1
|
Li D, Jiang C, Jiang C, Liu F, Zhu Q. Geochemical characteristics and migration patterns of rare earth elements in coal mining subsidence lakes under the influence of multiple factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166668. [PMID: 37660822 DOI: 10.1016/j.scitotenv.2023.166668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
Mining activities cause surface subsidence and the formation of subsidence lakes, which dynamically change with the continuous coal mining activities. Under the combined influence of various human activities such as agriculture, aquaculture, and floating photovoltaic (FPV), the lake environment undergoes continuous changes, thereby altering the geochemical characteristics of rare earth elements (REEs) in the sediment. This study focused on the subsidence lakes in the Huainan coalfield in eastern China to examine the REEs content in the sediment, elucidated the temporal variations and geochemical characteristics of REEs distribution, explored the main controlling factors of REEs in the sediment, and revealed the migration and transformation behavior of REEs during dynamic subsidence processes. The study revealed that the migration pattern of REEs in the sediment was closely related to the duration of subsidence. The average content of REEs in lake sediments with subsidence duration <5 years increased from 219 μg·g-1 to 248 μg·g-1 compared to the soil, showing an enrichment model primarily driven by rainwater runoff, groundwater input retention, and mineral dissolution. With further subsidence, the processes of reduction dissolution of Fe-Mn oxides/hydroxides, organic colloid adsorption, and hydraulic disturbance gradually replaced the aforementioned enrichment behavior as the main migration pathways, resulting in a decrease in the average REEs content in the sediment to 179 μg·g-1 for subsidence durations exceeding 10 years. There was no strong correlation between REEs fractionation and subsidence duration. Artificial activities, such as FPV, are important factors causing Cerium and Erbium anomalies in some subsidence lake sediments. This study was not only of significant importance for understanding the migration, distribution, and environmental behavior of pollutants in aquatic environments under the interference of human activities but also provided a solid theoretical foundation for the future management of coal mining subsidence lakes.
Collapse
Affiliation(s)
- Desheng Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China
| | - Chunlu Jiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China; School of Resources and Geoscience, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.
| | - Chenghong Jiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China
| | - Feng Liu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China
| | - Qiyu Zhu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China
| |
Collapse
|
2
|
Nie S, Chen J, Liu C, Zhou C, Zhao J, Wang Z, Sun J, Huang Y. Effects of extract solution from magnesium alloys supplemented with different compositions of rare earth elements on in vitro epithelial and osteoblast progenitor cells. Front Bioeng Biotechnol 2023; 11:1138675. [PMID: 37251562 PMCID: PMC10210140 DOI: 10.3389/fbioe.2023.1138675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Background: Magnesium alloys (Mg-alloys) have gained significant attention in recent years as a potential bioactive material for clinical applications. The incorporation of rare earth elements (REEs) into Mg-alloys has been of particular interest due to their potential to improve both mechanical and biological properties. Although there are diverse results in terms of cytotoxicity and biological effects of REEs, investigating the physiological benefits of Mg-alloys supplemented with REEs will help in the transition from theoretical to practical applications. Methods: In this study, two culture systems were used to evaluate the effects of Mg-alloys containing gadolinium (Gd), dysprosium (Dy), and yttrium (Y): human umbilical vein endothelial cells (HUVEC) and mouse osteoblastic progenitor cells (MC3T3-E1). Different compositions of Mg-alloys were assessed, and the effects of the extract solution on cell proliferation, viability, and specific cell functions were analyzed. Results: Within the range of weight percentages tested, the Mg-REE alloys did not exhibit any significant negative impacts on either cell line. Interestingly, moderate compositions (Mg-1.5Gd-1.5Dy-0.825Y-0.5Zr and Mg-2Gd-2Dy-1.1Y-0.5Zr) demonstrated a tendency to enhance osteoblastic activity and promote the vascularization process in both HUVEC and MC3T3-E1 cell lines. Discussion: The results of this study provide valuable insights into the potential benefits of REE-supplemented Mg-alloys for clinical applications. The observed enhancement in osteoblastic activity and promotion of vascularization processes suggest that optimizing the compositions of REEs in Mg-alloys could lead to the development of novel, more effective bioactive materials. Further investigations are required to understand the underlying mechanisms and to refine the alloy compositions for improved biocompatibility and performance in clinical settings.
