1
|
Kormosh Z, Khalavka Y, Mittal SK. Design and application of potentiometric sensors for the determination of mefenamic and phenylanthranilic acids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1903-1914. [PMID: 37000565 DOI: 10.1039/d2ay02092k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Characteristics, performance and applications of potentiometric membrane sensors are described for the determination of mefenamic and phenylanthranilic ions. Ion associates of mefenamic, ClO4-, and phenylanthranilic ions with crystal violet (counter-cation) as ion exchange sites have been used as ionophores in the plasticized one- and two-layer membrane ion-selective electrodes. The LOD is reported to be 8.4 × 10-5 M for mefenamic acid, and 5.1 × 10-5 M for phenylanthranilic acid. The cations of basic dyes (crystal violet) are characterized by significant delocalization of the positive charge and polarizability. This may explain the better selectivity of the developed sensors. These sensors were used for the direct assay of mefenamic and N-phenylanthranilic acids in model solutions and applications studied in commercial pharmaceutical preparations.
Collapse
Affiliation(s)
- Zholt Kormosh
- Department of Chemistry and Technology, Lesya Ukrainka Volyn National University, Voli Av., 13, 43021 Lutsk, Ukraine.
| | - Yuriy Khalavka
- Department of Inorganic Chemistry of Solids and Nanoparticles, Yuriy Fedkovych Chernivtsi National University, Kotsiubynsky Str. 2, 58012 Chernivtsi, Ukraine
| | - Susheel K Mittal
- School of Chemistry and Biochemistry, Thapar University, Patiala, Punjab 147004, India.
| |
Collapse
|
2
|
Valian M, Khoobi A, Salavati-Niasari M. Synthesis, characterization and electrochemical sensors application of Tb2Ti2O7 nanoparticle modified carbon paste electrode for the sensing of mefenamic acid drug in biological samples and pharmaceutical industry wastewater. Talanta 2022; 247:123593. [DOI: 10.1016/j.talanta.2022.123593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/10/2021] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
|
3
|
Kalambate PK, Noiphung J, Rodthongkum N, Larpant N, Thirabowonkitphithan P, Rojanarata T, Hasan M, Huang Y, Laiwattanapaisal W. Nanomaterials-based electrochemical sensors and biosensors for the detection of non-steroidal anti-inflammatory drugs. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Monsef R, Salavati-Niasari M. Hydrothermal architecture of Cu 5V 2O 10 nanostructures as new electro-sensing catalysts for voltammetric quantification of mefenamic acid in pharmaceuticals and biological samples. Biosens Bioelectron 2021; 178:113017. [PMID: 33493895 DOI: 10.1016/j.bios.2021.113017] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 11/30/2022]
Abstract
A novel nano-electrocatalyst based on Cu5V2O10 is successfully fabricated by one-pot hydrothermal treatment and used for the examination of mefenamic acid (MFA) in real samples, for the first time. Controlling the combined factors of complexing agent's (4, 4'-Diaminodiphenylmethane, DDM) molar ratio, hydrothermal temperature, and reaction time is responsible for providing the optimal structural and morphological changes of the crystals. The effect of operating conditions of Cu5V2O10 nanostructures is investigated using FT-IR, XRD, and EDX as structural and elemental analyses. Also, other properties such as particle size and morphological studies were accomplished by FE-SEM, and HR-TEM. The results reveal that the monoclinic phase of Cu5V2O10 with particle size of 34 nm is the outcome of hydrothermal treatment of 200 °C for 18 h, which DDM template with molar ratio of 2.0 M serves as phase stabilizing matrix. Herein, it is demonstrated the electrochemical biosensing characteristics of the nano-scale Cu5V2O10 modified carbon paste electrode (CV/CPE) by voltammetry techniques. The drug sensing capabilities of the boosted CV/CPE platform exhibit linear dynamic range of 0.01-470 μM, and low detection limit of 2.34 nM with excellent sensitivity and selectivity. The appropriate electrical conductivity and layered structure of the compound causes a valuable platform for minimally invasive assessment of MFA in biological and pharmaceutical media with recovery rate of 98.3%-110.0% and 93.6%-106.7%, respectively. As a result, the proposed nanostructures as great candidate offer excellent electrocatalytic activity in biomedicine applications.
