed in shear at different aging times and in dilatational mode, and the rheological data were analyzed. The transient data of the surface tension were analyzed by kinetic models to obtain the characteristic rates of the interfacial phenomena. The kinetic mechanisms of the protein/pectin mixed systems are controlled by protein and show a weak gel behavior for short aging times. The interfaces obtained with both pectins in a mixture with β-casein evolved with time, gelling and showing a solid-like behavior at concentrations of 1 and 10 g/L and after 3.5 h of aging time. The interfacial shear trend obtained suggests a good stabilizing effect of the pectins from citrus with long aging times.
Collapse
Affiliation(s)
| | - Noemi Baldino
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.) University of Calabria, I-87036 Rende, Italy; (O.M.); (S.L.); (F.R.L.); (D.G.)
| | | | | | | |
Collapse
|
2
|
Zhao X, Yang S, He F, Liu H, Mai K, Huang J, Yu G, Feng Y, Li J. Light-dimerization telechelic alginate-based amphiphiles reinforced Pickering emulsion for 3D printing. Carbohydr Polym 2023; 299:120170. [PMID: 36876785 DOI: 10.1016/j.carbpol.2022.120170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Functional Pickering emulsions that depend on the interparticle interactions hold promise for building template materials. A novel coumarin-grafting alginate-based amphiphilic telechelic macromolecules (ATMs) undergoing photo-dimerization enhanced particle-particle interactions and changed the self-assembly behavior in solutions. The influence of self-organization of polymeric particles on the droplet size, microtopography, interfacial adsorption and viscoelasticity of Pickering emulsions were further determined by multi-scale methodology. Results showed that stronger attractive interparticle interactions of ATMs (post-UV) endowed Pickering emulsion with small droplet size (16.8 μm), low interfacial tension (9.31 mN/m), thick interfacial film, high interfacial viscoelasticity and adsorption mass, and well stability. The high yield stress, outstanding extrudability (n1 < 1), high structure maintainability, and well shape retention ability, makes them ideal inks for direct 3D printing without any additions. The ATMs provides an increased capacity to produce stable Pickering emulsions with tailoring their interfacial performances and, providing a platform for fabricating and developing alginate-based Pickering emulsion-templated materials.
Collapse
Affiliation(s)
- Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Furui He
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Haifang Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Keyang Mai
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Junhao Huang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Gaobo Yu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China.
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
3
|
Petkova H, Jarek E, Doychinov M, Krzan M, Mileva E. Synergy in Aqueous Systems Containing Bioactive Ingredients of Natural Origin: Saponin/Pectin Mixtures. Polymers (Basel) 2022; 14:polym14204362. [PMID: 36297940 PMCID: PMC9610430 DOI: 10.3390/polym14204362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Biocompatible and biodegradable ingredients of natural origin are widely used in the design of foam and emulsion systems with various technological applications in the food, cosmetics and pharmaceutical industries. The determination of the precise composition of aqueous solution formulations is a key issue for the achievement of environmentally-friendly disperse systems with controllable properties and reasonable stability. The present work is focused on the investigation of synergistic interactions in aqueous systems containing Quillaja saponins and Apple pectins. Profile analysis tensiometer (PAT-1) is applied to study the surface tension and surface dilational rheology of the adsorption layers at the air/solution interface. The properties and the foam films (drainage kinetics, film thickness, disjoining pressure isotherm, critical pressure of rupture) are investigated using the thin-liquid-film (TLF) microinterferometric method of Scheludko–Exerowa and the TLF-pressure-balance technique (TLF-PBT). The results demonstrate that the structure and stability performance of the complex aqueous solutions can be finely tuned by changing the ratio of the bioactive ingredients. The attained experimental data evidence that the most pronounced synergy effect is registered at a specific saponin:pectin ratio. The obtained information is essential for the further development of aqueous solution formulations intended to achieve stable foams based on mixtures of Quillaja saponins and Apple pectins in view of future industrial, pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Hristina Petkova