Collapse
Affiliation(s)
- Sheng Nie
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, China
| | - Jiakai Chen
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Chen Liu
- Ningbo Branch of China Academy of Ordnance Science, Ningbo, Zhejiang, China
| | - Chenhui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Jikuang Zhao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Zhepei Wang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Jie Sun
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Weng W, Biesiekierski A, Li Y, Dargusch M, Wen C. A review of the physiological impact of rare earth elements and their uses in biomedical Mg alloys. Acta Biomater 2021; 130:80-97. [PMID: 34118448 DOI: 10.1016/j.actbio.2021.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Magnesium (Mg) is well-tolerated by the body, displaying exceedingly low toxicity, rapid excretion, and numerous bioactive effects, including improved bone formation and protection against oxidative stresses; further, Mg alloys can be degraded in vivo to allow complete removal of an implant without surgical intervention, avoiding revision surgery and thrombosis concerns seen with permanent implants. Rare earth elements (REEs) have been of particular interest in alloying Mg alloys for nearly a century due to their unique chemical and physical properties but have attracted increasing attention in recent decades. The REEs contribute greatly to the mechanical and biological properties of metal alloys, and so are common in Mg alloys in a wide variety of applications; in particular, they represent the dominant alloying additions in current, clinically applied Mg alloys. Notably, the use of these elements may assist in the development of advanced Mg alloys for use as biodegradable orthopedic implants and cardiovascular stents. To this end, current research progress in this area, highlighting the physiological impact of REEs in Mg alloys, is reviewed. Clinical work and preclinical data of REE-containing Mg alloys are analyzed. The biological roles of REEs in cellular responses in vivo require further research in the development of biofunctional Mg alloy medical devices. STATEMENT OF SIGNIFICANCE: The presented work is a review into the biological impact and current application of rare-earth elements (REEs) in biodegradable Mg-based biomaterials. Despite their efficacy in improving corrosion, mechanical, and manufacturability properties of Mg alloys, the physiological effects of REEs remain poorly understood. Therefore, the present work was undertaken to both provide guidance in the development of new biomedical alloys, and highlight areas of existing concerns and unclear knowledge. Key findings of this review include a summary of current clinical and preclinical work, and the identification of Sc as the most promising REE with regards to physiological impact. Y, Ce, Pr, Gd, Dy, Yb, Sm, and Eu should be considered carefully before their use as alloying elements, with other REEs intermediate or insufficiently studied.
Collapse
Affiliation(s)
- Weijie Weng
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia; Shanghai Power Equipment Research Institute, Shanghai 200240, China
| | - Arne Biesiekierski
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia; ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Matthew Dargusch
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
4
|
Li H, Wang P, Lin G, Huang J. The role of rare earth elements in biodegradable metals: A review. Acta Biomater 2021; 129:33-42. [PMID: 34022465 DOI: 10.1016/j.actbio.2021.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/14/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022]
Abstract
Compared with non-degradable metals, biodegradable metals, as a new generation of medical metallic materials, do not require secondary, which reduces the pain and economic burden of patients. However, currently developed biodegradable metals, including iron-based alloys, magnesium-based alloys, and zinc-based alloys, have deficiencies in their corrosion rates and mechanical properties, which have severely restricted the clinical application of biodegradable metals. So there is an urgent need to improve their mechanical properties, degradation behaviors and biocompatibility. Alloying is an important way to modify biodegradable metal materials. Rare earth elements (REEs) as alloying elements in biodegradable metals have attracted a great deal of attention due to their unique atomic structure and properties. The present review summarizes the effects of rare earth elements on the mechanical properties, degradation behaviors, and biocompatibility of biodegradable metals. Moreover, future research directions of rare earth elements alloying biodegradable metals are also prospected. STATEMENT OF SIGNIFICANCE: As a new generation of biomedical metallic materials, biodegradable metals have become a hot research topic in recent years as they can degrade completely in human body and thus avoid further secondary surgery. However, these biodegradable metal systems have drawbacks in clinical applications. Alloying is an important method to improve the properties of biodegradable metals. Among the various alloying elements, Rare Earth alloying elements are usually considered due to their unique atomic structure and properties. The present review summarizes the recent research progress of Rare Earth alloying elements in biodegradable metals. The effects of the Rare Earth alloying elements on mechanical properties, biodegradation behavior and biocompatibility of biodegradable metals are presented and discussed in detail.
