1
|
Sounderarajan S, Seenivasan H, Velayudhaperumal Chellam P, Puchalapalli DSR, Ayothiraman S. Selective recovery of esterase from Trichoderma harzianum through adsorption: Insights on enzymatic catalysis, adsorption isotherms and kinetics. Int J Biol Macromol 2024; 277:134133. [PMID: 39074704 DOI: 10.1016/j.ijbiomac.2024.134133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
In recent years, numerous attempts have been made to develop a low-cost adsorbent for selectively recovering industrially important products from fermentation broth or complex mixtures. The current study is a novel attempt to selectively adsorb esterase from Trichoderma harzianum using cheap adsorbents like bentonite (BT), activated charcoal (AC), silicon dioxide (SiO2), and titanium dioxide (TiO2). AC had the highest esterase adsorption of 97.58% due to its larger surface area of 594.45 m3/g. SiO2 was found to have the highest selectivity over esterase, with an estimated purification fold of 7.2. Interestingly, the purification fold of 5.5 was found in the BT-extracted fermentation broth. The functional (FT-IR) and morphological analysis (SEM-EDX) were used to characterize the adsorption of esterase. Esterase adsorption on AC, SiO2, and TiO2 was well fitted by Freundlich isotherm, demonstrating multilayer adsorption of esterase. A pseudo-second-order kinetic model was developed for esterase adsorption in various adsorbents. Thermodynamic analysis revealed that adsorption is an endothermic process. AC has the lowest Gibbs free energy of -10.96 kJ/mol, which supports the spontaneous maximum adsorption of both esterase and protein. In the desorption study, the maximum recovery of esterase from TiO2 using sodium chloride was 41.34 %. Unlike other adsorbents, the AC-adsorbed esterase maintained its catalytic activity and stability, implying that it could be used as an immobilization system for commercial applications. According to the kinetic analysis, the overall rate of the reaction was controlled by reaction kinetics rather than external mass transfer resistance, as indicated by the Damkohler number.
Collapse
Affiliation(s)
- Sathieesh Sounderarajan
- Department of Chemical Engineering, National Institute of Technology Andhra Pradesh, Tadepalliguem, Andhra Pradesh, India; Biochemical Engineering Research Group, Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India
| | - Harshitha Seenivasan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | | | | | - Seenivasan Ayothiraman
- Department of Biotechnology National Institute of Technology Andhra Pradesh (Institute of National Importance, Govt. of India) Tadepalligudem, West Godavari Dist., Andhra Pradesh-534101, India.
| |
Collapse
|
2
|
Wang H, Tang LX, Ye YF, Ma JX, Li X, Si J, Cui BK. Laccase immobilization and its degradation of emerging pollutants: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120984. [PMID: 38678905 DOI: 10.1016/j.jenvman.2024.120984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
The chronic lack of effective disposal of pollutants has resulted in the detection of a wide variety of EPs in the environment, with concentrations high enough to affect ecological health. Laccase, as a versatile oxidase capable of catalyzing a wide range of substrates and without producing toxic by-products, is a potential candidate for the biodegradation of pollutants. Immobilization can provide favorable protection for free laccase, improve the stability of laccase in complex environments, and greatly enhance the reusability of laccase, which is significant in reducing the cost of industrial applications. This study introduces the properties of laccase and subsequently elaborate on the different support materials for laccase immobilization. The research advances in the degradation of EDs, PPCPs, and PAHs by immobilized laccase are then reviewed. This review provides a comprehensive understanding of laccase immobilization, as well as the advantages of various support materials, facilitating the development of more economical and efficient immobilization systems that can be put into practice to achieve the green degradation of EPs.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Lu-Xin Tang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Yi-Fan Ye
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Jin-Xin Ma
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Xin Li
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China.
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
3
|
Sharma P, Bano A, Yadav S, Singh SP. Biocatalytic Degradation of Emerging Micropollutants. Top Catal 2023. [DOI: 10.1007/s11244-023-01790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
4
|
Fungal bioproducts for petroleum hydrocarbons and toxic metals remediation: recent advances and emerging technologies. Bioprocess Biosyst Eng 2023; 46:393-428. [PMID: 35943595 DOI: 10.1007/s00449-022-02763-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
Abstract
Petroleum hydrocarbons and toxic metals are sources of environmental contamination and are harmful to all ecosystems. Fungi have metabolic and morphological plasticity that turn them into potential prototypes for technological development in biological remediation of these contaminants due to their ability to interact with a specific contaminant and/or produced metabolites. Although fungal bioinoculants producing enzymes, biosurfactants, polymers, pigments and organic acids have potential to be protagonists in mycoremediation of hydrocarbons and toxic metals, they can still be only adjuvants together with bacteria, microalgae, plants or animals in such processes. However, the sudden accelerated development of emerging technologies related to the use of potential fungal bioproducts such as bioinoculants, enzymes and biosurfactants in the remediation of these contaminants, has boosted fungal bioprocesses to achieve higher performance and possible real application. In this review, we explore scientific and technological advances in bioprocesses related to the production and/or application of these potential fungal bioproducts when used in remediation of hydrocarbons and toxic metals from an integral perspective of biotechnological process development. In turn, it sheds light to overcome existing technological limitations or enable new experimental designs in the remediation of these and other emerging contaminants.
