1
|
Yang S, Huang Y, Jian P, Xie Z, Wu Y, Li H, Zeng R, SiTU F, Tu M. Enhanced cell affinity and osteogenic differentiation of liquid crystal-based substrate via surface bio-functionalization. J Biomed Mater Res A 2020; 109:938-950. [PMID: 32786167 DOI: 10.1002/jbm.a.37084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 11/10/2022]
Abstract
Regulation of cell-substrate interactions is an important factor for modulating cell behaviors. Tailoring the physical and chemical properties of the substrates to better mimic the extracellular matrix (ECM) of native tissue is a more effective strategy for enhancing the cell-substrate contact. In current work, we aim at improving surface bioactivity based on the liquid crystalline substrates for the enhancement in cell affinity and osteogenic differentiation. Polydopamine (PDOPA) adhesive coating was used as a reactive platform for the immobilization of chitooligosaccharide (COS) on the octyl hydroxypropyl cellulose ester (OPC) substrate to generate active OPC-PDOPA-COSs liquid crystalline substrates. Results demonstrated that PDOPA-coated OPC surfaces showed remarkably improved hydrophility and increased elastic modulus, leading to better initial cell attachment. Subsequent COS immobilization on the OPC-PDOPA layer could induce promotion of cell proliferation, polarization and cytoskeleton formation. Rat bone marrow mesenchymal stem cells (rBMSCs) seeded on the OPC-PDOPA-COSs showed higher alkaline phosphatase (ALP) activity, calcium deposition, and up-regulated bone-related genes expression, including BMP-2, RUNx-2, COL-I and OCN. In conclusion, surface biofunctionalization on the OPC-based liquid crystalline substrates could come into being the appropriate combination of surface chemistry and liquid crystalline characteristic that simulating in vivo ECM environment, resulting in a favorable support to enhance positive cell-substrate interactions.
Collapse
Affiliation(s)
- Shenyu Yang
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China.,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yiping Huang
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China.,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou, China
| | - Peishan Jian
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China.,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou, China
| | - Zheng Xie
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China.,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou, China
| | - Youheng Wu
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China.,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou, China
| | - Haoying Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China.,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou, China
| | - Rong Zeng
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China.,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou, China
| | - Fangmin SiTU
- College of Chinese and Culture, Jinan University, Guangzhou, China
| | - Mei Tu
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China.,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Son T, Lee C, Moon G, Lee D, Cheong E, Kim D. Enhanced surface plasmon microscopy based on multi-channel spatial light switching for label-free neuronal imaging. Biosens Bioelectron 2019; 146:111738. [PMID: 31600626 DOI: 10.1016/j.bios.2019.111738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/27/2019] [Indexed: 02/04/2023]
Abstract
In this paper, we have investigated multi-channel switching of light incidence in multiple directions to improve image clarity in surface plasmon microscopy (SPM) for robust and consistent imaging performance regardless of the pattern geometry and shape. Multi-channel light switching in SPM allows significant reduction of adverse scattering effects by surface plasmon (SP). For proof of concept, an eight-channel spatially switched SPM (ssSPM) system has been set up. The results with reference objects including square arrays and Siemens stars experimentally confirm much improved images with ssSPM by reducing the artifacts of SP scattering significantly. On a quantitative basis, contrast analysis preformed with square arrays shows image contrast enhanced by more than three times over conventional SPM. Three image reconstruction algorithms were evaluated for optimal image acquisition. It is suggested that averaging combined with minimum-filtering produces the highest resolution. ssSPM was applied to label-free imaging of primary neuron cultures and shown to present enhanced images with clarity far better than conventional SPM.
Collapse
Affiliation(s)
- Taehwang Son
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Changhun Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Gwiyeong Moon
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Dongsu Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Eunji Cheong
- Department of Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
3
|
Son T, Lee C, Seo J, Choi IH, Kim D. Surface plasmon microscopy by spatial light switching for label-free imaging with enhanced resolution. OPTICS LETTERS 2018; 43:959-962. [PMID: 29444037 DOI: 10.1364/ol.43.000959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/10/2018] [Indexed: 05/20/2023]
Abstract
In this Letter, we describe spatially switched surface plasmon microscopy (ssSPM) based on two-channel momentum sampling. The performance evaluated with periodic nanowires in comparison with conventional SPM and bright-field microscopy shows that the resolution of ssSPM is enhanced by almost 15 times over conventional SPM. ssSPM provides an extremely simple way to attain diffraction limit in SPM and to go beyond for super-resolution in label-free microscopy techniques.
Collapse
|
4
|
Soon CF, Thong KT, Tee KS, Ismail AB, Denyer M, Ahmad MK, Kong YH, Vyomesh P, Cheong SC. A scaffoldless technique for self-generation of three-dimensional keratinospheroids on liquid crystal surfaces. Biotech Histochem 2016; 91:283-95. [PMID: 27008034 DOI: 10.3109/10520295.2016.1158865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe a new scaffold-free three-dimensional (3D) cell culture model using cholesteryl ester based lyotropic liquid crystal (LC) substrates. Keratinocytes were deposited randomly on the LC surface where they self-assembled into 3D microtissues or keratinospheroids. The cell density required to form spheroids was optimized. We investigated cell viability using dead/live cell assays. The adhesion characteristics of cells within the microtissues were determined using histological sectioning and immunofluorescence staining. Fourier transform infrared spectroscopy (FTIR) was used to characterize the biochemistry of the keratinospheroids. We found that both cells and microtissues could migrate on the LC surface. The viability study indicated approximately 80% viability of cells in the microtissues up to 20 days of culture. Strong intercellular adhesion was observed in the stratification of the multi-layered microspheroids using field emission-scanning electron microscopy (FE-SEM) and histochemical staining. The cytoskeleton and vinculins of the cells in the microtissues were expressed diffusely, but the microtissues were enriched with lipids and nucleic acids, which indicates close resemblance to the conditions in vivo. The basic 3D culture model based on LC may be used for cell and microtissue migration studies in response to cytochemical treatment.