Collapse
|
5
|
Semisch-Dieter OK, Choi AH, Ben-Nissan B, Stewart MP. Modifying an Implant: A Mini-review of Dental Implant Biomaterials. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Dental implants have been used as far back as 2000BC, and since then have developed into highly sophisticated solutions for tooth replacement. It is becoming increasingly important for the materials used in dental implants to exhibit and maintain favorable long-term mechanical, biological
and more recently, aesthetic properties. This review aims to assess the biomaterials used in modern dental implants, introducing their properties, and concentrating on modifications to improve these biomaterials. Focus is drawn to the prominent biomaterials, titanium (Ti) and zirconia due
to their prevalence in implant dentistry. Additionally, novel coatings and materials with potential use as viable improvements or alternatives are reviewed. An effective dental biomaterial should osseointegrate, maintain structural integrity, resist corrosion and infection, and not cause systemic
toxicity or cytotoxicity. Current materials such as bioactive glass offer protection against biofilm formation, and when combined with a titanium‐zirconium (TiZr) alloy, provide a reliable combination of properties to represent a competitive alternative. Further long-term clinical studies
are needed to inform the development of next-generation materials.Significance StatementBiomaterials have become essential for modern implants. A suitable implant biomaterial integrates into the body to perform a key function, whilst minimizing negative immune response. Focusing
on dentistry, the use of dental implants for tooth replacement requires a balance between bodily response, mechanical structure and performance, and aesthetics. This mini-review addresses the use of biomaterials in dental implants with significant comparisons drawn between Ti and zirconia.
Attention is drawn to optimizing surface modification processes and the additional use of coatings. Alternatives and novel developments are addressed, providing potential implications of combining biomaterials to form novel composites that combine and synergize the benefits of each material.
Collapse
Affiliation(s)
- Oliver K. Semisch-Dieter
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Andy H. Choi
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Besim Ben-Nissan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Martin P. Stewart
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
6
|
Biocompatibility and osteogenic activity of guided bone regeneration membrane based on chitosan-coated magnesium alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:226-235. [PMID: 30948056 DOI: 10.1016/j.msec.2019.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 01/28/2023]
Abstract
Ideally, a guided bone regeneration membrane (GBRM) should possess high strength, as for titanium membranes, along with excellent biocompatibility and osteoconductivity, as for natural absorbable collagen membranes. Besides titanium, magnesium (Mg) is another metal widely used in the biomedical field, which also exhibits biodegradability. In this study, a composite chitosan‑magnesium (CS-Mg) membrane was fabricated by dip-coating Mg alloy into chitosan solution. In vitro and in vivo tests were performed to investigate whether this membrane could be used as biodegradable GBRM, and the test results were compared with those obtained for a commercial GBRM (Heal-All). The microstructure was analyzed by scanning electron microscopy-electron dispersive spectroscopy. The degradation behavior was investigated by immersing the membranes into Dulbecco's modified Eagle medium (DMEM). The in vitro biocompatibility was evaluated by cell adhesion, cytotoxicity and alkaline phosphatase (ALP) assays using MG63 cells. The cytotoxicity and ALP assays were performed with diluted extracts of Mg, CS-Mg and Heal-All. The results show that CS-Mg has a suitable degradation rate, as well as similar cell adhesion and cytocompatibility to Heal-All. However, the 10% CS-Mg extracts exhibited higher ALP activity at 3 and 5 days (p < 0.05) compared with the medium control and the Heal-All extracts, but no differences with 10% Mg extracts (p > 0.05). Rabbit calvarial defects were used for testing the osteogenic activity in vivo. Three groups of samples were examined: CS-Mg, Heal-All, and a blank control. Higher amounts of new bone were formed for the CS-Mg and Heal-All groups (p < 0.05) compared with the blank control, whereas no significant differences between the CS-Mg and Heal-All groups were observed (p > 0.1). In conclusion, the CS-Mg membrane shows great potential for application as a biodegradable metallic GBRM with excellent osteogenic activity.