Collapse
|
5
|
Wu Y, Zhang H, Li J, Wang Z, Jiang Y. Adsorption of soil invertase to goethite, gibbsite and their organic complexes and the effects on enzyme catalytic performance. Colloids Surf B Biointerfaces 2023; 222:113073. [PMID: 36495696 DOI: 10.1016/j.colsurfb.2022.113073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Soil invertase plays important role in the enzyme-driven degradation of soil organic carbon, and influenced by the adsorption of minerals or clays. We studied the adsorption effects of goethite, gibbsite and their organic complexes (with tannic acid) on invertase, aiming to explore the influence on the mobility and catalytic behavior of invertase. Results showed that both minerals and mineral-tannic acid complexes (henceforth 'complexes') had considerable adsorption capacity for invertase and restricted its mobility. The catalytic performance of invertase was characterized. Under optimum conditions, the kinetics of the enzyme was reduced markedly after adsorption, indicating the decreased enzyme-substrate affinity. Adsorbed invertases retained 30.9-46.1% of the original activity and the mineral-adsorbed enzymes showed lower activities than the complex-adsorbed enzymes. All minerals and complexes had similar patterns on the influence on the pH and thermal properties of invertase, in which the adsorption improved the pH stability of the enzyme at various pH values, lowered the pH sensitivity and shifted the optimum pH towards the acid sites; while decreased thermal stability at various temperature values and higher temperature sensitivity of the adsorbed invertase were observed. In a 150-h incubation under soil-like conditions, all adsorbed invertases showed greater long-term stability than free invertase, and higher total activities (sum of adsorbed activities and dissolved activities) in adsorption system were observed after the incubation. These results implied that, in a soil microenvironment, the goethite, gibbsite and their organic complexes have a protection effect on invertase through adsorption.
Collapse
Affiliation(s)
- Yue Wu
- Agricultural Technology Extension Center of Shandong Province, Jinan 250100, China.
| | - Huihong Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jianwei Li
- Agricultural Technology Extension Center of Shandong Province, Jinan 250100, China.
| | - Zhonghua Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China.
| | - Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
6
|
Immobilization of carbonic anhydrase in a hydrophobic poly(ionic liquid): A new functional solid for CO2 capture. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Pinto Vilar R, Ikuma K. Adsorption of urease as part of a complex protein mixture onto soil and its implications for enzymatic activity. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE. A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules 2021; 26:3813. [PMID: 34206669 PMCID: PMC8270347 DOI: 10.3390/molecules26133813] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/07/2022] Open
Abstract
The history of colour is fascinating from a social and artistic viewpoint because it shows the way; use; and importance acquired. The use of colours date back to the Stone Age (the first news of cave paintings); colour has contributed to the social and symbolic development of civilizations. Colour has been associated with hierarchy; power and leadership in some of them. The advent of synthetic dyes has revolutionized the colour industry; and due to their low cost; their use has spread to different industrial sectors. Although the percentage of coloured wastewater discharged by the textile; food; pharmaceutical; cosmetic; and paper industries; among other productive areas; are unknown; the toxic effect and ecological implications of this discharged into water bodies are harmful. This review briefly shows the social and artistic history surrounding the discovery and use of natural and synthetic dyes. We summarise the environmental impact caused by the discharge of untreated or poorly treated coloured wastewater to water bodies; which has led to physical; chemical and biological treatments to reduce the colour units so as important physicochemical parameters. We also focus on laccase utility (EC 1.10.3.2), for discolouration enzymatic treatment of coloured wastewater, before its discharge into water bodies. Laccases (p-diphenol: oxidoreductase dioxide) are multicopper oxidoreductase enzymes widely distributed in plants, insects, bacteria, and fungi. Fungal laccases have employed for wastewater colour removal due to their high redox potential. This review includes an analysis of the stability of laccases, the factors that influence production at high scales to achieve discolouration of high volumes of contaminated wastewater, the biotechnological impact of laccases, and the degradation routes that some dyes may follow when using the laccase for colour removal.
