1
|
Nooreen Z, Rai AK, Summayya F, Tandon S. An Insight of Naturally Occurring Phytoconstituents and Novel Approaches Towards the Treatment of Diabetes. Curr Diabetes Rev 2024; 20:e290823220456. [PMID: 37644751 DOI: 10.2174/1573399820666230829094724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The rising in diabetes incidents has clearly become one main worldwide health problem. Individuals suffering from diabetes are still more susceptible to many long-term and short-term side effects, which most often cause fatalities. Even though chemically synthesized anti-diabetic entities are capable of helping manage and treat, there has been significant risks related with their prolong and repetitive use. Hence, there is a requirement for safer and novel approaches that might be formed and utilized. OBJECTIVE Aim of the present review is to explain the naturally occurring phytochemicals and novel approach as anti-diabetic agents in the treatment of diabetes and its related issues. METHOD A survey of Google scholar, Research Gate, Pubmed, Science Direct, NCBI database was carried out conducted to determine a most hopeful phytochemicals and novel drug delivery systems in the management of diabetes. RESULT The study stressed the significance of phytomolecules and some novel approaches researched or reported in the literature for the management and cure of diabetes. It is suggested that changes in lifestyle can help patients and like nutritional support, assessment and lifestyle guidance must be individualized based on physical and functional capacity. Further evaluations and improved preventative medicine were the result of improving patient outcomes. CONCLUSION Conventional or synthetic drugs provide relief for short time but nanoformulations of phytomolecules offer an improved therapeutic with fewer negative side effects. Herbal medicines are rich in phytoconstituents and possess variety of health benefits. This review is compilation of phytoconstituents and novel drug delivery system of phytomolecules i.e. nanoparticles, niosomes, microsphere, microparticle and others.
Collapse
Affiliation(s)
- Zulfa Nooreen
- PSIT - Pranveer Singh Institute of Technology (Pharmacy) Bhauti, Kanpur Uttar Pradesh 209305, India
| | - Awani Kumar Rai
- PSIT - Pranveer Singh Institute of Technology (Pharmacy) Bhauti, Kanpur Uttar Pradesh 209305, India
| | - Fariha Summayya
- Integral Informatic and Research Center-1 (IIRC-1) Intergral University Lucknow Uttar Pradesh 226026, India
| | - Sudeep Tandon
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow Uttar Pradesh 223021, India
| |
Collapse
|
2
|
Sharma S, Dang S. Nanocarrier-Based Drug Delivery to Brain: Interventions of Surface Modification. Curr Neuropharmacol 2023; 21:517-535. [PMID: 35794771 PMCID: PMC10207924 DOI: 10.2174/1570159x20666220706121412] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 11/22/2022] Open
Abstract
Brain disorders are a prevalent and rapidly growing problem in the medical field as they adversely affect the quality of life of a human. With an increase in life expectancy, it has been reported that diseases like Alzheimer's, Parkinson's, stroke and brain tumors, along with neuropsychological disorders, are also being reported at an alarmingly high rate. Despite various therapeutic methods for treating brain disorders, drug delivery to the brain has been challenging because of a very complex Blood Brain Barrier, which precludes most drugs from entering the brain in effective concentrations. Nano-carrier-based drug delivery systems have been reported widely by researchers to overcome this barrier layer. These systems due to their small size, offer numerous advantages; however, their short residence time in the body owing to opsonization hinders their success in vivo. This review article focuses on the various aspects of modifying the surfaces of these nano-carriers with polymers, surfactants, protein, antibodies, cell-penetrating peptides, integrin binding peptides and glycoproteins such as transferrin & lactoferrin leading to enhanced residence time, desirable characteristics such as the ability to cross the blood-brain barrier (BBB), increased bioavailability in regions of the brain and targeted drug delivery.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| |
Collapse
|
3
|
Bandaru R, Rout SR, Kamble OS, Samal SK, Gorain B, Sahebkar A, Ahmed FJ, Kesharwani P, Dandela R. Clinical progress of therapeutics and vaccines: Rising hope against COVID-19 treatment. Process Biochem 2022; 118:154-170. [PMID: 35437418 PMCID: PMC9008982 DOI: 10.1016/j.procbio.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/11/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023]
Abstract
Cases of deaths due to COVID-19 (COrona VIrus Disease-19) infection are increasing gradually worldwide. Immense research is ongoing to control this pandemic condition. Continual research outcomes are indicating that therapeutic and prophylactic agents are the possible hope to prevent the pandemic from spreading and to combat this increasing death count. Experience gained from previous coronavirus infections (eg., SARS (Severe Acute Respiratory Syndrome), MERS (Middle Ease Respiratory Syndrome), accumulated clinical knowledge during this pandemic, and research helped to identify a few therapeutic agents for emergency treatment of COVID-19. Thereby, monoclonal antibodies, antivirals, broad-spectrum antimicrobials, immunomodulators, and supplements are being suggested for treatment depending on the stage of the disease. These recommended treatments are authorized under medical supervision in emergency conditions only. Urgent need to control the pandemic condition had resulted in various approaches of repurposing the existing drugs, However, poorly designed clinical trials and associated outcomes do not provide enough evidence to fully approve treatments against COVID-19. So far, World Health Organization (WHO) authorized three vaccines as prophylactic against SARS-CoV-2. Here, we discussed about various therapeutic agents, their clinical trials, and limitations of trials for the management of COVID-19. Further, we have also spotlighted different vaccines in research in combating COVID-19.