Collapse
|
7
|
Myrissa A, Braeuer S, Martinelli E, Willumeit-Römer R, Goessler W, Weinberg AM. Gadolinium accumulation in organs of Sprague-Dawley® rats after implantation of a biodegradable magnesium-gadolinium alloy. Acta Biomater 2017; 48:521-529. [PMID: 27845277 DOI: 10.1016/j.actbio.2016.11.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/28/2016] [Accepted: 11/10/2016] [Indexed: 12/23/2022]
Abstract
Biodegradable magnesium implants are under investigation because of their promising properties as medical devices. For enhancing the mechanical properties and the degradation resistance, rare earth elements are often used as alloying elements. In this study Mg10Gd pins were implanted into Sprague-Dawley® rats. The pin volume loss and a possible accumulation of magnesium and gadolinium in the rats' organs and blood were investigated in a long-term study over 36weeks. The results showed that Mg10Gd is a fast disintegrating material. Already 12weeks after implantation the alloy is fragmented to smaller particles, which can be found within the intramedullary cavity and the cortical bones. They disturbed the bone remodeling until the end of the study. The results concerning the elements' distribution in the animals' bodies were even more striking, since an accumulation of gadolinium could be observed in the investigated organs over the whole time span. The most affected tissue was the spleen, with up to 3240μgGd/kg wet mass, followed by the lung, liver and kidney (up to 1040, 685 and 207μgGd/kg). In the brain, muscle and heart, the gadolinium concentrations were much smaller (less than 20μg/kg), but an accumulation could still be detected. Interestingly, blood serum samples showed no accumulation of magnesium and gadolinium. This is the first time that an accumulation of gadolinium in animal organs was observed after the application of a gadolinium-containing degradable magnesium implant. These findings demonstrate the importance of future investigations concerning the distribution of the constituents of new biodegradable materials in the body, to ensure the patients' safety. STATEMENT OF SIGNIFICANCE In the last years, biodegradable Mg alloys are under investigation due to their promising properties as orthopaedic devices used for bone fracture stabilization. Gadolinium as Rare Earth Element enhances the mechanical properties of Mg-Gd alloys but its toxicity in humans is still questionable. Up to now, there is no study investigating the elements' metabolism of a REE-containing Magnesium alloy in an animal model. In this study, we examined the gadolinium distribution and accumulation in rat organs during the degradation of Mg10Gd. Our findings showed that Gd is accumulating in the animal organs, especially in spleen, liver and kidney. This study is of crucial benefit regarding a safe application of REE-containing Magnesium alloys in humans.