Collapse
Affiliation(s)
- Leidy D. Ardila-Leal
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Raúl A. Poutou-Piñales
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Aura M. Pedroza-Rodríguez
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Microbiología Ambiental y de Suelos, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Balkys E. Quevedo-Hidalgo
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Aplicada, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| |
Collapse
|
9
|
Hong J, Jung D, Park S, Oh Y, Oh KK, Lee SH. Immobilization of laccase via cross-linked enzyme aggregates prepared using genipin as a natural cross-linker. Int J Biol Macromol 2021; 169:541-550. [PMID: 33358952 DOI: 10.1016/j.ijbiomac.2020.12.136] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 01/19/2023]
Abstract
Genipin is a nontoxic natural cross-linker that was successfully used to prepare cross-linked enzyme aggregates (CLEAs) of Trametes versicolor laccase. The recovered activity of CLEAs was influenced by the co-solvent type, genipin concentration, cross-linking time, preparation pH, and bovine serum albumin (BSA; amino group feeder) concentration. The characteristics of CLEAs prepared using genipin under optimal conditions (genipin-BSA-CLEAs) were compared with those of typical CLEAs prepared using glutaraldehyde or dextran polyaldehyde. Genipin-BSA-CLEAs were nano-sized (average diameter, approximately 700 nm), had a ball-like shape, showed a narrow size distribution, and exhibited the highest substrate affinity among the prepared CLEAs. The thermal stability of genipin-BSA-CLEAs was 6.8-fold higher than that of free laccase, and their pH stability was also much higher than that of free laccase in the tested range. Additionally, genipin-BSA-CLEAs retained 85% of their initial activity after 10 cycles of reuse. Particularly, genipin-BSA-CLEAs showed higher thermal and pH stability than CLEAs that were cross-linked using glutaraldehyde. Therefore, genipin represents an alternative to toxic compounds such as glutaraldehyde during cross-linking to prepare CLEAs.
Collapse
Affiliation(s)
- Jiyeon Hong
- Department of Biological Engineering, Konkuk University, Seoul 05029, South Korea
| | - Dahun Jung
- Department of Biological Engineering, Konkuk University, Seoul 05029, South Korea
| | - Saerom Park
- Department of Biological Engineering, Konkuk University, Seoul 05029, South Korea
| | - Yujin Oh
- Department of Biological Engineering, Konkuk University, Seoul 05029, South Korea
| | - Kyeong Keun Oh
- Department of Chemical Engineering, Dankook University, Yongin 16890, Gyeonggi, South Korea
| | - Sang Hyun Lee
- Department of Biological Engineering, Konkuk University, Seoul 05029, South Korea.
| |
Collapse
|
10
|
Vera M, Fodor C, Garcia Y, Pereira E, Loos K, Rivas BL. Multienzymatic immobilization of laccases on polymeric microspheres: A strategy to expand the maximum catalytic efficiency. J Appl Polym Sci 2020. [DOI: 10.1002/app.49562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Myleidi Vera
- Department of Polymer, Faculty of Chemistry University of Concepción Concepción Chile
| | - Csaba Fodor
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials University of Groningen Groningen The Netherlands
| | - Yadiris Garcia
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry University of Concepción Concepción Chile
| | - Eduardo Pereira
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry University of Concepción Concepción Chile
| | - Katja Loos
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials University of Groningen Groningen The Netherlands
| | - Bernabé L. Rivas
- Department of Polymer, Faculty of Chemistry University of Concepción Concepción Chile
| |
Collapse
|
11
|
Laccase-zein interactions at the air-water interface: Reactors on an air bubble and naphthalene removal from water. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Chi ZL, Zhao XY, Chen YL, Hao JL, Yu GH, Goodman BA, Gadd GM. Intrinsic enzyme-like activity of magnetite particles is enhanced by cultivation with Trichoderma guizhouense. Environ Microbiol 2020; 23:893-907. [PMID: 32783346 DOI: 10.1111/1462-2920.15193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/09/2020] [Indexed: 11/30/2022]
Abstract
Fungal-mineral interactions can produce large amounts of biogenic nano-size (~ 1-100 nm) minerals, yet their influence on fungal physiology and growth remains largely unexplored. Using Trichoderma guizhouense NJAU4742 and magnetite (Mt) as a model fungus and mineral system, we have shown for the first time that biogenic Mt nanoparticles formed during fungal-mineral cultivation exhibit intrinsic peroxidase-like activity. Specifically, the average peroxidase-like activity of Mt nanoparticles after 72 h cultivation was ~ 2.4 times higher than that of the original Mt. Evidence from high resolution X-ray photoelectron spectroscopy analyses indicated that the unique properties of magnetite nanoparticles largely stemmed from their high proportion of surface non-lattice oxygen, through occupying surface oxygen-vacant sites, rather than Fe redox chemistry, which challenges conventional Fenton reaction theories that assume iron to be the sole redox-active centre. Nanoscale secondary ion mass spectrometry with a resolution down to 50 nm demonstrated that a thin (< 1 μm) oxygen-film was present on the surface of fungal hyphae. Furthermore, synchrotron radiation-based micro-FTIR spectra revealed that surface oxygen groups corresponded mainly to organic OH, mineral OH and carbonyl groups. Together, these findings highlight an important, but unrecognized, catalytic activity of mineral nanoparticles produced by fungal-mineral interactions and contribute substantially to our understanding of mineral nanoparticles in natural ecosystems.