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str. Bl. 11, 1113 Sofia, Bulgaria
| | - Ewelina Jarek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 “Niezapominajek” Str., 30239 Krakow, Poland
| | - Mitko Doychinov
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str. Bl. 11, 1113 Sofia, Bulgaria
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 “Niezapominajek” Str., 30239 Krakow, Poland
| | - Elena Mileva
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, “Acad. G. Bonchev” Str. Bl. 11, 1113 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
4
|
Effect of glycosylation with apple pectin, citrus pectin, mango pectin and sugar beet pectin on the physicochemical, interfacial and emulsifying properties of coconut protein isolate. Food Res Int 2022; 156:111363. [DOI: 10.1016/j.foodres.2022.111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022]
|
5
|
Physicochemical Characterization of an Exopolysaccharide Produced by Lipomyces sp. and Investigation of Rheological and Interfacial Behavior. Gels 2021; 7:gels7040156. [PMID: 34698141 PMCID: PMC8544488 DOI: 10.3390/gels7040156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to evaluate the rheological and interfacial behaviors of a novel microbial exopolysaccharide fermented by L. starkeyi (LSEP). The structure of LSEP was measured by LC-MS, 1H and 13C NMR spectra, and FT-IR. Results showed that the monosaccharide composition of LSEP was D-mannose (8.53%), D-glucose (79.25%), D-galactose (7.15%), and L-arabinose (5.07%); there existed the anomeric proton of α-configuration and the anomeric carbon of α- and β-configuration; there appeared the characteristic absorption peak of the phosphate ester bond. The molecular weight of LSEP was 401.8 kDa. The water holding capacity (WHC, 2.10 g/g) and oil holding capacity (OHC, 12.89 g/g) were also evaluated. The results of rheological properties showed that the aqueous solution of LSEP was a non-Newtonian fluid, exhibiting the shear-thinning characteristics. The adsorption of LSEP can reduce the interfacial tension (11.64 mN/m) well and form an elastic interface layer at the MCT–water interface. Such functional properties make LSEP a good candidate for use as thickener, gelling agent, and emulsifier to form long-term emulsions for food, pharmaceutical, and cosmetic products.
Collapse
|
6
|
Zhang X, Zhang S, Xie F, Han L, Li L, Jiang L, Qi B, Li Y. Soy/whey protein isolates: interfacial properties and effects on the stability of oil-in-water emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:262-271. [PMID: 32627183 DOI: 10.1002/jsfa.10638] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/22/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The adsorption of proteins at oil/water interfaces can reduce interfacial tension and increase emulsion stability. However, emulsions stabilized by soy protein isolate (SPI) are not sufficiently stable. Using SPI as a control, a theoretical basis for the adsorption behavior of mixed SPI and whey protein isolate (WPI) at the oil/water interface was established and the effects of the protein ratio and content on the emulsion stability were studied. RESULTS Compared to SPI solution, SPI-WPI mixed solutions were found to reduce the size distribution of emulsion droplets and significantly improve the emulsion stability. Among the studied protein contents and ratios, the protein content of 0.2 g kg-1 and SPI/WPI mass ratio of 1:9 offered the lowest creaming stability index (15%), the smallest droplet size (278 nm), and the largest absolute value ζ-potential (35 mV), i.e. the emulsion stability was excellent. The largest dilatational modulus (10.08 mN m-1 ), dilatational elasticity (10.01 mN m-1 ), and dilatational viscosity (1.18 mN m-1 ), were observed with a protein content of 0.15 g kg-1 (SPI/WPI ratio of 1:9), along with a high interfacial protein adsorption capacity (47.33%). SPI-WPI complexes form a thick adsorption layer around oil droplets, resulting in an increase of the expansion modulus of the interfacial layer. CONCLUSION SPI-WPI complexes can form a thick adsorption layer around oil droplets, resulting in increased expansion modulus of the interfacial layer, which improves emulsion stability. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoying Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Fengying Xie
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Lu Han
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, China
- National Research Center of Soybean Engineering and Technology, Harbin, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, China