Collapse
|
8
|
Angrisani N, Reifenrath J, Zimmermann F, Eifler R, Meyer-Lindenberg A, Vano-Herrera K, Vogt C. Biocompatibility and degradation of LAE442-based magnesium alloys after implantation of up to 3.5years in a rabbit model. Acta Biomater 2016; 44:355-65. [PMID: 27497845 DOI: 10.1016/j.actbio.2016.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 11/26/2022]
Abstract
UNLABELLED Magnesium as basic implant material has long been the center of orthopedic research. Latest progress is achieved with a European certification and clinical use of a magnesium based compression screw. However, long term studies with implantation duration that exceed one year considerably do not exist. The present examinations analyzed the degradation progress from nine months to 3.5year after implantation of cylindrical pins into the medullary cavity of New Zealand White rabbits. Evaluation included clinical assessment, in vivo μ-computed tomography, analysis of the implants by three-point-bending and examination of the adjacent tissue by means of histology and of inner organs by mass- and optical emission spectrometry using inductively coupled plasma. Clinical acceptance was without objections in all animals. Immoderate reaction of the surrounding bone could be found in neither of the applied techniques. While in vivo μ-computed tomography showed a very slow degradation rate up to 72weeks, three-point-bending revealed a percentage loss of F(max) of 41.1% for implants after 9months implantation and 88.47% for the implant after 3.5years implantation. Although the total amounts of RE detected in the inner organs were very low, the organs of rabbits with LAE442 cylinders showed 10-20-fold increased concentrations of the alloying elements lanthanum, cerium, neodymium and praseodymium compared to animals without any implanted material. STATEMENT OF SIGNIFICANCE This is the first animal study investigating the degradation process of a magnesium alloy in vivo for up to 3.5years. Currently available data from different other in vivo studies cover only implantation durations up to one year. Therefore, the analysis of these long-time effects in the present study is highly significant and of great interest. Comprehensive outcome achieved by different techniques was assessed. The degradation process was slow and homogenous. Maximum applied force (F(max)) reduced by 41.1% for implants after 9months and by 88.47% for the implant after 3.5years implantation. Total amounts of RE detected in the inner organs were very low; the organs of rabbits with LAE442 cylinders showed 10-20-fold increased concentrations.
Collapse
|
9
|
Yang G, Ma W, Zhang B, Xie Q. The labeling of stem cells by superparamagnetic iron oxide nanoparticles modified with PEG/PVP or PEG/PEI. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:384-90. [DOI: 10.1016/j.msec.2016.01.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 02/03/2023]
|
10
|
Li B, Zhang K, Yang W, Yin X, Liu Y. Enhanced corrosion resistance of HA/CaTiO3/TiO2/PLA coated AZ31 alloy. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.07.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Grillo CA, Alvarez F, Fernández Lorenzo de Mele MA. Degradation of bioabsorbable Mg-based alloys: Assessment of the effects of insoluble corrosion products and joint effects of alloying components on mammalian cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:372-80. [DOI: 10.1016/j.msec.2015.08.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/16/2015] [Accepted: 08/22/2015] [Indexed: 02/06/2023]
|
12
|
Cytotoxicity of corrosion products of degradable Fe-based stents: relevance of pH and insoluble products. Colloids Surf B Biointerfaces 2015; 128:480-488. [PMID: 25797480 DOI: 10.1016/j.colsurfb.2015.02.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/18/2015] [Accepted: 02/25/2015] [Indexed: 11/23/2022]
Abstract
Fe-based biodegradable metallic materials (Fe-BMMs) have been proposed for cardiovascular applications and are expected to disappear via corrosion after an appropriate period. However, in vivo studies showed that Fe ions release leads to accumulation of orange and brownish insoluble products at the biomaterial/cell interface. As an additional consequence, sharp changes in pH may affect the biocompatibility of these materials. In the present work, the experimental protocols were designed with the aim of evaluating the relative importance that these factors have on biocompatibility evaluation of BMMs. Mitochondrial activity (MTT assay) and thiobarbituric acid reactive substances (TBARS) assay on mammalian cells, exposed to 1-5 mM of added Fe3+ salt, were assessed and compared with results linked exclusively to pH effects. Soluble Fe concentration in culture medium and intracellular Fe content were also determined. The results showed that: (i) mitochondrial activity was affected by pH changes over the entire range of concentrations of added Fe3+ assayed, (ii) at the highest added Fe3+ concentrations (≥3 mM), precipitation was detected and the cells were able to incorporate the precipitate, that seems to be linked to cell damage, (iii) the extent of precipitation depends on the Fe/protein concentration ratio; and (iv) lipid peroxidation products were detected over the entire range of concentrations of added Fe3+. Hence, a new approach opens in the biocompatibility evaluation of Fe-based BMMs, since the cytotoxicity would not be solely a function of released (and soluble) ions but of the insoluble degradation product amount and the pH falling at the biomaterial/cell interface. The concentration of Fe-containing products at the interface depends on diffusional conditions in a very complex way that should be carefully analyzed in the future.
Collapse
|