1
|
Goto M, Yoshida S, Habara S, Wilk-Kohlbrecher A, Kohlbrecher J, Tamai N, Matsuki H. A molecular mechanism for how pressure induces interdigitation of phospholipid bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184385. [PMID: 39349289 DOI: 10.1016/j.bbamem.2024.184385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/17/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
The phase transition from the ripple gel phase to the interdigitated gel phase of bilayers of phosphatidylcholines (PCs) with two saturated long-chain fatty acids under high pressure was investigated by pressure-scanning microscopy, fluorometry, and dynamic light scattering (DLS) measurements. Microscopic observation for giant vesicles (GVs) of distearoyl-PC (DSPC) under high pressure showed that spherical GVs transforms significantly into warped and distorted spherical ones instantaneously at the pressure-induced interdigitation. The fluorescence intensities of amphiphilic probe Prodan and hydrophobic probe Laurdan in the dipalmitoyl-PC (DPPC) bilayer steeply decreased and increased, respectively, at the interdigitation, suggesting that the conformational change of the polar head group of DPPC molecule in the bilayer transiently occurred at the interdigitation. Further, it was found from the high-pressure DLS measurements that the size of the vesicle particles of the DPPC and DSPC transiently increases near the interdigitation pressure, whereas the chemically induced interdigitation by adding ethanol to the DSPC bilayer membrane under atmospheric pressure produce no such change in the particle size. Taking account of the critical packing parameter of the PC molecule, the above experimental results would lead us to the conclusion that the pressure-induced interdigitation is attributable to the increase in repulsive interaction between the polar head groups of the PC molecules resulting from the orientational change of the head group from a parallel alignment to a perpendicular one with respect to the bilayer surface by applying pressure, namely the transient state: it occurs when the repulsive interaction exceeds a threshold value for the balance between the repulsive interaction and the attractive interaction among the hydrophobic acyl chains.
Collapse
Affiliation(s)
- Masaki Goto
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Shuntaro Yoshida
- Department of Biological Science and Technology, Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Shigeyuki Habara
- Department of Biological Science and Technology, Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Agnieszka Wilk-Kohlbrecher
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| | - Nobutake Tamai
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan.
| | - Hitoshi Matsuki
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| |
Collapse
|
2
|
Tamai N, Matsuki H, Goto M. Phase Imaging of Phosphatidylcholine Bilayer Membranes by Prodan Fluorescence. MEMBRANES 2022; 12:1219. [PMID: 36557126 PMCID: PMC9784652 DOI: 10.3390/membranes12121219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Prodan (6-propiponyl-2-(N,N-dimethylamino)naphthalene) is well known as a polarity-sensitive fluorescent probe and has a high capability of detecting structural changes occurring within phospholipid bilayer membranes. In this study, we carried out the fluorescence spectroscopic observation of bilayer phase behavior for a series of symmetric saturated diacylphosphatidylcholines (CnPCs) with different acyl-chain length n (n = 12-15 and 19-22) using Prodan as a membrane probe to confirm the availability of Prodan along with the previous results for the CnPC bilayer membranes (n = 16-18). The results were discussed by constructing spectral three-dimensional (3D) imaging plots for visualizing the change in bilayer phase states with temperature or pressure to verify the functionality of this 3D imaging plot. It was found that the Prodan fluorescence technique is applicable to the detection of the changes in the bilayer phase states of all CnPCs with a few exceptions. One of the most crucial exceptions was that Prodan cannot be used for the detection of the bilayer-gel state of the C21PC bilayer membrane. It was also found that it is only to the CnPC bilayer membranes with n = 15-18 that the 3D imaging plot is adequately and accurately applicable as a useful graphical tool for visually detecting the bilayer phase states. This is a disadvantageous feature of this technique brought about by the high sensitivity of Prodan as a membrane probe. Further detailed studies on the molecular behavior of Prodan will enable us to find a more useful way of utilizing this membrane probe.