Collapse
Affiliation(s)
- Ravi Bandaru
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Smruti Rekha Rout
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Omkar S Kamble
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Sangram K Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, Indian Council of Medical Research-Regional Medical Research Center, Bhubaneswar 751023, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhan J Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard 110062, New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard 110062, New Delhi, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| |
Collapse
|
4
|
Fernandes G, Pandey A, Kulkarni S, Mutalik SP, Nikam AN, Seetharam RN, Kulkarni SS, Mutalik S. Supramolecular dendrimers based novel platforms for effective oral delivery of therapeutic moieties. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Nallamolu S, Jayanti VR, Chitneni M, Khoon LY, Sood S, Riadi Y, Kesharwani P. Fabrication of thermodynamically stable self-microemulsifying drug delivery system of resveratrol with enhanced solubility and chemical stability. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1880432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Sivaram Nallamolu
- School of Pharmacy, Department of Pharmaceutical Technology, International Medical University, Kuala Lumpur, Malaysia
| | - Vijaya Ratna Jayanti
- Andhra University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, AP, India
| | | | - Liew Yun Khoon
- School of Pharmacy, Department of Pharmaceutical Technology, International Medical University, Kuala Lumpur, Malaysia
| | - Shikha Sood
- Akal College of Pharmacy and Technical Education, Sangrur, Punjab, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| |
Collapse
|
6
|
Najafi F, Salami-Kalajahi M, Roghani-Mamaqani H. Synthesis of amphiphilic Janus dendrimer and its application in improvement of hydrophobic drugs solubility in aqueous media. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109804] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Devi L, Gupta R, Jain SK, Singh S, Kesharwani P. Synthesis, characterization and in vitro assessment of colloidal gold nanoparticles of Gemcitabine with natural polysaccharides for treatment of breast cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Nallamolu S, Jayanti VR, Chitneni M, Khoon LY, Kesharwani P. Self-micro Emulsifying Drug Delivery System “SMEDDS” for Efficient Oral Delivery of Andrographolide. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2210303109666190723145209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective:
Andrographolide has potent anticancer and antimicrobial activity; however, its
clinical application has been limited due to its poor water solubility as well as lack of appropriate formulation.
The objective of this investigation was to formulate Self–Micro Emulsifying Drug Delivery
System (SMEDDS) of andrographolide and explore its oral drug delivery aptitudes.
Methods:
Andrographolide SMEDDS was optimized by ternary phase approach and studied for various
in vitro characteristics: Particle size, electron microscopy, polydispersity index, surface charge, dilution
effect, pH stability, freeze-thaw effect, dissolution profile and stability studies. Further, antimicrobial
and cytotoxic performance of andrographolide SMEDDS were evaluated in MCF–7 breast cancer cell
lines and methicillin-resistant microorganisms, respectively.
Results:
An optimized SMEDDS formulation of andrographolide was successfully prepared and evaluated
for its drug delivery potential. The solubility of andrographolide in the developed SMEDDS formulation
was increased significantly, and the drug loading was enough for making this drug clinically
applicable. The andrographolide SMEDDS formulation competitively inhibited the growth of microorganisms
and showed enhanced anti–microbial activity against MRSA microorganisms.
Conclusion:
The SMEDDS strategy represents one of the best approaches to deliver andrographolide
via oral route, while resolving its solubility limitations.
Collapse
Affiliation(s)
- Sivaram Nallamolu
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, 57000 Kuala Lumpur, Malaysia
| | - Vijaya R. Jayanti
- Andhra University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam-530003, AP, India
| | - Mallikarjun Chitneni
- Jurox Private Limited. 85 Gardiner St, Rutherford New South Wales 2320, Australia
| | - Liew Y. Khoon
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, 57000 Kuala Lumpur, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| |
Collapse
|
9
|
Gajbhiye KR, Pawar A, Mahadik KR, Gajbhiye V. PEGylated nanocarriers: A promising tool for targeted delivery to the brain. Colloids Surf B Biointerfaces 2020; 187:110770. [PMID: 31926790 DOI: 10.1016/j.colsurfb.2019.110770] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 12/26/2022]
Abstract
Targeted drug delivery across the blood-brain barrier is an extremely challenging quest in the fight with fatal brain ailments, with the major hurdles being short circulation time, reticuloendothelial system (RES) uptake, and excretion of nanocarriers. PEGylation has emerged as a boon for targeted drug delivery to the brain. It is well established that PEGylation can increase the circulation time of nanocarriers by avoiding RES uptake, which is indispensable for increasing the brain's uptake of nanocarriers. PEGylation also acts as a linker for ligand molecules to achieve active targeting to the brain. Using PEGylation, novel approaches are being investigated to facilitate ligand-receptor interactions at the brain endothelium to ease the entry of therapeutic drugs into the brain. In addition, PEGylation made it simpler to assess the brain tissue for delivering diagnostic molecules and theranostic nanocarriers. The potential of PEGylated nanocarriers is being investigated vastly to boost the therapeutic effect several fold in the treatment of brain diseases. This review sheds light on the contribution of PEGylated nanocarriers, especially liposomes, polymeric nanoparticles, and dendrimers for brain-specific delivery of bioactives.