Collapse
Affiliation(s)
- Rozita Monsef
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box.87317-51167, I. R, Iran
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box.87317-51167, I. R, Iran.
| |
Collapse
|
5
|
Sýs M, Mukherjee A, Jashari G, Adam V, Ashrafi AM, Novák M, Richtera L. Bis(2,2'-bipyridil)Copper(II) Chloride Complex: Tyrosinase Biomimetic Catalyst or Redox Mediator? MATERIALS (BASEL, SWITZERLAND) 2020; 14:E113. [PMID: 33383885 PMCID: PMC7795177 DOI: 10.3390/ma14010113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022]
Abstract
In this article, construction of amperometric sensor(s) based on screen-printed carbon electrodes covered by thin layers of two types of carbon nanomaterials serving as amplifiers, and containing [Cu(bipy)2Cl]Cl∙5H2O complex is reported. Their performance and biomimetic activity towards two selected neurotransmitters (dopamine and serotonin) was studied mainly using flow injection analysis (FIA). The important parameters of FIA such as working potential, flow rate, and pH were optimized. The mechanism of the catalytic activity is explained and experimentally confirmed. It reveals that presence of hydrogen peroxide plays a crucial role which leads to answer the title question: can presented complex really be considered as a tyrosinase biomimetic catalyst or only as a redox mediator?
Collapse
Affiliation(s)
- Milan Sýs
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (M.S.); (G.J.)
| | - Atripan Mukherjee
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (A.M.); (V.A.); (A.M.A.)
- Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic
| | - Granit Jashari
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (M.S.); (G.J.)
| | - Vojtěch Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (A.M.); (V.A.); (A.M.A.)
- Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic
| | - Amir M. Ashrafi
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (A.M.); (V.A.); (A.M.A.)
- Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic
| | - Miroslav Novák
- Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic;
| | - Lukáš Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic; (A.M.); (V.A.); (A.M.A.)
- Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic
| |
Collapse
|
6
|
Kormosh ZA, Matviichuk OY, Antal IP, Bazel’ YR. Sensors Based on Single- and Double-Layer Plasticized Membranes for the Potentiometric Determination of Mefenamic and Phenylanthranylic Acids. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820060131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Abstract
Background:
This review investigates the ophthalmic drugs that have been studied with
voltammetry in the web of science database in the last 10 years.
Introduction:
Ophthalmic drugs are used in the diagnosis, evaluation and treatment of various ophthalmological
diseases and conditions. A significant literature has emerged in recent years that investigates
determination of these active compounds via electroanalytical methods, particularly voltammetry. Low
cost, rapid determination, high availability, efficient sensitivity and simple application make voltammetry
one of the most used methods for determining various kinds of drugs including ophthalmic ones.
Methods:
In this particular review, we searched the literature via the web of science database for ophthalmic
drugs which are investigated with voltammetric techniques using the keywords of voltammetry,
electrochemistry, determination and electroanalytical methods.
Results:
We found 33 types of pharmaceuticals in nearly 140 articles. We grouped them clinically into
seven major groups as antibiotics, antivirals, non-steroidal anti-inflammatory drugs, anti-glaucomatous
drugs, steroidal drugs, local anesthetics and miscellaneous. Voltammetric techniques, electrodes, optimum
pHs, peak potentials, limit of detection values, limit of quantification values, linearity ranges,
sample type and interference effects were compared.