Collapse
Affiliation(s)
| | | | - Masaki Goto
- Correspondence: ; Tel.: +81-88-656-7520; Fax: +81-88-655-3162
| |
Collapse
|
3
|
Nakao T, Goto M, Kurashina M, Tamai N, Yasuzawa M, Matsuki H. Temperature- and Pressure-Induced Bilayer Phase Transitions of an Amide-Linked Phosphatidylcholine: A Contrasting Effect of Chain-Linkage Type. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshiki Nakao
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Masaki Goto
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Masashi Kurashina
- Department of Applied Chemistry, Division of Science and Technology, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Nobutake Tamai
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Mikito Yasuzawa
- Department of Applied Chemistry, Division of Science and Technology, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Hitoshi Matsuki
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| |
Collapse
|
4
|
Nele V, Holme MN, Rashid MH, Barriga HMG, Le TC, Thomas MR, Doutch JJ, Yarovsky I, Stevens MM. Design of Lipid-Based Nanocarriers via Cation Modulation of Ethanol-Interdigitated Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11909-11921. [PMID: 34581180 DOI: 10.1021/acs.langmuir.1c02076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Short-chain alcohols (i.e., ethanol) can induce membrane interdigitation in saturated-chain phosphatidylcholines (PCs). In this process, alcohol molecules intercalate between phosphate heads, increasing lateral separation and favoring hydrophobic interactions between opposing acyl chains, which interpenetrate forming an interdigitated phase. Unraveling mechanisms underlying the interactions between ethanol and model lipid membranes has implications for cell biology, biochemistry, and for the formulation of lipid-based nanocarriers. However, investigations of ethanol-lipid membrane systems have been carried out in deionized water, which limits their applicability. Here, using a combination of small- and wide-angle X-ray scattering, small-angle neutron scattering, and all-atom molecular dynamics simulations, we analyzed the effect of varying CaCl2 and NaCl concentrations on ethanol-induced interdigitation. We observed that while ethanol addition leads to the interdigitation of bulk phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers in the presence of CaCl2 and NaCl regardless of the salt concentration, the ethanol-induced interdigitation of vesicular DPPC depends on the choice of cation and its concentration. These findings unravel a key role for cations in the ethanol-induced interdigitation of lipid membranes in either bulk phase or vesicular form.
Collapse
Affiliation(s)
- Valeria Nele
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Margaret N Holme
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - M Harunur Rashid
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Mathematics and Physics, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Hanna M G Barriga
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Tu C Le
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Michael R Thomas
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
- London Centre for Nanotechnology and Department of Biochemical Engineering, University College London, 17-19 Gordon Street, London WC1H 0AH, U.K
| | - James J Doutch
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory, Didcot OX11 ODE, U.K
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
5
|
Goto M, Kazama A, Fukuhara K, Sato H, Tamai N, Ito HO, Matsuki H. Membrane fusion of phospholipid bilayers under high pressure: Spherical and irreversible growth of giant vesicles. Biophys Chem 2021; 277:106639. [PMID: 34171580 DOI: 10.1016/j.bpc.2021.106639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Membrane fusion of giant vesicles (GVs) for binary bilayers of unsaturated phospholipids, dioleoylphosphatidyl-ethanolamine (DOPE) having an ability to promote membrane fusion, and its homolog dioleoylphosphatidylcholine (DOPC) having an ability to form GV, was investigated under atmospheric and high pressure. While DOPC formed GVs in the presence of inorganic salts with a multivalent metal ion under atmospheric pressure, an equimolar mixture of DOPE and DOPC formed GVs both in the absence and the presence of LaCl3. We examined the change in size and shape of the GVs of this binary mixture in the absence and presence of LaCl3 as a function of time under atmospheric and high pressure. The size and shape of the GVs in the absence of LaCl3 under atmospheric and high pressure and those in the presence of LaCl3 under atmospheric pressure hardly changed with time. By contrast, the GV in the presence of LaCl3 under high pressure gradually changed in the size and shape with time on a time scale of several hours. Namely, the GV became larger than the original GV due to accelerated membrane fusion and its shape became more spherical. This pressure-induced membrane fusion was completely irreversible, and the growth rate was correlated with the applied pressure. The reason for the GV growth by applying pressure was considered on the basis of thermodynamic phase diagrams. We concluded that the growth is attributable to a closer packing of lipid molecules in the bilayer resulting from their preference of smaller volumes under high pressure. Furthermore, the molecular mechanism of the pressure-induced membrane fusion was explored by observing the fusion of two GVs with almost the same size. From their morphological changes, we revealed that the fusion is caused by the actions of Laplace and osmotic pressure.
