1
|
Mehravanfar H, Farhadian N, Abnous K. Indocyanine green-loaded N-doped carbon quantum dot nanoparticles for effective photodynamic therapy and cell imaging of melanoma cancer: in vitro, ex vivo and in vivo study. J Drug Target 2024; 32:820-837. [PMID: 38779708 DOI: 10.1080/1061186x.2024.2358511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Indocyanine Green (ICG) as an agent for photodynamic therapy (PDT) of melanoma cancer has low quantum yield, short circulation half-life, poor photo-stability, and tendency to aggregation. PURPOSE N-doped carbon quantum dot (CQD) nanoparticle was applied to encapsulate ICG and overcome ICG obstacle in PDT with simultaneous cell imaging property. METHODS CQD was prepared using hydrothermal method. Cell culture study and In vivo assessments on C57BL/6 mice containing melanoma cancer cells was performed. RESULTS Results showed that CQD size slightly enhanced from 24.55 nm to 42.67 nm after ICG loading. Detection of reactive oxygen species (ROS) demonstrated that CQD improved ICG photo-stability and ROS generation capacity upon laser irradiation. Cell culture study illustrated that ICG@CQD could decrease survival rate of melanoma cancer cells of B16F10 cell line from 48% for pure ICG to 28% for ICG@CQD. Confocal microscopy images approved more cellular uptake and more qualified cell imaging ability of ICG@CQD. In vivo assessments displayed obvious inhibitory effect of tumor growth for ICG@CQD in comparison to free ICG on the C57BL/6 mice. In vivo fluorescence images confirmed that ICG@CQD accumulates remarkably more than free ICG in tumor region. Finally, ICG@CQD was proposed as an innovative nanocarrier for PDT and diagnosis.
Collapse
Affiliation(s)
- Hadiseh Mehravanfar
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nafiseh Farhadian
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Ramezani P, De Smedt SC, Sauvage F. Supramolecular dye nanoassemblies for advanced diagnostics and therapies. Bioeng Transl Med 2024; 9:e10652. [PMID: 39036081 PMCID: PMC11256156 DOI: 10.1002/btm2.10652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 07/23/2024] Open
Abstract
Dyes have conventionally been used in medicine for staining cells, tissues, and organelles. Since these compounds are also known as photosensitizers (PSs) which exhibit photoresponsivity upon photon illumination, there is a high desire towards formulating these molecules into nanoparticles (NPs) to achieve improved delivery efficiency and enhanced stability for novel imaging and therapeutic applications. Furthermore, it has been shown that some of the photophysical properties of these molecules can be altered upon NP formation thereby playing a major role in the outcome of their application. In this review, we primarily focus on introducing dye categories, their formulation strategies and how these strategies affect their photophysical properties in the context of photothermal and non-photothermal applications. More specifically, the most recent progress showing the potential of dye supramolecular assemblies in modalities such as photoacoustic and fluorescence imaging, photothermal and photodynamic therapies as well as their employment in photoablation as a novel modality will be outlined. Aside from their photophysical activity, we delve shortly into the emerging application of dyes as drug stabilizing agents where these molecules are used together with aggregator molecules to form stable nanoparticles.
Collapse
Affiliation(s)
- Pouria Ramezani
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| |
Collapse
|
3
|
Li ZZ, Zhong NN, Cao LM, Cai ZM, Xiao Y, Wang GR, Liu B, Xu C, Bu LL. Nanoparticles Targeting Lymph Nodes for Cancer Immunotherapy: Strategies and Influencing Factors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308731. [PMID: 38327169 DOI: 10.1002/smll.202308731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/07/2024] [Indexed: 02/09/2024]
Abstract
Immunotherapy has emerged as a potent strategy in cancer treatment, with many approved drugs and modalities in the development stages. Despite its promise, immunotherapy is not without its limitations, including side effects and suboptimal efficacy. Using nanoparticles (NPs) as delivery vehicles to target immunotherapy to lymph nodes (LNs) can improve the efficacy of immunotherapy drugs and reduce side effects in patients. In this context, this paper reviews the development of LN-targeted immunotherapeutic NP strategies, the mechanisms of NP transport during LN targeting, and their related biosafety risks. NP targeting of LNs involves either passive targeting, influenced by NP physical properties, or active targeting, facilitated by affinity ligands on NP surfaces, while alternative methods, such as intranodal injection and high endothelial venule (HEV) targeting, have uncertain clinical applicability and require further research and validation. LN targeting of NPs for immunotherapy can reduce side effects and increase biocompatibility, but risks such as toxicity, organ accumulation, and oxidative stress remain, although strategies such as biodegradable biomacromolecules, polyethylene glycol (PEG) coating, and impurity addition can mitigate these risks. Additionally, this work concludes with a future-oriented discussion, offering critical insights into the field.