- National Research Center of Soybean Engineering and Technology, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
- National Research Center of Soybean Engineering and Technology, Harbin, China
| |
Collapse
|
7
|
Tian Y, Zhang Z, Taha A, Chen Y, Hu H, Pan S. Interfacial and emulsifying properties of β-conglycinin/pectin mixtures at the oil/water interface: Effect of pH. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Liu J, Tan J, Hua X, Jiang Z, Wang M, Yang R, Cao Y. Interfacial properties of ultrahigh methoxylated pectin. Int J Biol Macromol 2020; 152:403-410. [PMID: 32105690 DOI: 10.1016/j.ijbiomac.2020.02.264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/14/2020] [Accepted: 02/23/2020] [Indexed: 11/16/2022]
Abstract
The interfacial properties of ultrahigh methoxylated pectin (UHMP) prepared via esterification of citrus pectin (CP) were investigated. The intrinsic viscosity ([η]) of pectin was significantly decreased from 1211.5 mL/g to 294.9 mL/g as the degree of methylation (DM) increased from 63.18 ± 0.08% to 91.52 ± 0.11%. Surface tension (γ) analysis indicated that UHMP had a critical micelle concentration (CMC) of 0.8 g/L, which was slightly smaller than that of sugar beet pectin (SBP) (1.0 g/L). The morphology of the UHMP aggregation presented a network structure and irregular clusters at 10 μg/mL and 1 μg/mL based on atomic force microscopy (AFM). Transmission electron microscopy (TEM) observations further confirmed the self-aggregation behaviours and rod-like micelles of UHMP. The surface excess (Γ) was 1.69 ± 0.17 μmol/m2 for UHMP, which was lower than the values of SBP (1.88 ± 0.21 μmol/m2) and CP (2.91 ± 0.57 μmol/m2). Correspondingly, UHMP possessed the highest molecular area (A) of 0.99 ± 0.10 nm2. Thus, UHMP was proposed to be more flexible and extendable at the interface. The interfacial shear rheology study suggested that UHMP was able to form an elastic-dominant interfacial film to stabilize the oil/water interface.
Collapse
Affiliation(s)
- Jingran Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Jing Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Xiao Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China.
| | - Zhumao Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business, China; College of Life Sciences, Yantai University, 26400 Yantai, China
| | - Mingming Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business, China
| | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business, China.
| |
Collapse
|
9
|
Wang S, Yang J, Shao G, Qu D, Zhao H, Zhu L, Yang L, Li R, Li J, Liu H, Zhu D. Dilatational rheological and nuclear magnetic resonance characterization of oil-water interface: Impact of pH on interaction of soy protein isolated and soy hull polysaccharides. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105366] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Zhuang H, Chu S, Wang P, Zhou B, Han L, Yu X, Fu Q, Li S. Study on the Emulsifying Properties of Pomegranate Peel Pectin from Different Cultivation Areas. Molecules 2019; 24:E1819. [PMID: 31083471 PMCID: PMC6539330 DOI: 10.3390/molecules24091819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/01/2019] [Accepted: 05/08/2019] [Indexed: 11/16/2022] Open
Abstract
Pomegranate peel pectin is an important acidic anionic plant polysaccharide which can be used as a natural emulsifier. In order to study its emulsifying properties, this paper systematically analyses pomegranate peel pectin samples from Chinese Xinjiang, Sichuan and Yunnan provinces, through rheometer, interfacial rheometer, Zetasizer Nano-ZS and mastersizer. It is shown that pomegranate peel pectin can effectively reduce the oil-water interfacial tension, reaching an emulsion droplet size of only 0.507 μm, 0.669 μm and 0.569 μm, respectively, while the pectin concentration is 1.5% and the oil phase (MCT) is 10%. It has also shown that the extreme conditions of pH and ion strength can not significantly change its emulsion stability. However, freeze-thaw cycles can cause the pomegranate peel pectin emulsion to become less stable. Furthermore, the effects of decolourization, protein removal and dialysis on the emulsifying properties of pomegranate peel pectin are investigated using mastersizer rheometer and interfacial rheometer. It is found that the protein and pigment in pomegranate peel pectin have little effect on its emulsifying properties, while the results from dialyzed pectin show that the small molecule substances can reduce the emulsion particle size and increase the emulsion stability. The research outcomes of this study provide technical support for the further application of pomegranate peel pectin in the food industry.
