Ailincai D, Porzio W, Marin L. Hydrogels Based on Imino-Chitosan Amphiphiles as a Matrix for Drug Delivery Systems.
Polymers (Basel) 2020;
12:E2687. [PMID:
33202586 PMCID:
PMC7696980 DOI:
10.3390/polym12112687]
[Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
This paper reports new formulations based on chitosan, citral, and diclofenac sodium salt (DCF). The central idea was to encapsulate an anionic drug into a polycationic hydrogel matrix in order to increase the intermolecular forces between them and thus to ensure slower drug release, while citral was used as a penetration enhancer to assure efficient delivery of the drug. Hydrogels without drug were also synthesized and used as a reference. The structure, morphology, and supramolecular architecture of the drug delivery systems were evaluated by FTIR spectroscopy, scanning electron microscopy, polarized optical microscopy, and wide-angle X-ray diffraction. The drug release kinetics was monitored in vitro by UV-VIS spectroscopy, in physiological conditions, while the enzymatic and hydrolytic degradability of the hydrogels were evaluated in the presence of lysozyme and phosphate buffer saline (PBS), at 37 °C. All of the data revealed that the anionic DCF was strongly anchored into the polycationic matrix and the drug was slowly released over 7 days. Moreover, the release rate can be controlled by simple variation of the molar ratio between the polycationic chitosan and lipophilic citral.
Collapse