Collapse
Affiliation(s)
- Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Ze-Min Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Chun Xu
- School of Dentistry, The University of Queensland, 288 Herston Road, Brisbane, 4066, Australia
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| |
Collapse
|
4
|
Nguyen Cao TG, Truong Hoang Q, Kang JH, Kang SJ, Ravichandran V, Rhee WJ, Lee M, Ko YT, Shim MS. Bioreducible exosomes encapsulating glycolysis inhibitors potentiate mitochondria-targeted sonodynamic cancer therapy via cancer-targeted drug release and cellular energy depletion. Biomaterials 2023; 301:122242. [PMID: 37473534 DOI: 10.1016/j.biomaterials.2023.122242] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Nanocarrier-assisted sonodynamic therapy (SDT) has shown great potential for the effective and targeted treatment of deep-seated tumors by overcoming the critical limitations of sonosensitizers. However, in vivo SDT using nanocarriers is still constrained by their intrinsic toxicity and nonspecific cargo release. In this study, we developed bioreducible exosomes for the safe and tumor-specific delivery of mitochondria-targeting sonosensitizers [triphenylphosphonium-conjugated chlorin e6 (T-Ce6)] and glycolysis inhibitors (FX11). Redox-cleavable diselenide linker-bearing lipids were embedded into exosomes to trigger drug release in response to overexpressed glutathione in the tumor microenvironment. Bioreducible exosomes facilitate the cytoplasmic release of their payload in the reducing environment of tumor cells. They significantly enhance drug release and sonodynamic effects when irradiated with ultrasound (US). The mitochondria-targeted accumulation of T-Ce6 efficiently damaged the mitochondria of the cells under US irradiation, accelerating apoptotic cell death. FX11 substantially inhibited cellular energy metabolism, potentiating the antitumor efficacy of mitochondria-targeted SDT. Bioreducible exosomes effectively suppressed tumor growth in mice without significant systemic toxicity, via a combination of mitochondria-targeted SDT and energy metabolism-targeted therapy. This study offers new insights into the use of dual stimuli-responsive exosomes encapsulating sonosensitizers for safe and targeted sonodynamic cancer therapy.
Collapse
Affiliation(s)
- Thuy Giang Nguyen Cao
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Quan Truong Hoang
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Ji Hee Kang
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Su Jin Kang
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Vasanthan Ravichandran
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| | - Minjong Lee
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, 07804, Republic of Korea; Department of Internal Medicine, Ewha Womans University Medical Center, Seoul, 07804, Republic of Korea.
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
5
|
Vichare R, Crelli C, Liu L, McCallin R, Cowan A, Stratimirovic S, Herneisey M, Pollock JA, Janjic JM. Folate-conjugated near-infrared fluorescent perfluorocarbon nanoemulsions as theranostics for activated macrophage COX-2 inhibition. Sci Rep 2023; 13:15229. [PMID: 37709807 PMCID: PMC10502124 DOI: 10.1038/s41598-023-41959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
Activated macrophages play a critical role in the orchestration of inflammation and inflammatory pain in several chronic diseases. We present here the first perfluorocarbon nanoemulsion (PFC NE) that is designed to preferentially target activated macrophages and can deliver up to three payloads (two fluorescent dyes and a COX-2 inhibitor). Folate receptors are overexpressed on activated macrophages. Therefore, we introduced a folate-PEG-cholesterol conjugate into the formulation. The incorporation of folate conjugate did not require changes in processing parameters and did not change the droplet size or fluorescent properties of the PFC NE. The uptake of folate-conjugated PFC NE was higher in activated macrophages than in resting macrophages. Flow cytometry showed that the uptake of folate-conjugated PFC NE occurred by both phagocytosis and receptor-mediated endocytosis. Furthermore, folate-conjugated PFC NE inhibited the release of proinflammatory cytokines (TNF-α and IL-6) more effectively than nonmodified PFC NE, while drug loading and COX-2 inhibition were comparable. The PFC NEs reported here were successfully produced on multiple scales, from 25 to 200 mL, and by using two distinct processors (microfluidizers: M110S and LM20). Therefore, folate-conjugated PFC NEs are viable anti-inflammatory theranostic nanosystems for macrophage drug delivery and imaging.