Collapse
Affiliation(s)
- C F Soon
- a Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia , Parit Raja, Batu Pahat, Johor , Malaysia.,b Biosensor and Bioengineering Laboratory, MiNT-SRC, Universiti Tun Hussein Onn Malaysia , Parit Raja, Batu Pahat, Johor , Malaysia
| | - K T Thong
- a Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia , Parit Raja, Batu Pahat, Johor , Malaysia
| | - K S Tee
- a Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia , Parit Raja, Batu Pahat, Johor , Malaysia
| | - A B Ismail
- b Biosensor and Bioengineering Laboratory, MiNT-SRC, Universiti Tun Hussein Onn Malaysia , Parit Raja, Batu Pahat, Johor , Malaysia
| | - M Denyer
- c School of Medical Sciences, University of Bradford , Bradford , United Kingdom
| | - M K Ahmad
- a Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia , Parit Raja, Batu Pahat, Johor , Malaysia
| | - Y H Kong
- d Cancer Research Malaysia, Subang Jaya , Selangor , Malaysia
| | - P Vyomesh
- d Cancer Research Malaysia, Subang Jaya , Selangor , Malaysia
| | - S C Cheong
- d Cancer Research Malaysia, Subang Jaya , Selangor , Malaysia
| |
Collapse
|
5
|
Berguiga L, Streppa L, Boyer-Provera E, Martinez-Torres C, Schaeffer L, Elezgaray J, Arneodo A, Argoul F. Time-lapse scanning surface plasmon microscopy of living adherent cells with a radially polarized beam. APPLIED OPTICS 2016; 55:1216-27. [PMID: 26906571 DOI: 10.1364/ao.55.001216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report on a fibered high-resolution scanning surface plasmon microscope for long term imaging of living adherent cells. The coupling of a high numerical aperture objective lens and a fibered heterodyne interferometer enhances both the sensitivity and the long term stability of this microscope, allowing for time-lapse recording over several days. The diffraction limit is reached with a radially polarized illumination beam. Adherence and motility of living C2C12 myoblast cells are followed for 50 h, revealing that the dynamics of these cells change after 10 h. This plasmon enhanced evanescent wave microscopy is particularly suited for investigating cell adhesion, since it can not only be performed without staining of the sample but it can also capture in real time the exchange of extracellular matrix elements between the substrate and the cells.
Collapse
|
6
|
Spillmann CM, Naciri J, Algar WR, Medintz IL, Delehanty JB. Multifunctional liquid crystal nanoparticles for intracellular fluorescent imaging and drug delivery. ACS NANO 2014; 8:6986-6997. [PMID: 24979226 DOI: 10.1021/nn501816z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A continuing goal of nanoparticle (NP)-mediated drug delivery (NMDD) is the simultaneous improvement of drug efficacy coupled with tracking of the intracellular fate of the nanoparticle delivery vehicle and its drug cargo. Here, we present a robust multifunctional liquid crystal NP (LCNP)-based delivery system that affords facile intracellular fate tracking coupled with the efficient delivery and modulation of the anticancer therapeutic doxorubicin (Dox), employed here as a model drug cargo. The LCNPs consist of (1) a liquid crystal cross-linking agent, (2) a homologue of the organic chromophore perylene, and (3) a polymerizable surfactant containing a carboxylate headgroup. The NP core provides an environment to both incorporate fluorescent dye for spectrally tuned particle tracking and encapsulation of amphiphilic and/or hydrophobic agents for intracellular delivery. The carboxylate head groups enable conjugation to biologicals to facilitate the cellular uptake of the particles. Upon functionalization of the NPs with transferrin, we show the ability to differentially label the recycling endocytic pathway in HEK 293T/17 cells in a time-resolved manner with minimal cytotoxicity and with superior dye photostability compared to traditional organic fluorophores. Further, when passively loaded with Dox, the NPs mediate the rapid uptake and subsequent sustained release of Dox from within endocytic vesicles. We demonstrate the ability of the LCNPs to simultaneously serve as both an efficient delivery vehicle for Dox as well as a modulator of the drug's cytotoxicity. Specifically, the delivery of Dox as a LCNP conjugate results in a ∼40-fold improvement in its IC50 compared to free Dox in solution. Cumulatively, our results demonstrate the utility of the LCNPs as an effective nanomaterial for simultaneous cellular imaging, tracking, and delivery of drug cargos.
Collapse
Affiliation(s)
- Christopher M Spillmann
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory , 4555 Overlook Avenue Southwest, Washington, D.C., 20375, United States
| | | | | | | | | |
Collapse
|
7
|
Soon CF, Omar WIW, Berends RF, Nayan N, Basri H, Tee KS, Youseffi M, Blagden N, Denyer MCT. Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals. Micron 2014; 56:73-9. [DOI: 10.1016/j.micron.2013.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/14/2013] [Accepted: 10/14/2013] [Indexed: 11/25/2022]
|