1
|
Li D, Dai D, Xiong G, Lan S, Zhang C. Composite Nanocoatings of Biomedical Magnesium Alloy Implants: Advantages, Mechanisms, and Design Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300658. [PMID: 37097626 PMCID: PMC10288271 DOI: 10.1002/advs.202300658] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The rapid degradation of magnesium (Mg) alloy implants erodes mechanical performance and interfacial bioactivity, thereby limiting their clinical utility. Surface modification is among the solutions to improve corrosion resistance and bioefficacy of Mg alloys. Novel composite coatings that incorporate nanostructures create new opportunities for their expanded use. Particle size dominance and impermeability may increase corrosion resistance and thereby prolong implant service time. Nanoparticles with specific biological effects may be released into the peri-implant microenvironment during the degradation of coatings to promote healing. Composite nanocoatings provide nanoscale surfaces to promote cell adhesion and proliferation. Nanoparticles may activate cellular signaling pathways, while those with porous or core-shell structures may carry antibacterial or immunomodulatory drugs. Composite nanocoatings may promote vascular reendothelialization and osteogenesis, attenuate inflammation, and inhibit bacterial growth, thus increasing their applicability in complex clinical microenvironments such as those of atherosclerosis and open fractures. This review combines the physicochemical properties and biological efficiency of Mg-based alloy biomedical implants to summarize the advantages of composite nanocoatings, analyzes their mechanisms of action, and proposes design and construction strategies, with the purpose of providing a reference for promoting the clinical application of Mg alloy implants and to further the design of nanocoatings.
Collapse
Affiliation(s)
- Dan Li
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Danni Dai
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Gege Xiong
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Shuquan Lan
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Chao Zhang
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
2
|
Li Y, Hu Y, Chen H, Meng X, Chen D, Gu H, Chen Q, Mu Z, Li Z. A novel conceptual design of a biomimetic oral implant and its biomechanical effect on the repairment of a large mandibular defect. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
3
|
Potential bioactive coating system for high-performance absorbable magnesium bone implants. Bioact Mater 2022; 12:42-63. [PMID: 35087962 PMCID: PMC8777287 DOI: 10.1016/j.bioactmat.2021.10.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Magnesium alloys are considered the most suitable absorbable metals for bone fracture fixation implants. The main challenge in absorbable magnesium alloys is their high corrosion/degradation rate that needs to be controlled. Various coatings have been applied to magnesium alloys to slow down their corrosion rates to match their corrosion rate to the regeneration rate of the bone fracture. In this review, a bioactive coating is proposed to slow down the corrosion rate of magnesium alloys and accelerate the bone fracture healing process. The main aim of the bioactive coatings is to enhance the direct attachment of living tissues and thereby facilitate osteoconduction. Hydroxyapatite, collagen type I, recombinant human bone morphogenetic proteins 2, simvastatin, zoledronate, and strontium are six bioactive agents that show high potential for developing a bioactive coating system for high-performance absorbable magnesium bone implants. In addition to coating, the substrate itself can be made bioactive by alloying magnesium with calcium, zinc, copper, and manganese that were found to promote bone regeneration. Bioactive-coated magnesium implant could accelerate bone fracture healing time to match with magnesium degradation. Hydroxyapatite, collagen type I, recombinant human bone morphogenetic proteins 2, simvastatin, zoledronate, and strontium are high potential bioactive coating materials. The incorporation of Ca, Zn, Cu, Sr, and Mn in Mg base-metal could further enhance bone formation.
Collapse
|
4
|
Electrodeposition of Calcium Phosphate Coatings on Metallic Substrates for Bone Implant Applications: A Review. COATINGS 2022. [DOI: 10.3390/coatings12040539] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review summaries more than three decades of scientific knowledge on electrodeposition of calcium phosphate coatings. This low-temperature process aims to make the surface of metallic bone implants bioactive within a physiological environment. The first part of the review describes the reaction mechanisms that lead to the synthesis of a bioactive coating. Electrodeposition occurs in three consecutive steps that involve electrochemical reactions, pH modification, and precipitation of the calcium phosphate coating. However, the process also produces undesired dihydrogen bubbles during the deposition because of the reduction of water, the solvent of the electrolyte solution. To prevent the production of large amounts of dihydrogen bubbles, the current density value is limited during deposition. To circumvent this issue, the use of pulsed current has been proposed in recent years to replace the traditional direct current. Thanks to breaking times, dihydrogen bubbles can regularly escape from the surface of the implant, and the deposition of the calcium phosphate coating is less disturbed by the accumulation of bubbles. In addition, the pulsed current has a positive impact on the chemical composition, morphology, roughness, and mechanical properties of the electrodeposited calcium phosphate coating. Finally, the review describes one of the most interesting properties of electrodeposition, i.e., the possibility of adding ionic substituents to the calcium phosphate crystal lattice to improve the biological performance of the bone implant. Several cations and anions are reviewed from the scientific literature with a description of their biological impact on the physiological environment.
Collapse
|
5
|
Wang J, Xia H, Fan X, Wu H, Liao Y, Yuan F. Biodegradable Zn-2Ag-0.04Mg Alloy for Bone Regeneration In Vivo. Mol Biotechnol 2022; 64:928-935. [PMID: 35260964 DOI: 10.1007/s12033-022-00474-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022]
Abstract
To evaluate the bone regeneration capacity of Zn-2Ag-0.04Mg alloy scaffold in vivo. Zn, Zn-2Ag and Zn-2Ag-0.04Mg scaffolds were implanted in the femur of New Zealand rabbits, and the degradation of the scaffolds and the regeneration of the bone were observed at 6th week and 6th month. Two-dimensional and three-dimensional micro-CT results showed the new bone in Zn-2Ag-0.04Mg alloy scaffold group was significant more than Zn scaffold group, the bone volume in Zn-2Ag-0.04Mg was higher. Moreover, the osteogenic index in the Zn-2Ag-0.04Mg alloy scaffold group was also higher than Zn scaffold group. At 6th month, the scaffold of Zn-2Ag-0.04Mg was smaller than Zn group or Zn-2Ag group. HE staining of the liver, kidney, and heart did not detect any abnormalities, confirmed the biosafety of the Zn-2Ag-0.04Mg alloy scaffold. The Zn-Ag-0.04Mg alloy scaffold exhibits good biocompatibility and bone regeneration ability in vivo.