Collapse
Affiliation(s)
- Riddhi Vichare
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Caitlin Crelli
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Lu Liu
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Rebecca McCallin
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Abree Cowan
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Stefan Stratimirovic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Michele Herneisey
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - John A Pollock
- Department of Biological Sciences, School of Science and Engineering, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
6
|
Nguyen Cao TG, Truong Hoang Q, Hong EJ, Kang SJ, Kang JH, Ravichandran V, Kang HC, Ko YT, Rhee WJ, Shim MS. Mitochondria-targeting sonosensitizer-loaded extracellular vesicles for chemo-sonodynamic therapy. J Control Release 2023; 354:651-663. [PMID: 36682729 DOI: 10.1016/j.jconrel.2023.01.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/04/2022] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Sonodynamic therapy (SDT) has emerged as an effective therapeutic modality as it employs ultrasound (US) to eradicate deep-seated tumors noninvasively. However, the therapeutic efficacy of SDT in clinical settings remains limited owing to the low aqueous stability and poor pharmacokinetic properties of sonosensitizers. In this study, extracellular vesicles (EVs), which have low systemic toxicity, were used as clinically available nanocarriers to effectively transfer a sonosensitizer to cancer cells. Chlorin e6 (Ce6), a sonosensitizer, was conjugated to a mitochondria-targeting triphenylphosphonium (TPP) moiety and loaded into EVs to enhance the efficacy of SDT, because mitochondria are critical subcellular organelles that regulate cell survival and death. Additionally, piperlongumine (PL), a pro-oxidant and cancer-specific chemotherapeutic agent, was co-encapsulated into EVs to achieve efficient and selective anticancer activity. The EVs substantially amplified the cellular internalization of TPP-conjugated Ce6 (TPP-Ce6), resulting in the enhanced generation of intracellular reactive oxygen species (ROS) in MCF-7 human breast cancer cells upon US exposure. Importantly, EVs encapsulating TPP-Ce6 effectively destroyed the mitochondria under irradiation with US, leading to efficient anticancer activity. The co-encapsulation of pro-oxidant PL into EVs significantly enhanced the SDT efficacy in MCF-7 cells through the excessive generation of ROS. Moreover, the EV co-encapsulating TPP-Ce6 and PL [EV(TPP-Ce6/PL)] exhibited cancer-specific cell death owing to the cancer-selective apoptosis triggered by PL. In vivo study using MCF-7 tumor-xenograft mice revealed that EV(TPP-Ce6/PL) effectively accumulated in tumors after intravenous injection. Notably, treatment with EV(TPP-Ce6/PL) and US inhibited tumor growth significantly without causing systemic toxicity. This study demonstrated the feasibility of using EV(TPP-Ce6/PL) for biocompatible and cancer-specific chemo-SDT.