Conclusion:
Ophthalmic drugs are widely used in the clinic and it is important to determine trace
amounts of these species analytically. Voltammetry is a preferred method for its ease of use, high sensitivity,
low cost, and high availability for the determination of ophthalmic drugs as well as many other
medical drugs. The low limits of detection values indicate that voltammetry is quite sufficient for determining
ophthalmic drugs in many media such as human serum, urine and ophthalmic eye drops.
Collapse
Affiliation(s)
- Onur Inam
- Department of Ophthalmology, Ulucanlar Eye Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ersin Demir
- Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar University of Health Sciences, Afyonkarahisar, 03200, Turkey
| | - Bengi Uslu
- Department of Analytical Chemistry, Ankara University, Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
8
|
An innovative method to electrochemical branching of chitosan in the presence of copper nanocubics on the surface of glassy carbon and its electrical behaviour study: A new platform for pharmaceutical analysis using electrochemical sensors. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Shetti NP, Nayak DS, Malode SJ, Kakarla RR, Shukla SS, Aminabhavi TM. Sensors based on ruthenium-doped TiO2 nanoparticles loaded into multi-walled carbon nanotubes for the detection of flufenamic acid and mefenamic acid. Anal Chim Acta 2019; 1051:58-72. [DOI: 10.1016/j.aca.2018.11.041] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/25/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022]
|
10
|
Ashrafi H, Hassanpour S, Saadati A, Hasanzadeh M, Ansarin K, Ozkan SA, Shadjou N, Jouyban A. Sensitive detection and determination of benzodiazepines using silver nanoparticles-N-GQDs ink modified electrode: A new platform for modern pharmaceutical analysis. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Oiye ÉN, Ribeiro MFM, Katayama JMT, Tadini MC, Balbino MA, Eleotério IC, Magalhães J, Castro AS, Silva RSM, da Cruz Júnior JW, Dockal ER, de Oliveira MF. Electrochemical Sensors Containing Schiff Bases and their Transition Metal Complexes to Detect Analytes of Forensic, Pharmaceutical and Environmental Interest. A Review. Crit Rev Anal Chem 2019; 49:488-509. [PMID: 30767567 DOI: 10.1080/10408347.2018.1561242] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Schiff bases and their transition metal complexes are inexpensive and easy to synthesize. These compounds display several structural and electronic features that allow their application in numerous research fields. Over the last three decades, electroanalytical scientists of various areas have developed electrochemical sensors from many compounds. The present review discusses the applicability of Schiff bases, their transition metal complexes and new materials containing these compounds as electrode modifiers in sensors to detect analytes of forensic, pharmaceutical and environmental interest. In forensic sciences, Schiff bases are mainly used to analyze illicit drugs: chemical reactions involving Schiff bases can help to elucidate illicit drug production and to determine analytes in seized samples. In the environmental area, given that most methodologies provide Limit of Detection (LOD) values below the values recommended by regulatory agencies, Schiff bases constitute a promising strategy. As for pharmaceutical applications, Schiff bases represent an approach for analysis of complex biological samples containing low levels of the target analytes in the presence of a large quantity of interfering compounds. This review will show that new highly specific materials can be synthesized based on Schiff bases and applied in the pharmaceutical industry, toxicological studies, electrocatalysis and biosensors. Most literature papers have reported on Schiff bases combined with carbon paste to give a chemically modified electrode that is easy and inexpensive to produce and which displays specific and selective sensing capacity for different applications.