Collapse
Affiliation(s)
- Jian Wang
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, No.389 Xincun Road, Shanghai, 200065, China.,Department of Orthopaedics, Karamay Central Hospital of Xinjiang, Karamay, 834000, China
| | - Haijun Xia
- Department of Orthopaedics, Karamay Central Hospital of Xinjiang, Karamay, 834000, China
| | - Xiaolei Fan
- Department of Orthopaedics, Karamay Central Hospital of Xinjiang, Karamay, 834000, China
| | - Hongzi Wu
- Department of Orthopaedics, Karamay Central Hospital of Xinjiang, Karamay, 834000, China
| | - Yi Liao
- Department of Orthopaedics, Karamay Central Hospital of Xinjiang, Karamay, 834000, China.
| | - Feng Yuan
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, No.389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
6
|
Heakal FET, Sarhan YB, Maamoun MA, Bakry AM, Abdel-Monem YK, Ghayad IM. Hydrothermal Microwave-Assisted Fabrication of Nanohydroxyapatite Powder and Optimization of Its Nanocomposite Coatings on Magnesium Alloy for Orthopedic Applications. ACS OMEGA 2022; 7:1021-1034. [PMID: 35036766 PMCID: PMC8756588 DOI: 10.1021/acsomega.1c05625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Developing appropriate protecting coatings for Mg alloy applications is a challenging issue. Herein, nanohydroxyapatite (nanoHAP) powder was first fabricated by the simple hydrothermal microwave-assisted method. A direct current electrophoresis deposition (EPD) of nanoHAP composite coatings on Mg-3Zn-0.8Ca magnesium alloy was successfully executed. Three suspensions with HAP-dispersive resin solution (ETELAC) ratios (in wt %) of 5-5, 5-2.5, and 2.5-2.5 were chosen for optimizing the effect of applied voltage, deposition time, and stirring mode and rates on the EPD process. NanoHAP composite coatings were applied on each sample in single- and double-run depositions. The results revealed that the maximum weight gain on the coated samples was obtained in 5-5 suspension at 50 V under 150 rpm mechanical stirring rate. Surface examination indicated crack-free coating formation with varying grain sizes. Adhesion tests demonstrated high interconnection between the obtained nanocomposite coatings and the alloy substrate. Electrochemical evaluation measurements in SBF at 37 °C indicated that the corrosion resistance of any coated sample is always superior compared to that of the uncoated bare substrate. It was suggested that the EPD of nanoHAP/ETELAC composite coatings on Mg-Zn-Ca alloy can be a good solution for protecting the alloy from the attack of the aggressive ions bound in the SBF environment.
Collapse
Affiliation(s)
| | - Yahia B. Sarhan
- Chemistry
Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Maamoun A. Maamoun
- Central
Metallurgical Research and Development Institute (CMRDI), Cairo 12422, Egypt
| | - Amira M. Bakry
- Chemistry
Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Yasser K. Abdel-Monem
- Chemistry
Department, Faculty of Science, Menoufia
University, Shebin El-Kom 32511, Egypt
| | - Ibrahim M. Ghayad
- Central
Metallurgical Research and Development Institute (CMRDI), Cairo 12422, Egypt
| |
Collapse
|
7
|
Gao J, Su Y, Qin YX. Calcium phosphate coatings enhance biocompatibility and degradation resistance of magnesium alloy: Correlating in vitro and in vivo studies. Bioact Mater 2021; 6:1223-1229. [PMID: 33210020 PMCID: PMC7653207 DOI: 10.1016/j.bioactmat.2020.10.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 11/24/2022] Open
Abstract
Magnesium (Mg) and its alloys are promising biodegradable materials for orthopedic applications. However, one of the major problems is their rapid degradation rate with quick evolution of hydrogen gas. To overcome this problem, calcium phosphate (CaP) coatings have been used to improve the degradation resistance and the biocompatibility of Mg materials. This study focuses on the comparison and correlation of the in vitro and in vivo degradation and biocompatibility behaviors of these materials. A CaP coating consisting of dicalcium phosphate dihydrate (DCPD) was deposited on an AZ60 Mg alloy by the chemical conversion method. Then, the in vitro degradation testing including electrochemical and immersion tests, and in vivo implantation of the CaP coated Mg alloy were conducted to compare the degradation behaviors. Next, the in vitro cell behavior and in vivo bone tissue response were also compared on both uncoated and CaP-coated Mg samples. Data showed that the CaP coating provided the Mg alloy with significantly better biodegradation behavior and biocompatibility. The in vitro and in vivo biocompatibility tests exhibited good consistency while not the case for biodegradation. Results showed that the in vitro electrochemical test could be a quick screening tool for the biodegradation rate, while the in vitro immersion degradation rate was often 2-4 folds faster than the in vivo degradation rate.
Collapse
Affiliation(s)
- Julia Gao
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Yingchao Su
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, United States
| |
Collapse
|
8
|
Sun J, Wang Q, Cai D, Gu W, Ma Y, Sun Y, Wei Y, Yuan F. A lattice topology optimization of cervical interbody fusion cage and finite element comparison with ZK60 and Ti-6Al-4V cages. BMC Musculoskelet Disord 2021; 22:390. [PMID: 33902500 PMCID: PMC8077704 DOI: 10.1186/s12891-021-04244-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In current clinical practice, the most commonly used fusion cage materials are titanium (Ti) alloys. However, titanium alloys are non-degradable and may cause stress shielding. ZK60 is a bio-absorbable implant that can effectively avoid long-term complications, such as stress shielding effects, implant displacement, and foreign body reactions. In this study, we aimed at investigating the biomechanical behavior of the cervical spine after implanting different interbody fusion cages. METHODS The finite element (FE) models of anterior cervical disc removal and bone graft fusion (ACDF) with a ZK60 cage and a Ti cage were constructed, respectively. Simulations were performed to evaluate their properties of flexion, extension, lateral bending, and axial rotation of the cervical spine. Moreover, a side-by-side comparison was conducted on the range of motion (ROM), the deformation of cages, the stress in the cages, bone grafts, and cage-end plate interface. Simultaneously, according to the biomechanical analysis results, the microporous structure of the ZK60 cage was improved by the lattice topology optimization technology and validation using static structure. RESULTS The ROMs in the current study were comparable with the results reported in the literature. There was no significant difference in the deformation of the two cages under various conditions. Moreover, the maximum stress occurred at the rear of the cage in all cases. The cage's and endplate-cage interface's stress of the ZK60 group was reduced compared with the Ti cage, while the bone graft stress in the ZK60 fusion cage was significantly greater than that in the Ti fusion cage (average 27.70%). We further optimized the cage by filling it with lattice structures, the volume was decreased by 40%, and validation showed more significant biomechanical properties than ZK60 and Ti cages. CONCLUSION The application of the ZK60 cage can significantly increase the stress stimulation to the bone graft by reducing the stress shielding effect between the two instrumented bodies. We also observed that the stress of the endplate-cage interface decreased as the reduction of the cage's stiffness, indicating that subsidence is less likely to occur in the cage with lower stiffness. Moreover, we successfully designed a porous cage based on the biomechanical load by lattice optimization.
Collapse
Affiliation(s)
- Jun Sun
- Departments of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Rd, Xuzhou, 221006, China
| | - Qiuan Wang
- Departments of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Rd, Xuzhou, 221006, China
| | - Dazhao Cai
- Departments of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Rd, Xuzhou, 221006, China
| | - Wenxiang Gu
- Departments of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Rd, Xuzhou, 221006, China
| | - Yiming Ma
- Departments of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Rd, Xuzhou, 221006, China
| | - Yang Sun
- Departments of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Rd, Xuzhou, 221006, China
| | - Yangyang Wei
- Departments of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Rd, Xuzhou, 221006, China
| | - Feng Yuan
- Departments of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Rd, Xuzhou, 221006, China.
| |
Collapse
|
9
|
Long Term Evaluation of Biodegradation and Biocompatibility In-Vivo the Mg-0.5Ca-xZr Alloys in Rats. CRYSTALS 2021. [DOI: 10.3390/cryst11010054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biodegradable alloys in Mg have the advantages of traditional metallic materials and those of biodegradable polymers with superior strength, lower density and ideal rigidity for fixing bone fractures. The biocompatibility and biodegradability of the five concentrations of Mg-0.5Ca-xZr alloys used were assessed using clinical and laboratory examinations that followed over time: tissue reaction, histological and imaging (RX, CT and SEM) evolution at 1, 2, 4 and 8 weeks after implant. The main purpose of this study was to investigate in vivo the long-term effect of Mg-0.5Ca-xZr alloys in rats. The results confirmed that Mg-0.5Ca-xZr alloys are biocompatible and biodegradable and are recommended to be used as possible materials for new orthopedics devices.