Collapse
Affiliation(s)
- Thuy Giang Nguyen Cao
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Quan Truong Hoang
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Eun Ji Hong
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Su Jin Kang
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Ji Hee Kang
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Vasanthan Ravichandran
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| |
Collapse
|
7
|
Xu PY, Kumar Kankala R, Wang SB, Chen AZ. Development of highly stable ICG-polymeric nanoparticles with ultra-high entrapment efficiency using supercritical antisolvent (SAS)-combined solution casting process. Int J Pharm 2022; 629:122348. [DOI: 10.1016/j.ijpharm.2022.122348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
8
|
Russell PS, Velivolu R, Maldonado Zimbrón VE, Hong J, Kavianinia I, Hickey AJR, Windsor JA, Phillips ARJ. Fluorescent Tracers for In Vivo Imaging of Lymphatic Targets. Front Pharmacol 2022; 13:952581. [PMID: 35935839 PMCID: PMC9355481 DOI: 10.3389/fphar.2022.952581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The lymphatic system continues to gain importance in a range of conditions, and therefore, imaging of lymphatic vessels is becoming more widespread for research, diagnosis, and treatment. Fluorescent lymphatic imaging offers advantages over other methods in that it is affordable, has higher resolution, and does not require radiation exposure. However, because the lymphatic system is a one-way drainage system, the successful delivery of fluorescent tracers to lymphatic vessels represents a unique challenge. Each fluorescent tracer used for lymphatic imaging has distinct characteristics, including size, shape, charge, weight, conjugates, excitation/emission wavelength, stability, and quantum yield. These characteristics in combination with the properties of the target tissue affect the uptake of the dye into lymphatic vessels and the fluorescence quality. Here, we review the characteristics of visible wavelength and near-infrared fluorescent tracers used for in vivo lymphatic imaging and describe the various techniques used to specifically target them to lymphatic vessels for high-quality lymphatic imaging in both clinical and pre-clinical applications. We also discuss potential areas of future research to improve the lymphatic fluorescent tracer design.
Collapse
Affiliation(s)
- P. S. Russell
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - R. Velivolu
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - V. E. Maldonado Zimbrón
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - J. Hong
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - I. Kavianinia
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
- School of Chemical Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - A. J. R. Hickey
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - J. A. Windsor
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - A. R. J. Phillips
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Kim S, Kang JH, Nguyen Cao TG, Kang SJ, Jeong K, Kang HC, Kwon YJ, Rhee WJ, Ko YT, Shim MS. Extracellular vesicles with high dual drug loading for safe and efficient combination chemo-phototherapy. Biomater Sci 2022; 10:2817-2830. [PMID: 35384946 DOI: 10.1039/d1bm02005f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extracellular vesicles (EVs) have emerged as biocompatible nanocarriers for efficient delivery of various therapeutic agents, with intrinsic long-term blood circulatory capability and low immunogenicity. Here, indocyanine green (ICG)- and paclitaxel (PTX)-loaded EVs [EV(ICG/PTX)] were developed as a biocompatible nanoplatform for safe and efficient cancer treatment through near-infrared (NIR) light-triggered combination chemo/photothermal/photodynamic therapy. High dual drug encapsulation in EVs was achieved for both the hydrophilic ICG and hydrophobic PTX by simple incubation. The EVs substantially improved the photostability and cellular internalization of ICG, thereby augmenting the photothermal effects and reactive oxygen species production in breast cancer cells upon NIR light irradiation. Hence, ICG-loaded EVs activated by NIR light irradiation showed greater cytotoxic effects than free ICG. EV(ICG/PTX) showed the highest anticancer activity owing to the simultaneous chemo/photothermal/photodynamic therapy when compared with EV(ICG) and free ICG. In vivo study revealed that EV(ICG/PTX) had higher accumulation in tumors and improved pharmacokinetics compared to free ICG and PTX. In addition, a single intravenous administration of EV(ICG/PTX) exhibited a considerable inhibition of tumor proliferation with negligible systemic toxicity. Thus, this study demonstrates the potential of EV(ICG/PTX) for clinical translation of combination chemo-phototherapy.