Collapse
Affiliation(s)
- Hu Zhuang
- Key Laboratory of Fermentation Engineering, Ministry of Education; Glyn O. Phillips Hydrophilic Colloid Research Center, Faculty of Light Industry; School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei Province, China.
| | - Shang Chu
- Key Laboratory of Fermentation Engineering, Ministry of Education; Glyn O. Phillips Hydrophilic Colloid Research Center, Faculty of Light Industry; School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei Province, China.
| | - Ping Wang
- Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, College of Life Sciences, Tarim University; Alar 843300, China.
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering, Ministry of Education; Glyn O. Phillips Hydrophilic Colloid Research Center, Faculty of Light Industry; School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei Province, China.
| | - Lingyu Han
- Key Laboratory of Fermentation Engineering, Ministry of Education; Glyn O. Phillips Hydrophilic Colloid Research Center, Faculty of Light Industry; School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei Province, China.
| | - Xiongwei Yu
- Wuhan Xudong Food Co., Ltd., Wuhan 430040, Hubei Province, China.
| | - Qinli Fu
- Wuhan Xudong Food Co., Ltd., Wuhan 430040, Hubei Province, China.
| | - Shugang Li
- Key Laboratory of Fermentation Engineering, Ministry of Education; Glyn O. Phillips Hydrophilic Colloid Research Center, Faculty of Light Industry; School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei Province, China.
| |
Collapse
|
11
|
Adsorption of methylene blue on agroindustrial wastes: Experimental investigation and phenomenological modelling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 141:60-71. [DOI: 10.1016/j.pbiomolbio.2018.07.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
|
12
|
Baldino N, Mileti O, Lupi FR, Gabriele D. Rheological surface properties of commercial citrus pectins at different pH and concentration. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Complexation with whey protein hydrolysate improves cacao pods husk pectin surface active and emulsifying properties. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2017.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Mao L, Wang W, Tai K, Yuan F, Gao Y. Development of a soy protein isolate–carrageenan–quercetagetin non-covalent complex for the stabilization of β-carotene emulsions. Food Funct 2017; 8:4356-4363. [DOI: 10.1039/c7fo01238a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The current study investigated the application of a soy protein isolate (SPI), κ-carrageenan (CG) and quercetagetin (Qut) non-covalent complex in stabilizing β-carotene emulsions.
Collapse
Affiliation(s)
- Like Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Laboratory for Food Quality and Safety
- Beijing Key Laboratory of Functional Food from Plant Resources
- College of Food Science & Nutritional Engineering
- China Agricultural University
| | - Weiyou Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Laboratory for Food Quality and Safety
- Beijing Key Laboratory of Functional Food from Plant Resources
- College of Food Science & Nutritional Engineering
- China Agricultural University
| | - Kedong Tai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Laboratory for Food Quality and Safety
- Beijing Key Laboratory of Functional Food from Plant Resources
- College of Food Science & Nutritional Engineering
- China Agricultural University
| | - Fang Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Laboratory for Food Quality and Safety
- Beijing Key Laboratory of Functional Food from Plant Resources
- College of Food Science & Nutritional Engineering
- China Agricultural University
| | - Yanxiang Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Laboratory for Food Quality and Safety
- Beijing Key Laboratory of Functional Food from Plant Resources
- College of Food Science & Nutritional Engineering
- China Agricultural University
| |
Collapse
|
15
|
Weizman O, Dotan A, Nir Y, Ophir A. Modified whey protein coatings for improved gas barrier properties of biodegradable films. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3882] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Orli Weizman