Collapse
|
10
|
On SW, Cho SW, Byun SH, Yang BE. Bioabsorbable Osteofixation Materials for Maxillofacial Bone Surgery: A Review on Polymers and Magnesium-Based Materials. Biomedicines 2020; 8:biomedicines8090300. [PMID: 32825692 PMCID: PMC7555479 DOI: 10.3390/biomedicines8090300] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 01/24/2023] Open
Abstract
Clinical application of osteofixation materials is essential in performing maxillofacial surgeries requiring rigid fixation of bone such as trauma surgery, orthognathic surgery, and skeletal reconstruction. In addition to the use of titanium plates and screws, clinical applications and attempts using bioabsorbable materials for osteofixation surgery are increasing with demands to avoid secondary surgery for the removal of plates and screws. Synthetic polymeric plates and screws were developed, reaching satisfactory physical properties comparable to those made with titanium. Although these polymeric materials are actively used in clinical practice, there remain some limitations to be improved. Due to questionable physical strength and cumbersome molding procedures, interests in resorbable metal materials for osteofixation emerged. Magnesium (Mg) gained attention again in the last decade as a new metallic alternative, and numerous animal studies to evaluate the possibility of clinical application of Mg-based materials are being conducted. Thanks to these researches and studies, vascular application of Mg-based biomaterials was successful; however, further studies are required for the clinical application of Mg-based biomaterials for osteofixation, especially in the facial skeleton. The review provides an overview of bioabsorbable osteofixation materials in maxillofacial bone surgery from polymer to Mg.
Collapse
Affiliation(s)
- Sung-Woon On
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong 18450, Korea;
- Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea; (S.-W.C.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
| | - Seoung-Won Cho
- Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea; (S.-W.C.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
- Division of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Korea
| | - Soo-Hwan Byun
- Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea; (S.-W.C.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
- Division of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Korea
| | - Byoung-Eun Yang
- Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea; (S.-W.C.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Korea
- Division of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Korea
- Correspondence: ; Tel.: +82-380-3870
| |
Collapse
|
11
|
Li J, Xu W, Lin X, Cao F, Yang J, Li L, Wei X, Zhang X, Zhao D, Yang K. A Ca-deficientca-deficient hydroxyapatite (CDHA)/MgF 2 bi-layer coating with unique nano-scale topography on biodegradable high-purity Mg. Colloids Surf B Biointerfaces 2020; 190:110911. [PMID: 32146277 DOI: 10.1016/j.colsurfb.2020.110911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 11/28/2022]
Abstract
Enhanced corrosion resistance and accelerated new bone formation are desired to make Mg and its alloys to be ideal candidate for bone biomaterial. For this purpose, a CDHA/MgF2 bi-layer coating was prepared on high purity Mg by a combination of fluoride treatment and hydrothermal treatment. The coating exhibited a nanoscale surface topography. Enhanced adhesion strength and corrosion resistance was obtained for the CDHA/MgF2 bi-layer coating. In vitro cell experiment showed that the adhesion, proliferation and differentiation of MG63 cells were significantly improved on Mg with CDHA/MgF2 coating compared to that on Mg with HA coating and MgF2 coating. In conclusion, this study provides a promising surface modification method for Mg metal with enhanced corrosion resistance and superior osteogenic bioactivity.
Collapse
Affiliation(s)
- Junlei Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Wenwu Xu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Xiao Lin
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Fang Cao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Jiahui Yang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Lu Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Xiaowei Wei
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Xiuzhi Zhang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China.
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
12
|
Su Y, Cockerill I, Zheng Y, Tang L, Qin YX, Zhu D. Biofunctionalization of metallic implants by calcium phosphate coatings. Bioact Mater 2019; 4:196-206. [PMID: 31193406 PMCID: PMC6529680 DOI: 10.1016/j.bioactmat.2019.05.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 01/07/2023] Open
Abstract
Metallic materials have been extensively applied in clinical practice due to their unique mechanical properties and durability. Recent years have witnessed broad interests and advances on surface functionalization of metallic implants for high-performance biofunctions. Calcium phosphates (CaPs) are the major inorganic component of bone tissues, and thus owning inherent biocompatibility and osseointegration properties. As such, they have been widely used in clinical orthopedics and dentistry. The new emergence of surface functionalization on metallic implants with CaP coatings shows promise for a combination of mechanical properties from metals and various biofunctions from CaPs. This review provides a brief summary of state-of-art of surface biofunctionalization on implantable metals by CaP coatings. We first glance over different types of CaPs with their coating methods and in vitro and in vivo performances, and then give insight into the representative biofunctions, i.e. osteointegration, corrosion resistance and biodegradation control, and antibacterial property, provided by CaP coatings for metallic implant materials.
Collapse
Affiliation(s)
- Yingchao Su
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Irsalan Cockerill
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, China
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| |
Collapse
|
13
|
Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives. Acta Biomater 2019; 96:1-19. [PMID: 31181263 DOI: 10.1016/j.actbio.2019.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Magnesium (Mg) and some of its alloys have attracted extensive interests for biomedical applications as they exhibit biodegradability and low elastic modulus that is closer to natural bones than the currently used metallic implant materials such as titanium (Ti) and its alloys, stainless steels, and cobalt-chromium (Co-Cr) alloys. However, the rapid degradation of Mg alloys and loss of their mechanical integrity before sufficient bone healing impede their clinical application. Our literature review shows that magnesium matrix nanocomposites (MMNCs) reinforced with nanoparticles possess enhanced strength, high corrosion resistance, and good biocompatibility. This article provides a detailed analysis of the effects of nanoparticle reinforcements on the mechanical properties, corrosion behavior, and biocompatibility of MMNCs as promising biodegradable implant materials. The governing equations to quantitatively predict the mechanical properties and underlying synergistic strengthening mechanisms in MMNCs are elucidated. The potential, recent advances, challenges and future research directions in relation to nanoparticles reinforced MMNCs are highlighted. STATEMENT OF SIGNIFICANCE: Critically reviewing magnesium metal matrix nanocomposites (MMNCs) for the biomedical application. Clear definitions of strengthening mechanisms using reinforcement particle in the magnesium matrix, as there were controversial in governing equations of strengthening parameters. Providing better understanding of the effect of particle size, volume fraction, interfacial bonding, and uniform dispersion of reinforcement particles on MMNCs.
Collapse
|
14
|
Kamrani S, Fleck C. Biodegradable magnesium alloys as temporary orthopaedic implants: a review. Biometals 2019; 32:185-193. [PMID: 30659451 DOI: 10.1007/s10534-019-00170-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 12/20/2022]
Abstract
The study of innovative biodegradable implant materials is one of the most interesting research topics at the forefront in the area of biomaterials. Biodegradable implant materials in the human body can be gradually dissolved, absorbed, consumed or excreted, so there is no need for the secondary surgery to remove implants after the surgery regions have healed. However, most of the biodegradable materials, usually polymers, do not have good mechanical properties to be reliable for bearing the load of the body. Magnesium and its alloys due to the excellent biodegradability and biocompatibility as well as the suitable mechanical compatibility with human bone are very promising candidates for the development of temporary, degradable implants in load-bearing applications. However, Mg alloys are corrosion susceptible in a biological environment. Besides, the high corrosion rate and the low bioactivity of magnesium implants are the challenging problems, which need to be resolved before employing them in clinical applications. This paper provides a review of state-of-the-art of magnesium alloy implants for orthopedic and tissue engineering applications and describes recent progress in the design of novel structure design Mg alloys and potential approaches to improve their biodegradation performance.