Collapse
Affiliation(s)
- Sumin Kim
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Ji Hee Kang
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
| | - Thuy Giang Nguyen Cao
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| | - Su Jin Kang
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| | - Kyeongsoo Jeong
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| | - Han Chang Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA.,Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea. .,Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| |
Collapse
|
10
|
Kassem AA, Salama A, Mohsen AM. Formulation and optimization of cationic nanoemulsions for enhanced ocular delivery of dorzolamide hydrochloride using Box-Behnken design: In vitro and in vivo assessments. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Polysorbate-Based Drug Formulations for Brain-Targeted Drug Delivery and Anticancer Therapy. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199336] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polysorbates (PSs) are synthetic nonionic surfactants consisting of polyethoxy sorbitan fatty acid esters. PSs have been widely employed as emulsifiers and stabilizers in various drug formulations and food additives. Recently, various PS-based formulations have been developed for safe and efficient drug delivery. This review introduces the general features of PSs and PS-based drug carriers, summarizes recent progress in the development of PS-based drug formulations, and discusses the physicochemical properties, biological safety, P-glycoprotein inhibitory properties, and therapeutic applications of PS-based drug formulations. Additionally, recent advances in brain-targeted drug delivery using PS-based drug formulations have been highlighted. This review will help researchers understand the potential of PSs as effective drug formulation agents.
Collapse
|
12
|
Ting CW, Chou YH, Huang SY, Chiang WH. Indocyanine green-carrying polymeric nanoparticles with acid-triggered detachable PEG coating and drug release for boosting cancer photothermal therapy. Colloids Surf B Biointerfaces 2021; 208:112048. [PMID: 34419806 DOI: 10.1016/j.colsurfb.2021.112048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 07/06/2021] [Accepted: 08/14/2021] [Indexed: 12/11/2022]
Abstract
In order to boost anticancer efficacy of indocyanine green (ICG)-mediated photothermal therapy (PTT) by promoting intracellular ICG delivery, the ICG-carrying hybrid polymeric nanoparticles were fabricated in this study by co-assembly of hydrophobic poly(lactic-co-glycolic acid) (PLGA) segments, ICG molecules, amphiphilic tocopheryl polyethylene glycol succinate (TPGS) and pH-responsive methoxy poly(ethylene glycol)-benzoic imine-1-octadecanamine (mPEG-b-C18) segments in aqueous solution. The ICG-loaded nanoparticles were characterized to have ICG-containing PLGA core stabilized by hydrophilic PEG-rich surface coating and a well-dispersed spherical shape. Moreover, the ICG-loaded nanoparticles in pH 7.4 aqueous solution sufficiently inhibited ICG self-aggregation and leakage, thereby increasing aqueous photostability of ICG molecules. Notably, when the solution pH was reduced from pH 7.4-5.5, the acid-triggered hydrolysis of benzoic-imine linkers within mPEG-b-C18 remarkably facilitated the detachment of mPEG segments from ICG-loaded nanoparticles, thus accelerating ICG release. The findings of in vitro cellular uptake and cytotoxicity studies further demonstrated that the PEGylated ICG-carrying hybrid nanoparticles were efficiently internalized by MCF-7 cells compared to free ICG and realized intracellular acid-triggered rapid ICG liberation, thus enhancing anticancer effect of ICG-mediated PTT to potently kill cancer cells.
Collapse
Affiliation(s)
- Chih-Wei Ting
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Ya-Hsuan Chou
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Shih-Yu Huang
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
13
|