Collapse
Affiliation(s)
- Masaki Goto
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Akira Kazama
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Kensuke Fukuhara
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Honami Sato
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Nobutake Tamai
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Hiro-O Ito
- Department of Preventive Dentistry, Division of Oral Science, Graduate School of Biomedical Sciences, Tokushima University, 3-8-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Hitoshi Matsuki
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan.
| |
Collapse
|
6
|
Goto M, Sawaguchi H, Tamai N, Matsuki H. Subgel-phase formation of membranes of ether-linked phosphatidylcholines. Chem Phys Lipids 2021; 239:105119. [PMID: 34297996 DOI: 10.1016/j.chemphyslip.2021.105119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/01/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
The formation of subgel (so-called hydrated crystal) phase of membranes of ether-linked phospholipids, dialkylphosphatidylcholines containing linear saturated alkyl chain (Cn = 14, 16 and 18), was examined under atmospheric and high pressure. The results of differential scanning calorimetry in 50 wt% aqueous ethylene glycol solution and water showed that these PC membranes undergo the subtransition from the subgel phase to the gel phase at a low temperature with or without the thermal pretreatment of lipid samples called annealing. The subtransition in water was clearly observed by light-transmittance measurements under high pressure and the transition temperature increased by applying pressure. The temperature-pressure phase diagrams and the thermodynamic quantities of the subtransition were obtained from the phase-transition data and compared with those of membranes of ester-linked phospholipids, diacylphosphatidylcholines. The phase diagrams indicated that all gel phases of the ether-linked PC membranes exist as stable phases while parts of the gel phases of the ester-linked PC membranes are metastable. The subtransition temperatures of the ether-linked PC membranes were lower than those of the ester-linked PC membranes by more than 10 °C and the corresponding thermodynamic quantities were extremely small. Further, it was revealed by high-pressure fluorometry that the difference in subgel phase between ether- and ester-linked PC membranes results from their phase structures: the nonbilayer interdigitated structure is maintained after the conversion from the gel phase to the subgel phase in the ether-linked PC membranes whereas the ester-linked PC membranes form the bilayer subgel phase with staggered structure.
Collapse
Affiliation(s)
- Masaki Goto
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8513, Japan
| | - Hiroshi Sawaguchi
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8506, Japan
| | - Nobutake Tamai
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8513, Japan
| | - Hitoshi Matsuki
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8513, Japan.
| |
Collapse
|
7
|
Matsuki H, Goto M, Motohashi M, Kiguchi A, Nakao T, Tamai N. Formation of intermediate gel-liquid crystalline phase on medium-chain phosphatidylcholine bilayers: Phase transitions depending on the bilayer packing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183197. [PMID: 31958435 DOI: 10.1016/j.bbamem.2020.183197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/27/2019] [Accepted: 01/15/2020] [Indexed: 11/28/2022]
Abstract
The bilayer phase transitions of medium-chain phosphatidylcholines with linear saturated acyl chains (Cn = 12, 13 and 14) were measured by high-pressure light-transmittance measurements and differential scanning calorimetry to investigate the formation of intermediate gel-liquid crystalline phase called Lx phase. The constructed phase diagrams showed that there existed a distinct region of the Lx phase between ripple gel (Pβ') and liquid crystalline (Lα) phase for multilamellar vesicle bilayers of C12PC and C13PC. The Lx phase of the C12PC bilayer was metastable at all pressures and disappeared at a higher pressure. In the C13PC bilayer, the Lx phase was stable and also disappeared at a higher pressure but its region markedly shrunk. By contrast, the Lx phase was not detected for the C14PC bilayer. Effects of other factors such as vesicle size and solvent substitution on the Lx phase of the C13PC bilayer were also examined. A decrease in vesicle size and solvent substitution from water to 50 wt% ethylene glycol solution promoted the Lx-phase formation as opposed to the effects of acyl-chain elongation and pressurization. The fluorescence data of the C13PC bilayer with different vesicle sizes showed that the Lx phase is caused by the difference of local packing in the bilayer. Considering these facts, we concluded that the Lx phase is an intermediate gel-Lα phase that has gel-phase monolayers with negative curvature and Lα-phase monolayers with positive curvature. The formation mechanism of the Lx-phase in stacked bilayers and dispersed vesicles is also explainable by this difference in packing state.