Collapse
Affiliation(s)
- Sepideh Kamrani
- Technische Universität Berlin, Berlin, Germany. .,Department of Materials Engineering, Institute of Technology Berlin, Str. des 17. Juni 135 - Sekr. EB 13, 10623, Berlin, Germany.
| | | |
Collapse
|
15
|
Kang MH, Lee H, Jang TS, Seong YJ, Kim HE, Koh YH, Song J, Jung HD. Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration. Acta Biomater 2019; 84:453-467. [PMID: 30500444 DOI: 10.1016/j.actbio.2018.11.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/02/2018] [Accepted: 11/26/2018] [Indexed: 11/19/2022]
Abstract
The medical applications of porous Mg scaffolds are limited owing to its rapid corrosion, which dramatically decreases the mechanical strength of the scaffold. Mimicking the bone structure and composition can improve the mechanical and biological properties of porous Mg scaffolds. The Mg structure can also be coated with HA by an aqueous precipitation coating method to enhance both the corrosion resistance and the biocompatibility. However, due to the brittleness of HA coating layer, cracks tend to form in the HA coating layer, which may influence the corrosion and biological functionality of the scaffold. Consequently, in this study, hybrid poly(ether imide) (PEI)-SiO2 layers were applied to the HA-coated biomimetic porous Mg to impart the structure with the high corrosion resistance associated with PEI and excellent bioactivity with SiO2. The porosity of the Mg was controlled by adjusting the concentration of the sodium chloride (NaCl) particles used in the fabrication via the space-holder method. The mechanical measurements showed that the compressive strength and stiffness of the biomimetic porous Mg increased as the portion of the dense region increased. In addition, following results show that HA/(PEI-SiO2) hybrid-coated biomimetic Mg is a promising biodegradable scaffold for orthopedic applications. In-vitro testing revealed that the proposed hybrid coating reduced the degradation rate and facilitated osteoblast spreading compared to HA- and HA/PEI-coating scaffolds. Moreover, in-vivo testing with a rabbit femoropatellar groove model showed improved tissue formation, reduced corrosion and degradation, and improved bone formation on the scaffold. STATEMENT OF SIGNIFICANCE: Porous Mg is a promising biodegradable scaffold for orthopedic applications. However, there are limitations in applying porous Mg for an orthopedic biomaterial due to its poor mechanical properties and susceptibility to rapid corrosion. Here, we strategically designed the structure and coating layer of porous Mg to overcome these limitations. First, porous Mg was fabricated by mimicking the bone structure which has a combined structure of dense and porous regions, thus resulting in an enhancement of mechanical properties. Furthermore, the biomimetic porous Mg was coated with HA/(PEI-SiO2) hybrid layer to improve both corrosion resistance and biocompatibility. As the final outcome, with tunable mechanical and biodegradable properties, HA/(PEI-SiO2)-coated biomimetic porous Mg could be a promising candidate material for load-bearing orthopedic applications.
Collapse
Affiliation(s)
- Min-Ho Kang
- Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea; Center of Nanoparticle Research, Institute for Basic Science (IBS), Republic of Korea
| | - Hyun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Sik Jang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore; Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Yun-Jeong Seong
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Hag Koh
- School of Biomedical Engineering, Korea University, Seoul 136-703, Republic of Korea
| | - Juha Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore
| | - Hyun-Do Jung
- Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea.
| |
Collapse
|
16
|
Wang S, Li J, Zhou Z, Zhou S, Hu Z. Micro-/Nano-Scales Direct Cell Behavior on Biomaterial Surfaces. Molecules 2018; 24:E75. [PMID: 30587800 PMCID: PMC6337445 DOI: 10.3390/molecules24010075] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/10/2018] [Accepted: 12/20/2018] [Indexed: 01/22/2023] Open
Abstract
Cells are the smallest living units of a human body's structure and function, and their behaviors should not be ignored in human physiological and pathological metabolic activities. Each cell has a different scale, and presents distinct responses to specific scales: Vascular endothelial cells may obtain a normal function when regulated by the 25 µm strips, but de-function if the scale is removed; stem cells can rapidly proliferate on the 30 nm scales nanotubes surface, but stop proliferating when the scale is changed to 100 nm. Therefore, micro and nano scales play a crucial role in directing cell behaviors on biomaterials surface. In recent years, a series of biomaterials surface with micro and/or nano scales, such as micro-patterns, nanotubes and nanoparticles, have been developed to control the target cell behavior, and further enhance the surface biocompatibility. This contribution will introduce the related research, and review the advances in the micro/nano scales for biomaterials surface functionalization.
Collapse
Affiliation(s)
- Shuo Wang
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of materials processing and mold technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| | - Jingan Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of materials processing and mold technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| | - Zixiao Zhou
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of materials processing and mold technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| | - Sheng Zhou
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of materials processing and mold technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| | - Zhenqing Hu
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of materials processing and mold technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
17
|
Bigham A, Saudi A, Rafienia M, Rahmati S, Bakhtiyari H, Salahshouri F, Sattary M, Hassanzadeh-Tabrizi SA. Electrophoretically deposited mesoporous magnesium silicate with ordered nanopores as an antibiotic-loaded coating on surface-modified titanium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:765-775. [PMID: 30606589 DOI: 10.1016/j.msec.2018.12.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/21/2018] [Accepted: 12/05/2018] [Indexed: 12/30/2022]
Abstract
Infection is quite usual for implants after surgery and a systemic administration of antibiotics causes problems before the eradication of bacteria. Localized drug delivery from implants is an effective way by which the mentioned target can be met. In the current work, ordered mesoporous magnesium silicate (OMMS) is coated on plasma electrolytic oxidation (PEO)-modified titanium (Ti) substrate through electrophoretic deposition (EPD) and rifampin as an antibiotic is loaded on OMMS coating to be applied as an antibacterial coating. The immersion test into simulated body fluid and also potentiodynamic polarization assay are adopted to assess the in vitro bioactivity up to 7 days and corrosion resistance of the specimens, respectively. The double surface coatings of PEO and EPD are achieved on Ti substrate and the thickness for each one is found to be 4 and 25 μm, respectively. Regarding to drug delivery capability of OMMS as the EPD coating, the loading capacity is 25% and release trend sustains up to 96 h. The antibacterial activity and also cell viability of OMMS coating are significantly increased with rifampin loading. The results of our study exhibit that OMMS as a multifunctional coating deposited on the PEO-modified Ti substrate improves corrosion resistance, in vitro bioactivity, alkaline phosphatase activity, and mineralization of the substrate. Moreover, rifampin-loaded OMMS coating is not only able to prevent infection, but it also increases the osteogenesis cells viability. Therefore, rifampin-loaded OMMS coating on Ti is potentially regarded appropriate for orthopedic applications.