Collapse
Affiliation(s)
- Zhi-Lai Chi
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, College of Resource & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang-Yang Zhao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, College of Resource & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ya-Ling Chen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, College of Resource & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.,Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Jia-Long Hao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Guang-Hui Yu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, College of Resource & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.,Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Bernard A Goodman
- College of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China
| |
Collapse
|
13
|
Dayı B, Onac C, Kaya A, Akdogan HA, Rodriguez-Couto S. New Type Biomembrane: Transport and Biodegradation of Reactive Textile Dye. ACS OMEGA 2020; 5:9813-9819. [PMID: 32391468 PMCID: PMC7203689 DOI: 10.1021/acsomega.9b04433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/13/2020] [Indexed: 05/11/2023]
Abstract
In traditional separation processes, there are environmental risks still because of the presence of toxic agents. Thus, a novel biomembrane microreactor named eco-green biomembrane (EgBM) was developed to perform the transport, biodegradation, and cleaning of a textile dye aqueous solution (3 mg/L) from the donor (i.e., textile dye) to the acceptor (i.e., laccase enzymes) phases. In the present work, Morchella esculenta pellets were used as carriers and degraders instead of using the traditional chemical carriers. The optimized EgBM was made of cellulose triacetate (16.1%) as a base polymer, 2-nitrophenyl octyl ether (25.2%) as a plasticizer, and M. esculenta fungus pellets (58.7%) as both carriers and degraders. A decoloration percentage of 98.6% ± 0.8 in 60 h was attained, which was due to two mechanisms: biosorption (15.4% ± 0.1) on fungal mycelium and biodegradation (83.2% ± 0.6) by laccase enzymes. The EgBM was achieved not only by the transport of reactive textile dyes used in the donor phase but also by the biodegradation and biosorption of the dyes.
Collapse
Affiliation(s)
- Bugra Dayı
- Department of Chemistry, Pamukkale University, 20020 Denizli, Turkey
| | - Canan Onac
- Department of Chemistry, Pamukkale University, 20020 Denizli, Turkey
- , . Phone: +90 258 296
3607
| | - Ahmet Kaya
- Department of Chemistry, Pamukkale University, 20020 Denizli, Turkey
| | - Hatice Ardag Akdogan
- Department of Chemistry, Pamukkale University, 20020 Denizli, Turkey
- . Phone: +90 258 296 3980
| | - Susana Rodriguez-Couto
- Ceit, Paseo
Manuel de
Lardizábal 15, 20018 San Sebastian, Spain
- Universidad
de Navarra, Tecnun, Paseo
Manuel de Lardizábal 13, 20018 San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
14
|
Coelho GD, Ballaminut N, Thomaz DV, Gomes Machado KM. Characterization of a thermostable Deconica castanella Laccase and application toward pentachlorophenol degradation. Prep Biochem Biotechnol 2019; 49:908-915. [DOI: 10.1080/10826068.2019.1636280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Glauciane Danusa Coelho
- Department of Mycology, Institute of Botany of São Paulo (Secretariat of the Environment of the State of São Paulo/SMA/SP), São Paulo, Brazil
| | - Nara Ballaminut
- Department of Mycology, Institute of Botany of São Paulo (Secretariat of the Environment of the State of São Paulo/SMA/SP), São Paulo, Brazil
| | | | | |
Collapse
|
15
|
Liu G, Zheng H, Jiang Z, Wang Z. Effects of biochar input on the properties of soil nanoparticles and dispersion/sedimentation of natural mineral nanoparticles in aqueous phase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:595-605. [PMID: 29635202 DOI: 10.1016/j.scitotenv.2018.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Upon addition to or otherwise entering soils and waters, biochar particles inevitably interact with natural mineral nanoparticles (NPs). We explored the impacts of two biochars made from charring peanut shells at 300 and 600°C (P300 and P600) on the characteristics of soil NPs extracted from brown soil and laterite soil. The dispersion or sedimentation of montmorillonite (Mon), kaolinite (Kao), goethite (Goe), and hematite (Hem) in the aquatic phase were investigated in the presence of P300 and P600 or their nano samples (NP300 and NP600). P300 and P600 increased the organic C fraction in the soil NPs extracted from brown soil, and decreased the amount of Fe-associated NPs. However, no significant influence was observed in the organic C and mineral phases of laterite soil NPs by P300 and P600. Goe and Hem were slightly adsorbed to P300 at pH6.5, while Goe or Hem homoaggregates formed and settled onto P600. NP300 and NP600 significantly reduced the dispersion of Goe and Hem in the aquatic environment via heteroaggregation, but there was no interaction between NP300 or NP600 and Mon or Kao. These findings are helpful for understanding the interaction between natural minerals and biochars, and the potential fate and ecological services of biochar-mineral complexes in soil and water.