Zhang X, Li X, Sun S, Wang P, Ma X, Hou R, Liang X. Anti-Tumor Metastasis via Platelet Inhibitor Combined with Photothermal Therapy under Activatable Fluorescence/Magnetic Resonance Bimodal Imaging Guidance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19679-19694. [PMID: 33876926 DOI: 10.1021/acsami.1c02302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photothermal therapy (PTT) is a promising tumor therapy strategy; however, heterogeneous heat distribution over the tumor often exists, resulting in insufficient photothermal ablation and potential risk of cancer metastasis, which has been demonstrated to be associate with platelets. Herein, a near-infrared (NIR) photothermal agent of IR780 was conjugated with MRI agent of Gd-DOTA via a disulfide linkage (ICD-Gd), which was coassembly with lipid connecting tumor-homing pentapeptide CREKA (Cys-Arg-Glu-Lys-Ala) (DSPE-PEG-CREKA) to encapsulate a platelet inhibitor of ticagrelor (Tic), affording a multistimuli-responsive nanosystem (DPC@ICD-Gd-Tic). The nanosystem with completely quenching fluorescence could specifically target the tumor-associated platelets and showed pH/reduction/NIR light-responsive drug release, which simultaneously resulting in dis-assembly of nanoparticle and fluorescence recovery, enabling the drug delivery visualization in tumor in situ via activatable NIR fluorescence/MR bimodal imaging. Finally, DPC@ICD-Gd-Tic further integrated the photoinduced hyperthermia and platelet function inhibitor to achieve synergistic anticancer therapy, leading to ablation of primary tumor cells and effectively suppressed their distant metastasis. The number of lung metastases in 4T1 tumor bearing mice was reduced by about 90%, and the size of tumor was reduced by about 70%, while half of the mouse was completely cured by this smart nanosystem.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaoda Li
- School of Basic Medical Sciences, Peking University, Beijing 100190, P. R. China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Xiaotu Ma
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Rui Hou
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| |
Collapse
|
14
|
Mei Y, Tang L, Xiao Q, Zhang Z, Zhang Z, Zang J, Zhou J, Wang Y, Wang W, Ren M. Reconstituted high density lipoprotein (rHDL), a versatile drug delivery nanoplatform for tumor targeted therapy. J Mater Chem B 2021; 9:612-633. [PMID: 33306079 DOI: 10.1039/d0tb02139c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
rHDL is a synthesized drug delivery nanoplatform exhibiting excellent biocompatibility, which possesses most of the advantages of HDL. rHDL shows almost no toxicity and can be degraded to non-toxic substances in vivo. The severe limitation of the application of various antitumor agents is mainly due to their low bioavailability, high toxicity, poor stability, etc. Favorably, antitumor drug-loaded rHDL nanoparticles (NPs), which are known as an important drug delivery system (DDS), help to change the situation a lot. This DDS shows an outstanding active-targeting ability towards tumor cells and improves the therapeutic effect during antitumor treatment while overcoming the shortcomings mentioned above. In the following text, we will mainly focus on the various applications of rHDL in tumor targeted therapy by describing the properties, preparation, receptor active-targeting ability and antitumor effects of antineoplastic drug-loaded rHDL NPs.
Collapse
Affiliation(s)
- Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Enhanced Stability of Indocyanine Green by Encapsulation in Zein-Phosphatidylcholine Hybrid Nanoparticles for Use in the Phototherapy of Cancer. Pharmaceutics 2021; 13:pharmaceutics13030305. [PMID: 33652884 PMCID: PMC7996753 DOI: 10.3390/pharmaceutics13030305] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 01/10/2023] Open
Abstract
Indocyanine green (ICG) is a clinically approved near-infrared dye that has shown promise as a photosensitizer for the phototherapy of cancer. However, its chemical instability in an aqueous solution has limited its clinical application. Encapsulating ICG in liposomes, phosphatidylcholine nanoparticles (PC-NP), has shown partial effectiveness in stabilizing it. Prompted by our recent finding that the zein-phosphatidylcholine hybrid nanoparticles (Z/PC-NP) provide an advanced drug carrier compared to PC-NP, we herein investigated the potential of Z/PC-NP as an improved ICG formulation. Dynamic light scattering analysis, transmission electron microscopy, and Fourier-transform infrared spectroscopy studies showed that ICG was encapsulated in Z/PC-NP without hampering the high colloidal stability of the Z/PC-NP. During storage, the Z/PC-NP almost completely inhibited the ICG aggregation, whereas the PC-NP did so partially. The Z/PC-NP also more effectively blocked the ICG degradation compared to the PC-NP. The phototoxicity of ICG encapsulated in Z/PC-NP on cancer cells was twofold higher than that in the PC-NP. The ICG encapsulated in Z/PC-NP, but not in PC-NP, maintained its photocytotoxicity after four-day storage. These findings highlight the promising potential of Z/PC-NP as an ICG formulation that provides a higher stabilization effect than PC-NP.