Collapse
Affiliation(s)
- Érica Naomi Oiye
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| | - Maria Fernanda Muzetti Ribeiro
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| | - Juliana Midori Toia Katayama
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| | - Maraine Catarina Tadini
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| | - Marco Antonio Balbino
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| | - Izabel Cristina Eleotério
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| | - Juliana Magalhães
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| | - Alex Soares Castro
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| | - Ricardo Soares Mota Silva
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| | - José Wilmo da Cruz Júnior
- Departamento de Ciências Exatas e Educação, Universidade Federal de Santa Catarina , Blumenau , Santa Catarina , Brasil
| | - Edward Ralph Dockal
- Departamento de Química - Centro de Ciências Exatas e de Tecnologia, Universidade Federal de São Carlos , São Carlos , São Paulo , Brasil
| | - Marcelo Firmino de Oliveira
- Departamento de Química - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brasil
| |
Collapse
|
12
|
Shadjou N, Hasanzadeh M, Talebi F. Graphene Quantum Dots Incorporated into β-cyclodextrin: a Novel Polymeric Nanocomposite for Non-Enzymatic Sensing of L-Tyrosine at Physiological pH. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934818060096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Hasanzadeh M, Mokhtari F, Jouyban-Gharamaleki V, Mokhtarzadeh A, Shadjou N. Electrochemical monitoring of malondialdehyde biomarker in biological samples via electropolymerized amino acid/chitosan nanocomposite. J Mol Recognit 2018; 31:e2717. [DOI: 10.1002/jmr.2717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/18/2018] [Accepted: 03/07/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Mohammad Hasanzadeh
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Fozieh Mokhtari
- Pharmaceutical Analysis Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | | | - Ahad Mokhtarzadeh
- Research Center of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Nasrin Shadjou
- Department of Nanochemistry, Nano Technology Research Center; Urmia University; Urmia Iran
| |
Collapse
|
14
|
Tarlekar P, Chatterjee S. Enhancement in sensitivity of non-steroidal anti-inflammatory drug mefenamic acid at carbon nanostructured sensor. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Thinakaran N, Subramani SE, Priya T, Dhanalakshmi N, Vineesh TV, Kathikeyan V. Electrochemical Determination of Cd2+
and Pb2+
Using NSAID-mefenamic Acid Functionalized Mesoporous Carbon Microspheres Modified Glassy Carbon Electrode. ELECTROANAL 2017. [DOI: 10.1002/elan.201700200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- N. Thinakaran
- Environmental Research Lab; PG and Research Department of Chemistry; Alagappa Government Arts College; Karaikudi- 630 003 Tamil Nadu India
| | - S. E. Subramani
- Environmental Research Lab; PG and Research Department of Chemistry; Alagappa Government Arts College; Karaikudi- 630 003 Tamil Nadu India
| | - T. Priya
- Environmental Research Lab; PG and Research Department of Chemistry; Alagappa Government Arts College; Karaikudi- 630 003 Tamil Nadu India
| | - N. Dhanalakshmi
- Environmental Research Lab; PG and Research Department of Chemistry; Alagappa Government Arts College; Karaikudi- 630 003 Tamil Nadu India
| | - T. V. Vineesh
- Central Electrochemical Research Institute; Karaikudi Tamil Nadu India
| | - V. Kathikeyan
- Department of Applied Science and Technology; AC Tech, Anna University; Chennai-25 India
| |
Collapse
|
16
|
Noroozi M, Keypour H. Novel mefenamic acid PVC membrane sensor based on a new Cd Schiff's base complex containing a phenanthroline unit. RSC Adv 2017. [DOI: 10.1039/c7ra06821b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, a PVC membrane electrode modified with a Cd Schiff base complex was constructed as a novel, sensitive and selective structured carrier for checking trace amounts of mefenamic acid in real samples.