Collapse
Affiliation(s)
- Guocheng Liu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hao Zheng
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Zhixiang Jiang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
16
|
Samak NA, Tan Y, Sui K, Xia TT, Wang K, Guo C, Liu C. CotA laccase immobilized on functionalized magnetic graphene oxide nano-sheets for efficient biocatalysis. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2017.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Patel SKS, Choi SH, Kang YC, Lee JK. Eco-Friendly Composite of Fe 3O 4-Reduced Graphene Oxide Particles for Efficient Enzyme Immobilization. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2213-2222. [PMID: 28004579 DOI: 10.1021/acsami.6b05165] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A novel type of spherical and porous composites were synthesized to dually benefit from reduced graphene oxide (rGO) and magnetic materials as supports for enzyme immobilization. Three magnetic composite particles of Fe3O4 and rGO containing 71% (rGO-Fe3O4-M1), 36% (rGO-Fe3O4-M2), and 18% (rGO-Fe3O4-M3) Fe were prepared using a one-pot spray pyrolysis method and were used for the immobilization of the model enzymes, laccase and horseradish peroxidase (HRP). The rGO-Fe3O4 composite particles prepared by spray pyrolysis process had a regular shape, finite size, and uniform composition. The immobilization of laccase and HRP on rGO-Fe3O4-M1 resulted in 112 and 89.8% immobilization efficiency higher than that of synthesized pure Fe3O4 and rGO particles, respectively. The stability of laccase was improved by approximately 15-fold at 25 °C. Furthermore, rGO-Fe3O4-M1-immobilized laccase exhibited 92.6% of residual activity after 10 cycles of reuse and was 192% more efficient in oxidizing different phenolic compounds than the free enzyme. Therefore, these unique composite particles containing rGO and Fe3O4 may be promising supports for the efficient immobilization of industrially important enzymes with lower acute toxicity toward Vibrio fischeri than commercial pure Fe3O4 particles.
Collapse
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University , 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Seung Ho Choi
- Department of Materials Science and Engineering, Korea University , Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University , Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University , 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| |
Collapse
|
18
|
Kirtzel J, Siegel D, Krause K, Kothe E. Stone-Eating Fungi: Mechanisms in Bioweathering and the Potential Role of Laccases in Black Slate Degradation With the Basidiomycete Schizophyllum commune. ADVANCES IN APPLIED MICROBIOLOGY 2017; 99:83-101. [PMID: 28438269 DOI: 10.1016/bs.aambs.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many enzymes, such as laccases, are involved in the saprotrophic lifestyle of fungi and the effects of those may be linked to enhanced bioweathering on stone surfaces. To test this hypothesis, we studied the decomposition of kerogen-enriched lithologies, especially with black slate containing up to 20% of Corg. Indeed, a formation of ditches with attached hyphal material could be observed. To address enzymes involved, proteomics was performed and one group of enzymes, the multicopper oxidase family members of laccases, was specifically investigated. A role in bioweathering of rocks containing high contents of organic carbon in the form of kerogen could be shown using the basidiomycete Schizophyllum commune, a white rot fungus that has been used as a model organism to study the role of filamentous basidiomycete fungi in bioweathering of black slate.