Collapse
|
16
|
Klymchenko AS, Liu F, Collot M, Anton N. Dye-Loaded Nanoemulsions: Biomimetic Fluorescent Nanocarriers for Bioimaging and Nanomedicine. Adv Healthc Mater 2021; 10:e2001289. [PMID: 33052037 DOI: 10.1002/adhm.202001289] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Lipid nanoemulsions (NEs), owing to their controllable size (20 to 500 nm), stability and biocompatibility, are now frequently used in various fields, such as food, cosmetics, pharmaceuticals, drug delivery, and even as nanoreactors for chemical synthesis. Moreover, being composed of components generally recognized as safe (GRAS), they can be considered as "green" nanoparticles that mimic closely lipoproteins and intracellular lipid droplets. Therefore, they attracted attention as carriers of drugs and fluorescent dyes for both bioimaging and studying the fate of nanoemulsions in cells and small animals. In this review, the composition of dye-loaded NEs, methods for their preparation, and emerging biological applications are described. The design of bright fluorescent NEs with high dye loading and minimal aggregation-caused quenching (ACQ) is focused on. Common issues including dye leakage and NEs stability are discussed, highlighting advanced techniques for their characterization, such as Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS). Attempts to functionalize NEs surface are also discussed. Thereafter, biological applications for bioimaging and single-particle tracking in cells and small animals as well as biomedical applications for photodynamic therapy are described. Finally, challenges and future perspectives of fluorescent NEs are discussed.
Collapse
Affiliation(s)
- Andrey S. Klymchenko
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
| | - Fei Liu
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
- Université de Strasbourg CNRS CAMB UMR 7199 Strasbourg F‐67000 France
| | - Mayeul Collot
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
| | - Nicolas Anton
- Université de Strasbourg CNRS CAMB UMR 7199 Strasbourg F‐67000 France
| |
Collapse
|
17
|
Hu S, Dong C, Wang J, Liu K, Zhou Q, Xiang J, Zhou Z, Liu F, Shen Y. Assemblies of indocyanine green and chemotherapeutic drug to cure established tumors by synergistic chemo-photo therapy. J Control Release 2020; 324:250-259. [DOI: 10.1016/j.jconrel.2020.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/24/2020] [Accepted: 05/10/2020] [Indexed: 12/16/2022]
|
18
|
Ravichandran V, Nguyen Cao TG, Choi DG, Kang HC, Shim MS. Non-ionic polysorbate-based nanoparticles for efficient combination chemo/photothermal/photodynamic therapy. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Excitation Transfer in Hybrid Nanostructures of Colloidal Ag 2S/TGA Quantum Dots and Indocyanine Green J-Aggregates. J Fluoresc 2020; 30:581-589. [PMID: 32236787 DOI: 10.1007/s10895-020-02521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
The regularities of the electron excitations exchange in hybrid associates of colloidal Ag2S quantum dots, passivated with thioglycolic acid (Ag2S/TGA QDs) with an average size of 2.2 and 3.7 nm with Indocyanine Green J-aggregates (ICG) were studied in this work by methods of absorption and luminescence spectroscopy. It was shown that IR luminescence sensitization of Ag2S/TGA QDs with an average size of 3.7 nm in the region of 1040 nm is possible due to non-radiative resonance energy transfer from Ag2S/TGA QDs with an average size of 2.2 nm and luminescence peak at 900 nm using ICG J-aggregate as an exciton bridge. The sensitization efficiency is 0.33. This technique provides a transition from the first therapeutic window (NIR-I, 700-950 nm) to the second (NIR-II, 1000-1700 nm). It can allow high to increase the imaging in vivo resolution.
Collapse
|
20
|
Demchenko AP. Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods Appl Fluoresc 2020; 8:022001. [PMID: 32028269 DOI: 10.1088/2050-6120/ab7365] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Photochemical stability is one of the most important parameters that determine the usefulness of organic dyes in different applications. This Review addresses key factors that determine the dye photostability. It is shown that photodegradation can follow different oxygen-dependent and oxygen-independent mechanisms and may involve both 1S1-3T1 and higher-energy 1Sn-3Tn excited states. Their involvement and contribution depends on dye structure, medium conditions, irradiation power. Fluorescein, rhodamine, BODIPY and cyanine dyes, as well as conjugated polymers are discussed as selected examples illustrating photobleaching mechanisms. The strategies for modulating and improving the photostability are overviewed. They include the improvement of fluorophore design, particularly by attaching protective and anti-fading groups, creating proper medium conditions in liquid, solid and nanoscale environments. The special conditions for biological labeling, sensing and imaging are outlined.