Collapse
Affiliation(s)
- Ashkan Bigham
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Ahmad Saudi
- Student Research Committee, School of Advanced Medical Technologies, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Shahram Rahmati
- Young Researchers and Elite Club, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| | - Hassan Bakhtiyari
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Fatemeh Salahshouri
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mansoureh Sattary
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine (ATiM), Isfahan University of Medical Sciences, Isfahan, Iran
| | - S A Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
18
|
The Bioresorption and Guided Bone Regeneration of Absorbable Hydroxyapatite-Coated Magnesium Mesh. J Craniofac Surg 2018; 28:518-523. [PMID: 28060094 DOI: 10.1097/scs.0000000000003383] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION Nonabsorbable metallic membrane for guided bone regeneration is remained permanently even though after complete healing. There would be metallic exposure followed by the risk of infection; the membrane should be removed for the additional procedure such as implant installation. Since absorbable nonmetallic mesh is absorbed within 3 to 6 months, it is unnecessary to be removed. However, the absorbable membrane shows lower retention, lower mechanical strength, and difficulty of manipulation than the nonabsorbable ones.The purpose of this study is to evaluate the ability of absorbable metallic mesh (hydroxyapatite-coated magnesium mesh) with acceptable mechanical properties and satisfying biocompatibility. METHODS The bioresorption and fate of magnesium were evaluated in Sprague Dawley rat (SD rat) with critical defect of calvarium. The critical defect with a diameter of 8 mm was made on calvarium using trephine bur in 18 SD rats. The defected models were divided into 2 groups: the control group (9 SD rat) without mesh and the experimental group (9 SD rat) with the insertion of prototype HA-coated magnesium mesh. The 3 SD rats were sacrificed at 6, 12, and 18 weeks. The histopathological and radiographic examinations were performed afterward. RESULTS In the control group, there was no specific symptom. The experimental group also showed no specific symptom including swelling and dehiscence related to hydrogen gas formation. From 6 to 18 weeks, the experimental group showed the progressive absorption and fracture of magnesium mesh. However, there was no specific effectiveness of guided bone regeneration in both groups. There was no significant difference in bone volume, bone surface, and bone volume fraction between the negative control group and the group with magnesium mesh (P >0.05). CONCLUSION Hydroxyapatite-coated magnesium mesh showed reasonable process of bioresorption and bony reaction; however, the effectiveness of guided bone regeneration and management of the bioresorption rate should be reconsidered.
Collapse
|
19
|
Li L, Zhang M, Li Y, Zhao J, Qin L, Lai Y. Corrosion and biocompatibility improvement of magnesium-based alloys as bone implant materials: a review. Regen Biomater 2017. [DOI: 10.1093/rb/rbx004] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Long Li
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
| | - Ming Zhang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
| | - Ye Li
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
| | - Jie Zhao
- Material Engineering Invention Examination Department, State Intellectual Property Office, No.6 Xitucheng Road Haidian District, Beijing 100088, China
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Yuxiao Lai
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
- Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Yangpu District, Shanghai 200433, China
| |
Collapse
|
20
|
Ibrahim H, Esfahani SN, Poorganji B, Dean D, Elahinia M. Resorbable bone fixation alloys, forming, and post-fabrication treatments. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:870-888. [DOI: 10.1016/j.msec.2016.09.069] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/31/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022]
|
21
|
Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials 2016; 112:287-302. [PMID: 27770632 DOI: 10.1016/j.biomaterials.2016.10.017] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/30/2022]
Abstract
As a new generation of medical metallic material, magnesium (Mg) and its alloys with or without surface coating have attracted a great deal of attention due to its biodegradability and potential for avoiding a removal operation after the implant has fulfilled its function for surgical fixation of injured musculoskeletal tissues. Although a few clinical cases on Mg-based orthopaedic implants were reported more than a century ago, it was not until recently that clinical trials using these implants with improved physicochemical properties were carried out in Germany, China and Korea for bone fracture fixation. The promising results so far suggest a bright future for biodegradable Mg-based orthopaedic implants and would warrant large scale phase II/III studies. Given the increasing interest on this emerging biomaterials and intense effort to improve its properties for various clinical applications, this review covers the evolution, current strategies, and future perspectives in the development of Mg-based orthopaedic implants. We also highlight a few clinical cases performed in China that may be unfamiliar to the general orthopaedic community.
Collapse
|
22
|
Kuśnierczyk K, Basista M. Recent advances in research on magnesium alloys and magnesium–calcium phosphate composites as biodegradable implant materials. J Biomater Appl 2016; 31:878-900. [DOI: 10.1177/0885328216657271] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnesium alloys are modern biocompatible materials suitable for orthopaedic implants due to their biodegradability in biological environment. Many studies indicate that there is a high demand to design magnesium alloys with controllable in vivo corrosion rates and required mechanical properties. A solution to this challenge can be sought in the development of metal matrix composites based on magnesium alloys with addition of relevant alloying elements and bioceramic particles. In this study, the corrosion mechanisms along with corrosion protection methods in magnesium alloys are discussed. The recently developed magnesium alloys for biomedical applications are reviewed. Special attention is given to the newest research results in metal matrix composites composed of magnesium alloy matrix and calcium phosphates, especially hydroxyapatite or tricalcium phosphate, as the second phase with emphasis on the biodegradation behavior, microstructure and mechanical properties in view of potential application of these materials in bone implants.
Collapse
Affiliation(s)
- Katarzyna Kuśnierczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Basista
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
23
|
Sun W, Zhang G, Tan L, Yang K, Ai H. The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:506-11. [DOI: 10.1016/j.msec.2016.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/25/2016] [Accepted: 03/06/2016] [Indexed: 10/22/2022]
|
24
|
Guo Y, Liu W, Ma S, Wang J, Zou J, Liu Z, Zhao J, Zhou Y. A preliminary study for novel use of two Mg alloys (WE43 and Mg3Gd). JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:82. [PMID: 26968757 DOI: 10.1007/s10856-016-5691-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
In this study, two types of magnesium alloys (WE43 and Mg3Gd) were compared with Heal-All membrane (a biodegradable membrane used in guided bone regeneration) in vitro to determine whether the alloys could be used as biodegradable membranes. Degradation behavior was assessed using immersion testing with simulated body fluid (SBF). Microstructural characteristics before and after immersion were evaluated through scanning electron microscopy, and degradation products were analyzed with energy dispersive spectrometry (EDS). To evaluate the biocompatibility of the three types of materials, we performed cytotoxicity, adhesion, and mineralization tests using human osteoblast-like MG63 cells. Immersion testing results showed no significant difference in degradation rate between WE43 and Mg3Gd alloys. However, both Mg alloys corroded faster than the Heal-All membrane, with pitting corrosion as the main corrosion mode for the alloys. Degradation products mainly included P- and Ca-containing apatites on the surface of WE43 and Mg3Gd, whereas these apatites were rarely detected on the surface of the Heal-All membrane. All three type of materials exhibited good biocompatibility. In the mineralization experiment, the alkaline phosphatase (ALP) activity of 10 % Mg3Gd extract was significantly higher than the extracts of the two other materials and the negative control. This study highlighted the potential of these Mg-REE alloys for uses in bone regeneration and further studies and refinements are obviously required.