Collapse
Affiliation(s)
| | | | | | - Erika Kothe
- Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
19
|
A novel fluorimetric method for laccase activities measurement using Amplex Red as substrate. Talanta 2016; 162:143-150. [PMID: 27837810 DOI: 10.1016/j.talanta.2016.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/18/2016] [Accepted: 10/02/2016] [Indexed: 11/21/2022]
Abstract
In this paper, a novel fluorescence-based method for laccase assay was presented. The method was based on the transformation of Amplex Red into a highly fluorescent and colored resorufin catalyzed by laccase in the presence of O2. The catalysis and transformation mechanism were investigated in detail. The kinetic parameters of the Amplex Red catalysis by laccase were determined using the Lineweaver-Burk equation. Vmax and Km were estimated to be 15.63μmolmin-1 and 76.88μmolL-1, respectively. Under optimal conditions, a good linear correlation was found between fluorescence intensity and laccase activities within 5.62-702UL-1 (r=0.9992), with a detection limit of 1.76UL-1 (S/N=3). A series of repeatability measurements (351UL-1 laccase) gave reproducible results with a relative standard deviation (RSD) of 1.9% (n=11). The recoveries ranged from 93.7% to 100.0% after standard additions. Common existing species such as Mg2+, Zn2+, Ni2+, Al3+, Co2+, Cd2+, K+, Ca2+, Na+, Fe3+, Li+, Cu2+, Mn2+, Fe2+, l-lysine, glycine, glucose, phenol, humic acid, lignin peroxidase, manganese peroxidase alkaline phosphatase, cellulose, glucose oxidase, urease, catalase, invertase, and horseradish peroxidase did not significantly exhibit interference. The test solution (i.e., Amplex Red stock solution) could stabilize at least three months via storage in dark at 4±0.1°C. These results confirmed that the laccase-Amplex Red system was stable and reproducible with strong anti-interference ability and good selectivity, suggesting that this method can has great potential in practical applications for the assay of laccase activity. The proposed method was further successfully used to detect laccase activities in 38 soil samples. We noticed that the laccase activity significantly correlated with total nitrogen content (r=0.559; p<0.01) of soil, indicating laccase activity assay holds great promise as an index of soil analysis. These findings indicate that this presented method has great perspective in ecological investigation and fundamental research of soil environment.
Collapse
|
20
|
Jain S, Mishra D, Khare P, Yadav V, Deshmukh Y, Meena A. Impact of biochar amendment on enzymatic resilience properties of mine spoils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 544:410-421. [PMID: 26657386 DOI: 10.1016/j.scitotenv.2015.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
Soil enzymes are crucial for soil nutrient cycling function. Understanding of the factors that control their response to major disturbances such as dumping of environmentally toxic acidic waste remains limited. We evaluated the effect of dumping of overburden (OB) and their amendments using biochar, on the resistance and resilience of soil enzyme activities involved in phosphorus, nitrogen, sulphur and carbon cycling (acid & alkaline phosphatase, urease, arylsulphatase, dehydrogenase, phenol oxidases, cellulase and β-glucosidase). For investigation the soils treated with OB and with the mixture of OB and biochar were used for the cultivation of bacopa were used. We assessed 0 day, 45 day and 90 days activities of the target soil enzymes, available phosphorus, nitrogen, sulphur, soil organic carbon and microbial identification. The resilience and resistance index of all the treatments were calculated. We found that phyto-remediated OB-contaminated soil has its own resilience power. However, biochar addition enhanced the enzyme resistance and resilience of OB contaminated soil. In silico study indicates that biochar-Fe complex play a significant role in enzymatic activities. Overall, the results indicate a significant influence of phytoremediation and biochar addition on soil enzymatic activity that is extremely resistant to OB. This study provides insight on how biochar addition modulates soil biochemical and microbiological response to OB affected soils.
Collapse
Affiliation(s)
- Shilpi Jain
- Agronomy & Soil Science Div. Central Institute of Medicinal and Aromatic Plants, P.O. - CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India
| | - Disha Mishra
- Agronomy & Soil Science Div. Central Institute of Medicinal and Aromatic Plants, P.O. - CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India
| | - Puja Khare
- Agronomy & Soil Science Div. Central Institute of Medicinal and Aromatic Plants, P.O. - CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India.