Collapse
Affiliation(s)
- Hitoshi Matsuki
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan.
| | - Masaki Goto
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Makiko Motohashi
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Aoi Kiguchi
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Toshiki Nakao
- Department of Biological Science and Technology, Faculty of Engineering, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Nobutake Tamai
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| |
Collapse
|
8
|
Matsuki H, Goto M, Tamai N. Membrane States of Saturated Glycerophospholipids: A Thermodynamic Study of Bilayer Phase Transitions. Chem Pharm Bull (Tokyo) 2019; 67:300-307. [PMID: 30930432 DOI: 10.1248/cpb.c18-00954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bilayer membranes formed by phospholipids vary in their membrane states by undergoing phase transitions in response to various external environmental factors. Pressure is one of these important environmental factors, but there are very few studies on the effects of pressure on phospholipid bilayer membranes. It is possible to deepen our understanding of the membrane states of phospholipid bilayer membranes by combining information regarding temperature- and/or ligand-responsivity with that regarding pressure-responsivity. In this review, we thermodynamically characterize the bilayer phase transitions of three kinds of saturated glycerophospholipids, each with a different polar head group (phosphatidyl-ethanolamine (PE), -choline (PC) or -glycerol (PG)), and explain their various membrane states depending on temperature and pressure. Both temperature- and pressure-responsivity reveal inherent features of these bilayer membranes: the metastability of the gel phase for PE bilayer membranes, the polymorphism of the gel phases for PC bilayer membranes and morphological changes in bilayer aggregates for PG bilayer membranes.
Collapse
Affiliation(s)
- Hitoshi Matsuki
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| | - Masaki Goto
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| | - Nobutake Tamai
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University
| |
Collapse
|
9
|
Trzaskowska PA, Poniatowska A, Trzaskowski M, Latocha J, Ozga P, Major R, Ciach T. Lecithin suspensions for electrophoretic deposition on stainless steel coatings. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:134-144. [DOI: 10.1016/j.msec.2018.07.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 07/06/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
|
10
|
Matsuki H, Endo S, Sueyoshi R, Goto M, Tamai N, Kaneshina S. Thermotropic and barotropic phase transitions on diacylphosphatidylethanolamine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1222-1232. [DOI: 10.1016/j.bbamem.2017.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/03/2017] [Accepted: 03/29/2017] [Indexed: 11/30/2022]
|
11
|
Effect of pressure on bilayer phase behavior of N-methylated di-O-hexadecylphosphatidylethanolamines: relevance of head-group modification on the bilayer interdigitation. Biophys Chem 2017; 231:64-70. [PMID: 28410942 DOI: 10.1016/j.bpc.2017.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 11/22/2022]
Abstract
The phase transitions of N-methylated di-O-hexadecylphosphatidylethanolamines (DHPE, DH-N-methyl-PE (DHMePE) and DH-N,N-dimethyl-PE (DHMe2PE)) were observed by differential scanning calorimetry (DSC) and fluorometry under atmospheric pressure and by light-transmittance measurements under high pressure. The DSC thermograms showed that the N-methylated DHPE bilayers underwent the phase transition from the gel phase to the liquid crystalline (Lα) phase under atmospheric pressure. The gel phase was identified by fluorometry as the lamellar gel (Lβ) phase, and not interdigitated gel (LβI) phase. The gel/Lα transition temperature increased with pressure while decreased stepwise with increasing polar head-group size. This stepwise depression of the transition temperature may be caused by the inverse-proportional hydrogen-bonding capabilities of the head-group to the head-group size. The thermodynamic quantities of the gel/Lα transition were comparable for the N-methylated DHPE bilayers. The pressure-induced LβI phase was not found in these bilayers although the bilayer of di-O-hexadecylphosphatidylcholine (DHPC), which is a kind of N-methylated DHPEs, forms the LβI phase only by hydration under atmospheric pressure. Taking into account that the bilayers of diacyl-homologs of N-methylated DHPEs, N-methylated dipalmitoyl-PEs except for dipalmitoylphosphatidylcholine (DPPC), do not form the LβI phase in the whole pressure range investigated but the DPPC bilayer forms the LβI phase under high pressure, we can say that the interdigitation requires weaker interaction between large-sized head groups like the bulky choline group.