Collapse
Affiliation(s)
- Mohammad Noroozi
- Faculty of Chemistry
- Bu-Ali Sina University
- Hamedan 65174
- Iran
- Research Institute of Petroleum Industry (RIPI)
| | - Hassan Keypour
- Faculty of Chemistry
- Bu-Ali Sina University
- Hamedan 65174
- Iran
| |
Collapse
|
17
|
Liu Y, Zhang Z, Zhang C, Huang W, Liang C, Peng J. Manganese dioxide-graphene nanocomposite film modified electrode as a sensitive voltammetric sensor of indomethacin detection. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuxia Liu
- Department of Physics and Electronic Engineering; Guangxi Normal University for Nationalities; Chongzuo 532200 China
| | - Zhenfa Zhang
- Department of Chemistry and Biological Science; Guangxi Normal University for Nationalities; Chongzuo 532200 China
- Guangxi Colleges and Universities Key Laboratory Breeding Base of Chemistry of Guangxi Southwest Plant Resources; Chongzuo 532200 China
| | - Cuizong Zhang
- Department of Chemistry and Biological Science; Guangxi Normal University for Nationalities; Chongzuo 532200 China
| | - Wei Huang
- Department of Chemistry and Biological Science; Guangxi Normal University for Nationalities; Chongzuo 532200 China
| | - Caiyun Liang
- Department of Chemistry and Biological Science; Guangxi Normal University for Nationalities; Chongzuo 532200 China
| | - Jinyun Peng
- Department of Chemistry and Biological Science; Guangxi Normal University for Nationalities; Chongzuo 532200 China
- Guangxi Colleges and Universities Key Laboratory Breeding Base of Chemistry of Guangxi Southwest Plant Resources; Chongzuo 532200 China
| |
Collapse
|
18
|
C2-Symmetric Benzene-based Low Molecular Weight Hydrogel Modified Electrode for Highly Sensitive Detection of Copper Ions. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.04.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Madrakian T, Haghshenas E, Ahmadi M, Afkhami A. Construction a magneto carbon paste electrode using synthesized molecularly imprinted magnetic nanospheres for selective and sensitive determination of mefenamic acid in some real samples. Biosens Bioelectron 2015; 68:712-718. [DOI: 10.1016/j.bios.2015.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 02/01/2015] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
|
20
|
Bukkitgar SD, Shetti NP, Kulkarni RM, Nandibewoor ST. Electro-sensing base for mefenamic acid on a 5% barium-doped zinc oxide nanoparticle modified electrode and its analytical application. RSC Adv 2015. [DOI: 10.1039/c5ra22581g] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In the present work, surface enhanced electro-oxidation of mefenamic acid (MFA) at a glassy carbon electrode modified with 5% barium doped ZnO nanoparticles was studied.
Collapse
Affiliation(s)
- S. D. Bukkitgar
- Department of Chemistry
- K.L.E. Institute of Technology
- affiliated to Visvesvaraya Technological University Belagavi
- Hubli-580030
- India
| | - N. P. Shetti
- Department of Chemistry
- K.L.E. Institute of Technology
- affiliated to Visvesvaraya Technological University Belagavi
- Hubli-580030
- India
| | - R. M. Kulkarni
- Department of Chemistry
- K.L.S. Gogte Institute of Technology
- affiliated to Visveswaraya Technological University Belagavi
- Belagavi-590008
- India
| | - S. T. Nandibewoor
- P. G. Department of Studies in Chemistry
- Karnatak University
- Dharwad-580003
- India
| |
Collapse
|
21
|
Ahmadi M, Madrakian T, Afkhami A. Molecularly imprinted polymer coated magnetite nanoparticles as an efficient mefenamic acid resonance light scattering nanosensor. Anal Chim Acta 2014; 852:250-6. [DOI: 10.1016/j.aca.2014.09.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/30/2022]
|
22
|
Abdolmohammad-Zadeh H, Morshedzadeh F, Rahimpour E. Trace analysis of mefenamic acid in human serum and pharmaceutical wastewater samples after pre-concentration with Ni-Al layered double hydroxide nano-particles. J Pharm Anal 2014; 4:331-338. [PMID: 29403897 PMCID: PMC5761361 DOI: 10.1016/j.jpha.2014.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/12/2014] [Accepted: 04/25/2014] [Indexed: 12/01/2022] Open
Abstract
In this work, the nickel–aluminum layered double hydroxide (Ni–Al LDH) with nitrate interlayer anion was synthesized and used as a solid phase extraction sorbent for the selective separation and pre-concentration of mefenamic acid prior to quantification by UV detection at λmax=286 nm. Extraction procedure is based on the adsorption of mefenamate anions on the Ni–Al(NO3−) LDH and/or their exchange with LDH interlayer NO3− anions. The effects of several parameters such as cations and interlayer anions type in LDH structure, pH, sample flow rate, elution conditions, amount of nano-sorbent and co-existing ions on the extraction were investigated and optimized. Under the optimum conditions, the calibration graph was linear within the range of 2–1000 µg/L with a correlation coefficient of 0.9995. The limit of detection and relative standard deviation were 0.6 µg/L and 0.84% (30 µg/L, n=6), respectively. The presented method was successfully applied to determine of mefenamic acid in human serum and pharmaceutical wastewater samples.