| | - Vineet Yadav
- Agronomy & Soil Science Div. Central Institute of Medicinal and Aromatic Plants, P.O. - CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India
| | - Y Deshmukh
- Agronomy & Soil Science Div. Central Institute of Medicinal and Aromatic Plants, P.O. - CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India
| | - Abha Meena
- Bioinformatic Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| |
Collapse
|
21
|
Chan-Cupul W, Heredia-Abarca G, Rodríguez-Vázquez R. Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2016; 51:298-308. [PMID: 26830051 DOI: 10.1080/03601234.2015.1128742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This investigation was undertaken to determine the atrazine degradation by fungal enzyme extracts (FEEs) in a clay-loam soil microcosm contaminated at field application rate (5 μg g(-1)) and to study the influence of different soil microcosm conditions, including the effect of soil sterilization, water holding capacity, soil pH and type of FEEs used in atrazine degradation through a 2(4) factorial experimental design. The Trametes maxima-Paecilomyces carneus co-culture extract contained more laccase activity and hydrogen peroxide (H2O2) content (laccase = 18956.0 U mg protein(-1), H2O2 = 6.2 mg L(-1)) than the T. maxima monoculture extract (laccase = 12866.7 U mg protein(-1), H2O2 = 4.0 mg L(-1)). Both extracts were able to degrade atrazine at 100%; however, the T. maxima monoculture extract (0.32 h) achieved a lower half-degradation time than its co-culture with P. carneus (1.2 h). The FEE type (p = 0.03) and soil pH (p = 0.01) significantly affected atrazine degradation. The best degradation rate was achieved by the T. maxima monoculture extract in an acid soil (pH = 4.86). This study demonstrated that both the monoculture extracts of the native strain T. maxima and its co-culture with P. carneus can efficiently and quickly degrade atrazine in clay-loam soils.
Collapse
Affiliation(s)
- Wilberth Chan-Cupul
- a Biological Control and Applied Mycology Laboratory, Faculty of Biological and Agro-livestock Sciences, University of Colima , Tecoman , Colima , Mexico
| | | | - Refugio Rodríguez-Vázquez
- c Department of technology and Bioengineering, Center for Research and Advanced Studies of the National Polytechnic Institute , Mexico City , Mexico
| |
Collapse
|
22
|
|
23
|
Vasilescu I, Eremia SAV, Kusko M, Radoi A, Vasile E, Radu GL. Molybdenum disulphide and graphene quantum dots as electrode modifiers for laccase biosensor. Biosens Bioelectron 2015; 75:232-7. [PMID: 26319166 DOI: 10.1016/j.bios.2015.08.051] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
A nanocomposite formed from molybdenum disulphide (MoS2) and graphene quantum dots (GQDs) was proposed as a novel and suitable support for enzyme immobilisation displaying interesting electrochemical properties. The conductivity of the carbon based screen-printed electrodes was highly improved after modification with MoS2 nanoflakes and GQDs, the nanocomposite also providing compatible matrix for laccase immobilisation. The influence of different modification steps on the final electroanalytical performances of the modified electrode were evaluated by UV-vis absorption and fluorescence spectroscopy, scanning electron microscopy, transmission electron microscopy, X ray diffraction, electrochemical impedance spectroscopy and cyclic voltammetry. The developed laccase biosensor has responded efficiently to caffeic acid over a concentration range of 0.38-100µM, had a detection limit of 0.32µM and a sensitivity of 17.92nAµM(-1). The proposed analytical tool was successfully applied for the determination of total polyphenolic content from red wine samples.
Collapse
Affiliation(s)
- Ioana Vasilescu
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, Bucharest, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Sandra A V Eremia
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, Bucharest, 296 Splaiul Independentei, 060031 Bucharest, Romania.
| | - Mihaela Kusko
- National Institute for Research and Development in Microtechnologies (IMT-Bucharest), 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
| | - Antonio Radoi
- National Institute for Research and Development in Microtechnologies (IMT-Bucharest), 126A Erou Iancu Nicolae, 077190 Bucharest, Romania.
| | - Eugeniu Vasile
- Department of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, No. 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Gabriel-Lucian Radu
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, Bucharest, 296 Splaiul Independentei, 060031 Bucharest, Romania
| |
Collapse
|
24
|
Enzymatic technologies for remediation of hydrophobic organic pollutants in soil. Appl Microbiol Biotechnol 2015; 99:8815-29. [DOI: 10.1007/s00253-015-6872-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 01/11/2023]
|
25
|
Fungal enzymes for environmental management. Curr Opin Biotechnol 2015; 33:268-78. [DOI: 10.1016/j.copbio.2015.03.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/07/2015] [Indexed: 11/20/2022]
|
26
|
Donati E, Polcaro CM, Ciccioli P, Galli E. The comparative study of a laccase-natural clinoptilolite-based catalyst activity and free laccase activity on model compounds. JOURNAL OF HAZARDOUS MATERIALS 2015; 289:83-90. [PMID: 25710818 DOI: 10.1016/j.jhazmat.2015.02.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/12/2015] [Accepted: 02/15/2015] [Indexed: 06/04/2023]
Abstract
For the first time a laccase from Trametes versicolor was immobilized on a natural clinoptilolite with Si/Al=5 to obtain a biocatalyst for environmental applications. Immobilization procedures exploiting adsorption and covalent binding were both tested, and only the last provided enough activity for practical applications. The optimal conditions for the immobilization of the enzyme on the support and the kinetic parameters for the free and covalent bonded laccase were determined. The laccase bonded to the zeolitic support showed a lower activity than the free laccase, but the pH and thermal stability were greater. 20 mg of dry biocatalyst containing 1 U of laccase were able to remove in 50h 73-78% of 2-chlorophenol and 2,4-dichlorophenol in relatively concentrated aqueous solutions (100 μmol L(-1)).