Collapse
|
12
|
Abstract
Abstract
High hydrostatic pressure (HHP) process, as a nonthermal process, can be used to inactivate microbes while minimizing chemical reactions in food. In this regard, a HHP level of 100 MPa (986.9 atm/1019.7 kgf/cm2) and more is applied to food. Conventional thermal process damages food components relating color, flavor, and nutrition via enhanced chemical reactions. However, HHP process minimizes the damages and inactivates microbes toward processing high quality safe foods. The first commercial HHP-processed foods were launched in 1990 as fruit products such as jams, and then some other products have been commercialized: retort rice products (enhanced water impregnation), cooked hams and sausages (shelf life extension), soy sauce with minimized salt (short-time fermentation owing to enhanced enzymatic reactions), and beverages (shelf life extension). The characteristics of HHP food processing are reviewed from viewpoints of nonthermal process, history, research and development, physical and biochemical changes, and processing equipment.
Collapse
Affiliation(s)
- Kazutaka Yamamoto
- Food Research Institute, National Agriculture and Food Research Organization, Ibaraki, Japan
| |
Collapse
|
13
|
Knight C, Rahmani A, Morrow MR. Effect of an Anionic Lipid on the Barotropic Behavior of a Ternary Bicellar Mixture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10259-10267. [PMID: 27648612 DOI: 10.1021/acs.langmuir.6b02514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dispersions of lipid mixtures comprising long- and short-chain phospholipids (bicellar mixtures) can form small isotropically reorienting particles (bilayered micelles), magnetically orientable stuctures, or unorientable lamellar structures. Application of hydrostatic pressure can also induce interdigitation of the long-chain lipid components. In this work, variable-pressure 2H NMR was used to study the effect of head group charge on the barotropic behavior of bicellar mixtures. Observations at pressures up to 152 MPa and temperatures up to 64 °C were combined with earlier observations at lower pressure and lower temperature to obtain a pressure-temperature phase diagram for DMPC-d54/DMPG/DHPC (3:1:1). In this phase diagram, a region corresponding to small, isotropically reorienting particles at lower temperature and higher pressure is separated from a region corresponding to unorientable lamellar organization, at higher temperature and lower pressure, by a band in which the magnetically orientable phase is stable below ∼100 MPa and in which an interdigitated gel phase is stable above ∼120 MPa. From ∼46 to ∼52 °C, the dispersion transforms directly from the unorientable lamellar to isotropically reorienting particle phases upon isothermal pressurization. The extent to which this behavior reflects the presence of anionic lipid in the long-chain fraction of this mixture is illustrated by comparison with spectral series obtained during isothermal pressurization of DMPC-d54/DHPC (4:1) and DMPC-d54/DMPG/DHPC (2.7:1.3:1) at selected temperatures. These observations show how electrostatic interactions at a bilayer surface can affect the balance between hydrophobic and hydrophilic interactions that is reflected by a dispersion's barotropic phase behavior.
Collapse
Affiliation(s)
- Collin Knight
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland , St. John's, Newfoundland and Labrador, Canada A1B 3X7
| | - Ashkan Rahmani
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland , St. John's, Newfoundland and Labrador, Canada A1B 3X7
| | - Michael R Morrow
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland , St. John's, Newfoundland and Labrador, Canada A1B 3X7
| |
Collapse
|
14
|
Abstract
Bilayers formed by phospholipids are fundamental structures of biological membranes. The mechanical perturbation brought about by pressure significantly affects the membrane states of phospholipid bilayers. In this chapter, we focus our attention on the pressure responsivity for bilayers of some major phospholipids contained in biological membranes. At first, the membrane states and phase transitions of phospholipid bilayers depending on water content, temperature and pressure are explained by using the bilayer phase diagrams of dipalmitoylphosphatidylcholine (DPPC), which is the most familiar phospholipid in model membrane studies. Subsequently, the thermotropic and barotropic bilayer phase behavior of various kinds of phospholipids with different molecular structures is discussed from the comparison of their temperature--pressure phase diagrams to that of the DPPC bilayer. It turns out that a slight change in the molecular structure of the phospholipids produces a significant difference in the bilayer phase behavior. The systematic pressure studies on the phase behavior of the phospholipid bilayers reveal not only the pressure responsivity for the bilayers but also the role and meaning of several important phospholipids existing in real biological membranes.
Collapse
|