- Department of Polymers & Plastics Engineering, The Pernick Faculty of Engineering; Shenkar College of Engineering and Design; Ramat-Gan Israel
| | - Ana Dotan
- Department of Polymers & Plastics Engineering, The Pernick Faculty of Engineering; Shenkar College of Engineering and Design; Ramat-Gan Israel
| | - Yiftach Nir
- Department of Polymers & Plastics Engineering, The Pernick Faculty of Engineering; Shenkar College of Engineering and Design; Ramat-Gan Israel
| | - Amos Ophir
- Department of Polymers & Plastics Engineering, The Pernick Faculty of Engineering; Shenkar College of Engineering and Design; Ramat-Gan Israel
| |
Collapse
|
16
|
Cuevas-Bernardino J, Lobato-Calleros C, Román-Guerrero A, Alvarez-Ramirez J, Vernon-Carter E. Physicochemical characterisation of hawthorn pectins and their performing in stabilising oil-in-water emulsions. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.03.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Zhu J, Lin X, Wu P, Luo X. Pectin/Al2O3–ZrO2 core/shell bead sorbent for fluoride removal from aqueous solution. RSC Adv 2016. [DOI: 10.1039/c5ra26404a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pectin/Al2O3–ZrO2 core/shell beads were prepared for fluoride removal. A maximum adsorption capacity was 98.077 mg g−1, and the pectin/Al2O3–ZrO2 sorbent could be a potentially material in the fluoride removal by comparing with other sorbent.
Collapse
Affiliation(s)
- Jiuya Zhu
- School of Materials Science and Engineering
- Southwest University of Science and Technology
- Mianyang 621010
- China
- Engineering Research Center of Biomass Materials
| | - Xiaoyan Lin
- School of Materials Science and Engineering
- Southwest University of Science and Technology
- Mianyang 621010
- China
- Engineering Research Center of Biomass Materials
| | - Pengwei Wu
- School of Materials Science and Engineering
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Xuegang Luo
- Engineering Research Center of Biomass Materials
- Ministry of Education
- Mianyang 621010
- China
| |
Collapse
|
18
|
Zhang W, Waghmare PR, Chen L, Xu Z, Mitra SK. Interfacial rheological and wetting properties of deamidated barley proteins. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Mao L, Boiteux L, Roos YH, Miao S. Evaluation of volatile characteristics in whey protein isolate–pectin mixed layer emulsions under different environmental conditions. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2014.03.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Adsorption at the biocompatible α-pinene–water interface and emulsifying properties of two eco-friendly surfactants. Colloids Surf B Biointerfaces 2014; 122:623-629. [DOI: 10.1016/j.colsurfb.2014.07.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/19/2022]
|
21
|
Understanding interactions between immunoassay excipient proteins and surfactants at air–aqueous interface. Colloids Surf B Biointerfaces 2014; 113:285-94. [DOI: 10.1016/j.colsurfb.2013.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/01/2013] [Accepted: 09/13/2013] [Indexed: 11/18/2022]
|
22
|
Serfert Y, Schröder J, Mescher A, Laackmann J, Rätzke K, Shaikh M, Gaukel V, Moritz HU, Schuchmann H, Walzel P, Drusch S, Schwarz K. Spray drying behaviour and functionality of emulsions with β-lactoglobulin/pectin interfacial complexes. Food Hydrocoll 2013. [DOI: 10.1016/j.foodhyd.2012.11.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Foaming characteristics of β-lactoglobulin as affected by enzymatic hydrolysis and polysaccharide addition: Relationships with the bulk and interfacial properties. J FOOD ENG 2012. [DOI: 10.1016/j.jfoodeng.2012.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Effect of pectin adsorption on the hydrophobic binding sites of β-lactoglobulin in solution and in emulsion systems. Int Dairy J 2012. [DOI: 10.1016/j.idairyj.2011.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Perez AA, Sánchez CC, Rodríguez Patino JM, Rubiolo AC, Santiago LG. Effect of enzymatic hydrolysis and polysaccharide addition on the β-lactoglobulin adsorption at the air–water interface. J FOOD ENG 2012. [DOI: 10.1016/j.jfoodeng.2011.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|