Collapse
Affiliation(s)
- Yu Guo
- Department of Dental Implantology, School and Hospital of Stomatology, Ji Lin University, Changchun, People's Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People's Republic of China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Ji Lin University, Changchun, People's Republic of China
| | - Shanshan Ma
- Department of Dental Implantology, School and Hospital of Stomatology, Ji Lin University, Changchun, People's Republic of China
| | - Jia Wang
- Department of Dental Implantology, School and Hospital of Stomatology, Ji Lin University, Changchun, People's Republic of China
| | - Jingting Zou
- Department of Dental Implantology, School and Hospital of Stomatology, Ji Lin University, Changchun, People's Republic of China
| | - Zhenzhen Liu
- Department of Dental Implantology, School and Hospital of Stomatology, Ji Lin University, Changchun, People's Republic of China
| | - Jinghui Zhao
- Department of Dental Implantology, School and Hospital of Stomatology, Ji Lin University, Changchun, People's Republic of China.
| | - Yanmin Zhou
- Department of Dental Implantology, School and Hospital of Stomatology, Ji Lin University, Changchun, People's Republic of China.
| |
Collapse
|
25
|
Deng Y, Zhou P, Liu X, Wang L, Xiong X, Tang Z, Wei J, Wei S. Preparation, characterization, cellular response and in vivo osseointegration of polyetheretherketone/nano-hydroxyapatite/carbon fiber ternary biocomposite. Colloids Surf B Biointerfaces 2015; 136:64-73. [PMID: 26363268 DOI: 10.1016/j.colsurfb.2015.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/18/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
As FDA-approved implantable material, polyetheretherketone (PEEK) is becoming a prime candidate to replace traditional surgical metallic implants made of titanium (Ti) and its alloys, since it has a lower elastic modulus than Ti. The bioinertness and defective osteointegration of PEEK, however, limit its clinical adoption as load-bearing dental/orthopedic material. The present work aimed at developing a PEEK bioactive ternary composite, polyetheretherketone/nano-hydroxyapatite/carbon fiber (PEEK/n-HA/CF), and evaluating it as a potential bone-repairing material by assessment of growth and differentiation of osteoblast-like MG63 cells and by estimation of osteointegration in vivo. Our results indicated that the adhesion, proliferation and osteogenic differentiation of cells, as well as the mechanical properties were greatly promoted for the PEEK/n-HA/CF biocomposite compared with pure PEEK matrix. More importantly, the ternary composite implant boosted in vivo bioactivity and osseointegration in canine tooth defect model. Thus, the PEEK/n-HA/CF ternary biocomposite with enhanced mechanics and biological performances hold great potential as bioactive implant material in dental and orthopedic applications.
Collapse
Affiliation(s)
- Yi Deng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, China; 2nd Dental Center, School and Hospital of Stomatology, Peking University, Beijing 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ping Zhou
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, China; 2nd Dental Center, School and Hospital of Stomatology, Peking University, Beijing 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaochen Liu
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lixin Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiaoling Xiong
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Zhihui Tang
- 2nd Dental Center, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, China; 2nd Dental Center, School and Hospital of Stomatology, Peking University, Beijing 100081, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
26
|
Iglesias C, Bodelón OG, Montoya R, Clemente C, Garcia-Alonso MC, Rubio JC, Escudero ML. Fracture bone healing and biodegradation of AZ31 implant in rats. ACTA ACUST UNITED AC 2015; 10:025008. [PMID: 25886380 DOI: 10.1088/1748-6041/10/2/025008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ideal temporary implant should offer enough mechanical support to allow healing of the fracture and then biodegrade and be resorbed by metabolic mechanisms without causing any toxic effect. The aim of this research has been to simultaneously study in situ bone healing and the biodegradation of AZ31 Mg alloy as an osteosynthesis material. The in vivo study was carried out in AZ31 implants with and without Mg-fluoride coating inserted in un-fractured and fractured femurs of Wistar rats for long experimentation time, from 1 to 13 months, by means of computed tomography, histological and histomorphometric analysis. Tomography analysis showed the bone healing and biodegradation of AZ31 implants. The fracture is healed in 100% of the animals, and AZ31 maintains its mechanical integrity throughout the healing process. Biodegradation was monitored, quantifying the evolution of gas over time by 3D composition of tomography images. In all the studied groups, gas pockets disappear with time as a result of the diffusion process through soft tissues. Histomorphometric studies reveal that after 13 months the 46.32% of AZ31 alloy has been resorbed. The resorption of the coated and uncoated AZ31 implants inserted in fractured femurs after 1, 9 and 13 months does not have statistically significant differences. There is a balance between the biodegradation of AZ31 and bone healing which allows the use of AZ31 to be proposed as an osteosynthesis material.
Collapse
Affiliation(s)
- C Iglesias
- Department of Plastic Surgery, Hospital Universitario La Paz, Madrid, 28046, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Zomorodian A, Garcia M, Moura e Silva T, Fernandes J, Fernandes M, Montemor M. Biofunctional composite coating architectures based on polycaprolactone and nanohydroxyapatite for controlled corrosion activity and enhanced biocompatibility of magnesium AZ31 alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:434-43. [DOI: 10.1016/j.msec.2014.12.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/30/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
|
28
|
Jang Y, Tan Z, Jurey C, Xu Z, Dong Z, Collins B, Yun Y, Sankar J. Understanding corrosion behavior of Mg–Zn–Ca alloys from subcutaneous mouse model: Effect of Zn element concentration and plasma electrolytic oxidation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:28-40. [DOI: 10.1016/j.msec.2014.11.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 09/03/2014] [Accepted: 11/07/2014] [Indexed: 11/30/2022]
|
29
|
Tian P, Liu X, Ding C. In vitro degradation behavior and cytocompatibility of biodegradable AZ31 alloy with PEO/HT composite coating. Colloids Surf B Biointerfaces 2015; 128:44-54. [PMID: 25731092 DOI: 10.1016/j.colsurfb.2015.02.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 01/30/2015] [Accepted: 02/05/2015] [Indexed: 11/26/2022]
Abstract
Biodegradable magnesium-based implants have attracted much attention recently in orthopedic applications because of their good mechanical properties and biocompatibility. However, their rapid degradation in vivo will not only reduce their mechanical strength, but also induce some side effects, such as local alkalization and gas cavity, which may lead to a failure of the implant. In this work, a hydroxyapatite (HA) layer was prepared on plasma electrolytic oxidization (PEO) coating by hydrothermal treatment (HT) to fabricate a PEO/HT composite coating on biodegradable AZ31 alloy. The in vitro degradation behaviors of all samples were evaluated in simulated body fluid (SBF) and their surface cytocompatibility was also investigated by evaluating the adhesion and proliferation of osteoblast cells (MC3T3-E1). The results showed that the HA layer consisted of a dense inner layer and a needle-like outer layer, which successfully sealed the PEO coating. The in vitro degradation tests showed that the PEO/HT composite coating improved the corrosion resistance of AZ31 alloy in SBF, presenting nearly no severe local alkalization and hydrogen evolution. The lasting corrosion resistance of the PEO/HT composite coating may attribute to the new hydroxyapatite formation during the degradation process. Moreover, compared with AZ31 alloy and PEO coating, PEO/HT composite coating was more suitable for cells adhesion and proliferation, indicating improved surface cytocompatibility. The results show that the PEO/HT composite coating is promising as protective coating on biodegradable magnesium-based implants to enhance their corrosion resistance as well as improve their surface cytocompatibility for orthopedic applications.