Collapse
Affiliation(s)
- Hossein Abdolmohammad-Zadeh
- Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, 35 Km Tabriz-Marageh Road, P.O. Box 53714-161, Tabriz, Iran
| | - Fatemeh Morshedzadeh
- Department of Chemistry, Payame Nour University of Tabriz, P.O. Box 19395-3697, Tabriz, Iran
| | - Elaheh Rahimpour
- Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, 35 Km Tabriz-Marageh Road, P.O. Box 53714-161, Tabriz, Iran
| |
Collapse
|
23
|
Beiraghi A, Pourghazi K, Amoli-Diva M, Razmara A. Magnetic solid phase extraction of mefenamic acid from biological samples based on the formation of mixed hemimicelle aggregates on Fe(3)O(4) nanoparticles prior to its HPLC-UV detection. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 945-946:46-52. [PMID: 24321760 DOI: 10.1016/j.jchromb.2013.11.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 11/14/2013] [Accepted: 11/18/2013] [Indexed: 11/18/2022]
Abstract
A novel and sensitive solid phase extraction method based on the adsorption of cetyltrimethylammonium bromide on the surface of Fe3O4 nanoparticles was developed for extraction and preconcentration of ultra-trace amounts of mefenamic acid in biological fluids. The remarkable properties of Fe3O4 nanoparticles including high surface area and strong magnetization were utilized in this SPE procedure so that a high enrichment factor (98) and satisfactory extraction recoveries (92-99%) were obtained using only 50mg of magnetic adsorbent. Furthermore, a fast separation time (about 15min) was achieved for a large sample volume (200mL) avoiding time-consuming column-passing process of conventional SPE. A comprehensive study on the parameters effecting the extraction recovery such of the amount of surfactant, pH value, the amount of Fe3O4 nanoparticles, sample volume, desorption conditions and ionic strength were also presented. Under the optimum conditions, the method was linear in the 0.2-200ngmL(-1) range and good linearity (r(2)>0.9991) was obtained for all calibration curves. The limit of detection was 0.097 and 0.087ngmL(-1) in plasma and urine samples, respectively. The relative standard deviation (RSD %) for 10 and 50ngmL(-1) of the analyte (n=5) were 1.6% and 2.1% in plasma and 1.2% and 1.9% in urine samples, respectively. Finally, the method was successfully applied to the extraction and preconcentration of mefenamic acid in human plasma and urine samples.
Collapse
Affiliation(s)
- Asadollah Beiraghi
- Faculty of Chemistry, Kharazmi (Tarbiat Moalem) University, Tehran, Iran
| | - Kamyar Pourghazi
- Faculty of Chemistry, Kharazmi (Tarbiat Moalem) University, Tehran, Iran.
| | - Mitra Amoli-Diva
- Faculty of Chemistry, Kharazmi (Tarbiat Moalem) University, Tehran, Iran
| | - Akbar Razmara
- Department of Chemistry, Faculty of Science, Payam Noor University, Marand, Iran
| |
Collapse
|
24
|
Kormosh Z, Matviychuk O. Potentiometric determination of mefenamic acid in pharmaceutical formulation by membrane sensor based on ion-pair with basic dye. CHINESE CHEM LETT 2013. [DOI: 10.1016/j.cclet.2013.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
|