Collapse
Affiliation(s)
- K R Gajbhiye
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune, 411038, India.
| | - A Pawar
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune, 411038, India
| | - K R Mahadik
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune, 411038, India
| | - V Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India.
| |
Collapse
|
10
|
He S, Fu W, Zou M, Xing W, Liu Z, Xu D. Construction and evaluation of SAK-HV protein oral dosage form based on chitosan quaternary ammonium salt-PLGA microsphere. J Drug Target 2019; 27:1108-1117. [DOI: 10.1080/1061186x.2019.1605520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Shiming He
- Institute of Military Cognition and Brain Sciences, Beijing, China
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Wenliang Fu
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Minji Zou
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Weiwei Xing
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Donggang Xu
- Institute of Military Cognition and Brain Sciences, Beijing, China
| |
Collapse
|
11
|
Tambe P, Kumar P, Paknikar KM, Gajbhiye V. Smart triblock dendritic unimolecular micelles as pioneering nanomaterials: Advancement pertaining to architecture and biomedical applications. J Control Release 2019; 299:64-89. [DOI: 10.1016/j.jconrel.2019.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 11/08/2022]
|
12
|
In Vitro and In Vivo Skin Distribution of 5α-Reductase Inhibitors Loaded Into Liquid Crystalline Nanoparticles. J Pharm Sci 2017; 106:3385-3394. [DOI: 10.1016/j.xphs.2017.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 01/19/2023]
|
13
|
Folate/N-acetyl glucosamine conjugated mesoporous silica nanoparticles for targeting breast cancer cells: A comparative study. Colloids Surf B Biointerfaces 2017; 156:203-212. [PMID: 28531877 DOI: 10.1016/j.colsurfb.2017.05.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/20/2017] [Accepted: 05/10/2017] [Indexed: 11/22/2022]
Abstract
Folate receptors (FR) have been well recognized as a marker to target nano-sized carriers for cancer diagnosis and therapy. In contrast, influx transport systems (e.g. GLUT transporters) that transport essential amino acids and nutrients to cancer cells have not been exploited much for targeted delivery. In this study, folic acid- or n-acetyl glucosamine- functionalized mesoporous silica nanoparticles loaded with doxorubicin (DOX-FA-MSNPs or DOX-NAG-MSNPs) were prepared, characterized and compared for targeting along with cytotoxicity towards MCF-7 and MDA-MB-231 human breast cancer cells. Cellular uptake of FITC tagged FA-MSNPs and NAG-MSNPs were evaluated by confocal microscopy and flow cytometry in above-mentioned cancer cell lines. The result suggested higher cellular uptake of NAG-MSNPs than FA-MSNPs for both the cell lines. Cytotoxicity of free DOX, DOX-MSNPs, DOX-FA-MSNPs and DOX-NAG-MSNPs were evaluated on both the breast cancer cell lines. Cytotoxicity results showed that DOX-loaded NAG-MSNPs exerted significant higher cytotoxicity effect on both the cell lines than DOX-FA-MSNPs. Moreover, both the targeted formulations were more effective than free DOX. Our results suggested that GLUT transporters can be effectively utilized for nanoparticles internalization in breast cancer cells.
Collapse
|
14
|
Golshan M, Salami‐Kalajahi M, Roghani‐Mamaqani H, Mohammadi M. Synthesis of poly(propylene imine) dendrimers via homogeneous reduction process using lithium aluminium hydride: Bioconjugation with folic acid and doxorubicin release kinetics. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3789] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Marzieh Golshan
- Department of Polymer Engineering and Institute of Polymeric MaterialsSahand University of Technology PO Box 51335‐1996 Tabriz Iran
| | - Mehdi Salami‐Kalajahi
- Department of Polymer Engineering and Institute of Polymeric MaterialsSahand University of Technology PO Box 51335‐1996 Tabriz Iran
| | - Hossein Roghani‐Mamaqani
- Department of Polymer Engineering and Institute of Polymeric MaterialsSahand University of Technology PO Box 51335‐1996 Tabriz Iran
| | - Maryam Mohammadi
- Department of Polymer Engineering and Institute of Polymeric MaterialsSahand University of Technology PO Box 51335‐1996 Tabriz Iran
| |
Collapse
|
15
|
Patel HK, Gajbhiye V, Kesharwani P, Jain NK. Ligand anchored poly(propyleneimine) dendrimers for brain targeting: Comparative in vitro and in vivo assessment. J Colloid Interface Sci 2016; 482:142-150. [DOI: 10.1016/j.jcis.2016.07.047] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 11/16/2022]
|