Collapse
Affiliation(s)
- Peng Tian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China.
| | - Chuanxian Ding
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| |
Collapse
|
30
|
Tian J, Shen S, Zhou C, Dang X, Jiao Y, Li L, Ding S, Li H. Investigation of the antimicrobial activity and biocompatibility of magnesium alloy coated with HA and antimicrobial peptide. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:66. [PMID: 25631264 DOI: 10.1007/s10856-015-5389-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/26/2014] [Indexed: 06/04/2023]
Abstract
Implant-associated infection is one of the biggest problems in orthopedic surgery. Antimicrobial peptides (AMPs) are well-known components of the innate immunity and less susceptible to the development of pathogen resistance compared to conventional antibiotics. Magnesium alloys as potential biodegradable bone implants have been received much attention in biomaterials field. This study investigated the deposition of calcium phosphate (CaP) coatings and loading of AMPs on the magnesium alloy surface by a biomimetic method. Scanning electron microscope (SEM) results presented that a microporous and plate-like CaP coating was processed on the magnesium alloy surface. X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis showed the main component of coating was hydroxyapatite (HA). Degradation assay in vitro showed that the HA coating deposited onto the magnesium alloy was corroded more slowly than the bare one. The amount of AMP loaded in the HA coating was 11.16±1.99 μg/cm2. The AMP loaded onto HA coatings had slow release for 7 days. The AMP-loaded coating showed antimicrobial activity against Staphylococcus aureus. Its bacterial inhibition rate exceeded 50% after 4 days and the antibacterial effect was sustained for 7 days. The coated magnesium alloys loaded with AMP could improve rat bone marrow mesenchymal stem cells (rBMMSCs) proliferation. Furthermore, it could also promote alkaline phosphatase (ALP) activity of rBMMSCs. Both radiographic evaluation and histopathology analysis demonstrated that implantation of the coated magnesium alloy into the rabbit femoral condyle had promoted bone repair and showed anti-inflammatory effect. The results showed that the AMP loaded onto HA coatings on the magnesium alloy surface could be considered an ideal orthopedic implant against S. aureus infection.
Collapse
Affiliation(s)
- Jinhuan Tian
- Department of Materials Science and Engineering, Jinan University, Guangzhou, 510630, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Chen Y, Xiao M, Zhao H, Yang B. On the antitumor properties of biomedical magnesium metal. J Mater Chem B 2015; 3:849-858. [DOI: 10.1039/c4tb01421a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Because the free radicals in tumor cells can be removed by H2, the growth rate of the tumor was reduced by biodegradable Mg metal via control of the H2 releasing rate by anodic oxidation plus heat treatment.
Collapse
Affiliation(s)
- Yangmei Chen
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu
- China
- National Engineering Research Center for Biomaterials
| | - Ming Xiao
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu
- China
- National Engineering Research Center for Biomaterials
| | - Huan Zhao
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu
- China
- National Engineering Research Center for Biomaterials
| | - Bangcheng Yang
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu
- China
- National Engineering Research Center for Biomaterials
| |
Collapse
|
32
|
Wu G, Li P, Feng H, Zhang X, Chu PK. Engineering and functionalization of biomaterials via surface modification. J Mater Chem B 2015; 3:2024-2042. [DOI: 10.1039/c4tb01934b] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent progress pertaining to the surface treatment of implantable macro-scale biomaterials and using micro- and nano-biomaterials for disease diagnosis and drug/gene delivery is reviewed.
Collapse
Affiliation(s)
- Guosong Wu
- Department of Physics and Materials Science
- City University of Hong Kong
- Kowloon
- China
| | - Penghui Li
- Department of Physics and Materials Science
- City University of Hong Kong
- Kowloon
- China
| | - Hongqing Feng
- Department of Physics and Materials Science
- City University of Hong Kong
- Kowloon
- China
| | - Xuming Zhang
- Department of Physics and Materials Science
- City University of Hong Kong
- Kowloon
- China
| | - Paul K. Chu
- Department of Physics and Materials Science
- City University of Hong Kong
- Kowloon
- China
| |
Collapse
|
33
|
Tian P, Liu X. Surface modification of biodegradable magnesium and its alloys for biomedical applications. Regen Biomater 2014; 2:135-51. [PMID: 26816637 PMCID: PMC4669019 DOI: 10.1093/rb/rbu013] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/22/2022] Open
Abstract
Magnesium and its alloys are being paid much attention recently as temporary implants, such as orthopedic implants and cardiovascular stents. However, the rapid degradation of them in physiological environment is a major obstacle preventing their wide applications to date, which will result in rapid mechanical integrity loss or even collapse of magnesium-based implants before injured tissues heal. Moreover, rapid degradation of the magnesium-based implants will also cause some adverse effects to their surrounding environment, such as local gas cavity around the implant, local alkalization and magnesium ion enrichment, which will reduce the integration between implant and tissue. So, in order to obtain better performance of magnesium-based implants in clinical trials, special alloy designs and surface modifications are prerequisite. Actually, when a magnesium-based implant is inserted in vivo, corrosion firstly happens at the implant-tissue interface and the biological response to implant is also determined by the interaction at this interface. So the surface properties, such as corrosion resistance, hemocompatibility and cytocompatibility of the implant, are critical for their in vivo performance. Compared with alloy designs, surface modification is less costly, flexible to construct multi-functional surface and can prevent addition of toxic alloying elements. In this review, we would like to summarize the current investigations of surface modifications of magnesium and its alloys for biomedical application. The advantages/disadvantages of different surface modification methods are also discussed as a suggestion for their utilization.
Collapse
Affiliation(s)
- Peng Tian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| |
Collapse
|
34
|
Andani MT, Shayesteh Moghaddam N, Haberland C, Dean D, Miller MJ, Elahinia M. Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomater 2014; 10:4058-70. [PMID: 24956564 DOI: 10.1016/j.actbio.2014.06.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/08/2014] [Accepted: 06/11/2014] [Indexed: 11/24/2022]
Abstract
New metal alloys and metal fabrication strategies are likely to benefit future skeletal implant strategies. These metals and fabrication strategies were looked at from the point of view of standard-of-care implants for the mandible. These implants are used as part of the treatment for segmental resection due to oropharyngeal cancer, injury or correction of deformity due to pathology or congenital defect. The focus of this two-part review is the issues associated with the failure of existing mandibular implants that are due to mismatched material properties. Potential directions for future research are also studied. To mitigate these issues, the use of low-stiffness metallic alloys has been highlighted. To this end, the development, processing and biocompatibility of superelastic NiTi as well as resorbable magnesium-based alloys are discussed. Additionally, engineered porosity is reviewed as it can be an effective way of matching the stiffness of an implant with the surrounding tissue. These porosities and the overall geometry of the implant can be optimized for strain transduction and with a tailored stiffness profile. Rendering patient-specific, site-specific, morphology-specific and function-specific implants can now be achieved using these and other metals with bone-like material properties by additive manufacturing. The biocompatibility of implants prepared from superelastic and resorbable alloys is also reviewed.