Collapse
Affiliation(s)
- Enrica Donati
- Institute of Chemical Methodologies of CNR (IMC), Research Area of Rome 1, Via Salaria Km 29,300, 00015 Monterotondo, Rome, Italy
| | - Chiara M Polcaro
- Institute of Chemical Methodologies of CNR (IMC), Research Area of Rome 1, Via Salaria Km 29,300, 00015 Monterotondo, Rome, Italy.
| | - Piero Ciccioli
- Institute of Chemical Methodologies of CNR (IMC), Research Area of Rome 1, Via Salaria Km 29,300, 00015 Monterotondo, Rome, Italy
| | - Emanuela Galli
- Institute of Agro-Environmental and Forest Biology of CNR (IBAF), Research Area of Rome 1, Via Salaria Km 29,300, 00015 Monterotondo, Rome, Italy
| |
Collapse
|
27
|
Potentialities of a membrane reactor with laccase grafted membranes for the enzymatic degradation of phenolic compounds in water. MEMBRANES 2014; 4:678-91. [PMID: 25295628 PMCID: PMC4289861 DOI: 10.3390/membranes4040678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/08/2014] [Accepted: 09/18/2014] [Indexed: 11/24/2022]
Abstract
This paper describes the degradation of phenolic compounds by laccases from Trametes versicolor in an enzymatic membrane reactor (EMR). The enzymatic membranes were prepared by grafting laccase on a gelatine layer previously deposited onto α-alumina tubular membranes. The 2,6-dimethoxyphenol (DMP) was selected from among the three different phenolic compounds tested (guaiacol, 4-chlorophenol and DMP) to study the performance of the EMR in dead end configuration. At the lowest feed substrate concentration tested (100 mg·L−1), consumption increased with flux (up to 7.9 × 103 mg·h−1·m−2 at 128 L·h−1·m−2), whereas at the highest substrate concentration (500 mg·L−1), it was shown that the reaction was limited by the oxygen content.
Collapse
|
28
|
Deshapriya IK, Kim CS, Novak MJ, Kumar CV. Biofunctionalization of α-zirconium phosphate nanosheets: toward rational control of enzyme loading, affinities, activities and structure retention. ACS APPLIED MATERIALS & INTERFACES 2014; 6:9643-9653. [PMID: 24853777 DOI: 10.1021/am502070w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Controlling the properties of enzymes bound to solid surfaces in a rational manner is a grand challenge. Here we show that preadsorption of cationized bovine serum albumin (cBSA) to α-Zr(IV) phosphate (α-ZrP) nanosheets promotes enzyme binding in a predictable manner, and surprisingly, the enzyme binding is linearly proportional to the number of residues present in the enzyme or its volume, providing a powerful, new predictable tool. The cBSA loaded α-ZrP (denoted as bZrP) was tested for the binding of pepsin, glucose oxidase (GOX), tyrosinase, catalase, myoglobin and laccase where the number of residues increased from the lowest value of ∼153 to the highest value of 2024. Loading depended linearly on the number of residues, rather than enzyme charge or its isoelectric point. No such correlation was seen for the binding of these enzymes to α-ZrP nanosheets without the preadsorption of cBSA, under similar conditions of pH and buffer. Enzyme binding to bZrP was supported by centrifugation studies, powder X-ray diffraction and scanning electron microscopy/energy-dispersive X-ray spectroscopy. All the bound enzymes retained their secondary structure and the extent of structure retention depended directly on the amount of cBSA preadsorbed on α-ZrP, prior to enzyme loading. Except for tyrosinase, all enzyme/bZrP biocatalysts retained their enzymatic activities nearly 90-100%, and biofunctionalization enhanced the loading, improved structure retention and supported higher enzymatic activities. This approach of using a chemically modified protein to serve as a glue, with a predictable affinity/loading of the enzymes, could be useful to rationally control enzyme binding for applications in advanced biocatalysis and biomedical applications.
Collapse
Affiliation(s)
- Inoka K Deshapriya
- Department of Chemistry, ‡Department of Molecular and Cell Biology, University of Connecticut , Storrs, Connecticut 06269, United States
| | | | | | | |
Collapse
|