Collapse
|
35
|
In vitro degradability, bioactivity and cell responses to mesoporous magnesium silicate for the induction of bone regeneration. Colloids Surf B Biointerfaces 2014; 120:38-46. [DOI: 10.1016/j.colsurfb.2014.04.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 01/30/2023]
|
36
|
Dorozhkin SV. Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Acta Biomater 2014; 10:2919-34. [PMID: 24607420 DOI: 10.1016/j.actbio.2014.02.026] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 12/01/2022]
Abstract
Biodegradable metals have been suggested as revolutionary biomaterials for bone-grafting therapies. Of these metals, magnesium (Mg) and its biodegradable alloys appear to be particularly attractive candidates due to their non-toxicity and as their mechanical properties match those of bones better than other metals do. Being light, biocompatible and biodegradable, Mg-based metallic implants have several advantages over other implantable metals currently in use, such as eliminating both the effects of stress shielding and the requirement of a second surgery for implant removal. Unfortunately, the fast degradation rates of Mg and its biodegradable alloys in the aggressive physiological environment impose limitations on their clinical applications. This necessitates development of implants with controlled degradation rates to match the kinetics of bone healing. Application of protective but biocompatible and biodegradable coatings able to delay the onset of Mg corrosion appears to be a reasonable solution. Since calcium orthophosphates are well tolerated by living organisms, they appear to be the excellent candidates for such coatings. Nevertheless, both the high chemical reactivity and the low melting point of Mg require specific parameters for successful deposition of calcium orthophosphate coatings. This review provides an overview of current coating techniques used for deposition of calcium orthophosphates on Mg and its biodegradable alloys. The literature analysis revealed that in all cases the calcium orthophosphate protective coatings both increased the corrosion resistance of Mg-based metallic biomaterials and improved their surface biocompatibility.
Collapse
|
37
|
Walker J, Shadanbaz S, Woodfield TBF, Staiger MP, Dias GJ. Magnesium biomaterials for orthopedic application: A review from a biological perspective. J Biomed Mater Res B Appl Biomater 2014; 102:1316-31. [DOI: 10.1002/jbm.b.33113] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 11/22/2013] [Accepted: 01/07/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Jemimah Walker
- Department of Anatomy and Structural Biology; University of Otago; Dunedin New Zealand
| | - Shaylin Shadanbaz
- Department of Anatomy and Structural Biology; University of Otago; Dunedin New Zealand
| | | | - Mark P. Staiger
- Department of Mechanical Engineering; University of Canterbury; Christchurch New Zealand
| | - George J. Dias
- Department of Anatomy and Structural Biology; University of Otago; Dunedin New Zealand
| |
Collapse
|
38
|
Lindtner RA, Castellani C, Tangl S, Zanoni G, Hausbrandt P, Tschegg EK, Stanzl-Tschegg SE, Weinberg AM. Comparative biomechanical and radiological characterization of osseointegration of a biodegradable magnesium alloy pin and a copolymeric control for osteosynthesis. J Mech Behav Biomed Mater 2013; 28:232-43. [DOI: 10.1016/j.jmbbm.2013.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/20/2013] [Accepted: 08/04/2013] [Indexed: 01/08/2023]
|
39
|
Mushahary D, Sravanthi R, Li Y, Kumar MJ, Harishankar N, Hodgson PD, Wen C, Pande G. Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration. Int J Nanomedicine 2013; 8:2887-902. [PMID: 23976848 PMCID: PMC3746735 DOI: 10.2147/ijn.s47378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Development of new biodegradable implants and devices is necessary to meet the increasing needs of regenerative orthopedic procedures. An important consideration while formulating new implant materials is that they should physicochemically and biologically mimic bone-like properties. In earlier studies, we have developed and characterized magnesium based biodegradable alloys, in particular magnesium-zirconium (Mg-Zr) alloys. Here we have reported the biological properties of four Mg-Zr alloys containing different quantities of strontium or calcium. The alloys were implanted in small cavities made in femur bones of New Zealand White rabbits, and the quantitative and qualitative assessments of newly induced bone tissue were carried out. A total of 30 experimental animals, three for each implant type, were studied, and bone induction was assessed by histological, immunohistochemical and radiological methods; cavities in the femurs with no implants and observed for the same period of time were kept as controls. Our results showed that Mg-Zr alloys containing appropriate quantities of strontium were more efficient in inducing good quality mineralized bone than other alloys. Our results have been discussed in the context of physicochemical and biological properties of the alloys, and they could be very useful in determining the nature of future generations of biodegradable orthopedic implants.
Collapse
Affiliation(s)
- Dolly Mushahary
- Institute for Frontier Materials, Deakin University, Geelong, Australia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bornapour M, Muja N, Shum-Tim D, Cerruti M, Pekguleryuz M. Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite. Acta Biomater 2013; 9:5319-30. [PMID: 22871640 DOI: 10.1016/j.actbio.2012.07.045] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 10/28/2022]
Abstract
Magnesium is an attractive material for use in biodegradable implants due to its low density, non-toxicity and mechanical properties similar to those of human tissue such as bone. Its biocompatibility makes it amenable for use in a wide range of applications from bone to cardiovascular implants. Here we investigated the corrosion rate in simulated body fluid (SBF) of a series of Mg-Sr alloys, with Sr in the range of 0.3-2.5%, and found that the Mg-0.5 Sr alloy showed the slowest corrosion rate. The degradation rate from this alloy indicated that the daily Sr intake from a typical stent would be 0.01-0.02 mg day⁻¹, which is well below the maximum daily Sr intake levels of 4 mg day⁻¹. Indirect cytotoxicity assays using human umbilical vascular endothelial cells indicated that Mg-0.5 Sr extraction medium did not cause any toxicity or detrimental effect on the viability of the cells. Finally, a tubular Mg-0.5 Sr stent sample, along with a WE43 control stent, was implanted into the right and left dog femoral artery. No thrombosis effect was observed in the Mg-0.5 Sr stent after 3 weeks of implantation while the WE43 stent thrombosed. X-ray diffraction demonstrated the formation of hydroxyapatite and Mg(OH)₂ as a result of the degradation of Mg-0.5 Sr alloy after 3 days in SBF. X-ray photoelectron spectroscopy further showed the possibility of the formation of a hydroxyapatite Sr-substituted layer that presents as a thin layer at the interface between the Mg-0.5 Sr alloy and the corrosion products. We believe that this interfacial layer stabilizes the surface of the Mg-0.5 Sr alloy, and slows down its degradation rate over time.
Collapse
|
41
|
Lalk M, Reifenrath J, Angrisani N, Bondarenko A, Seitz JM, Mueller PP, Meyer-Lindenberg A. Fluoride and calcium-phosphate coated sponges of the magnesium alloy AX30 as bone grafts: a comparative study in rabbits. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:417-436. [PMID: 23160911 DOI: 10.1007/s10856-012-4812-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/06/2012] [Indexed: 06/01/2023]
Abstract
Biocompatibility and degradation of magnesium sponges (alloy AX30) with a fluoride (MgF(2) sponge, n = 24, porosity 63 ± 6 %, pore size 394 ± 26 μm) and with a fluoride and additional calcium-phosphate coating (CaP sponge, n = 24, porosity 6 ± 4 %, pore size 109 ± 37 μm) were evaluated over 6, 12 and 24 weeks in rabbit femurs. Empty drill holes (n = 12) served as controls. Clinical and radiological examinations, in vivo and ex vivo μ-computed tomographies and histological examinations were performed. Clinically both sponge types were tolerated well. Radiographs and XtremeCT evaluations showed bone changes comparable to controls and mild gas formation. The μCT80 depicted a higher and more inhomogeneous degradation of the CaP sponges. Histomorphometrically, the MgF(2) sponges resulted in the highest bone and osteoid fractions and were integrated superiorly into the bone. Histologically, the CaP sponges showed more inflammation and lower vascularization. MgF(2) sponges turned out to be better biocompatible and promising, biodegradable bone replacements.
Collapse
Affiliation(s)
- Mareike Lalk
- Small Animal Clinic, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
Nanostructured hollow spheres of hydroxyapatite: preparation and potential application in drug delivery. Front Chem Sci Eng 2012. [DOI: 10.1007/s11705-012-1299-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|