Collapse
Affiliation(s)
- Alexander P Demchenko
- Palladin Institute of Biochemistry, Leontovicha st. 9, Kyiv 01030, Ukraine. Yuriy Fedkovych National University, Chernivtsi, 58012, Ukraine
| |
Collapse
|
21
|
Lee EH, Lim SJ, Lee MK. Chitosan-coated liposomes to stabilize and enhance transdermal delivery of indocyanine green for photodynamic therapy of melanoma. Carbohydr Polym 2019; 224:115143. [DOI: 10.1016/j.carbpol.2019.115143] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/28/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023]
|
22
|
Zhang X, Liang X, Ma X, Hou R, Li X, Wang F. Highly stable near-infrared dye conjugated cerasomes for fluorescence imaging-guided synergistic chemo-photothermal therapy of colorectal cancer. Biomater Sci 2019; 7:2873-2888. [DOI: 10.1039/c9bm00458k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dye-conjugated cerasome loaded with DOX exhibited high stability and controllable drug release, holding great promise in colorectal cancer photothermal chemotherapy.
Collapse
Affiliation(s)
- Xu Zhang
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University Health Science Center
- Beijing
- China
| | - Xiaolong Liang
- Department of Ultrasound
- Peking University Third Hospital
- Beijing
- China
| | - Xiaotu Ma
- Key Laboratory of Protein and Peptide Pharmaceuticals
- CAS Center for Excellence in Biomacromolecules
- Institute of Biophysics
- Chinese Academy of Sciences
- Beijing
| | - Rui Hou
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University Health Science Center
- Beijing
- China
| | - Xiaoda Li
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University Health Science Center
- Beijing
- China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University Health Science Center
- Beijing
- China
| |
Collapse
|
23
|
Obinu A, Gavini E, Rassu G, Maestri M, Bonferoni MC, Giunchedi P. Lymph node metastases: importance of detection and treatment strategies. Expert Opin Drug Deliv 2018; 15:459-467. [PMID: 29504430 DOI: 10.1080/17425247.2018.1446937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Lymphatic vessels are the preferential route of most solid tumors to spread their metastases in the body. The onset of metastatic nests in draining lymph nodes (LNs) are a significant indicator of cancer progression and a dismaying sign of worsen staging. Therefore, the individuation and elimination of cancer cells within the lymphatic system (LS) are an important goal. Nevertheless, the targeting of the LS with traditional contrast agents and/or chemotherapeutics is difficult, due to its anatomical structure. For this reason, many studies on new lymphatic delivery systems have been carried out, both to improve lymphatic imaging and to selectively carry chemotherapeutics to LNs, reducing the exposure of healthy tissues to the cytotoxic substances. This is an overview of the present situation in the field of detection and treatment strategies of lymphatic metastases, taking into account the use of nano-drug delivery systems. Nanocarriers, thanks to their small size and other physicochemical characteristics, are suitable vectors for imaging and chemotherapy of the LS. AREAS COVERED The role of the LS in tumor progression and importance of treatment and imaging strategies of lymphatic metastases. EXPERT OPINION The nanoparticles are a promising approach for treatment and detection of lymphatic metastases. However further studies are necessary in order to evaluate their efficacy in human clinical application.
Collapse
Affiliation(s)
- Antonella Obinu
- a PhD in Experimental Medicine, Department of Clinical-Surgical, Diagnostic and Paediatric Sciences , University of Pavia , Pavia , Italy
| | - Elisabetta Gavini
- b Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| | - Giovanna Rassu
- b Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| | - Marcello Maestri
- a PhD in Experimental Medicine, Department of Clinical-Surgical, Diagnostic and Paediatric Sciences , University of Pavia , Pavia , Italy.,c Department of Surgery , IRCCS Policlinico San Matteo Foundation , Pavia , Italy
| | | | - Paolo Giunchedi
- b Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| |
Collapse
|
24
|
Yin J, Xiang C, Wang P, Yin Y, Hou Y. Biocompatible nanoemulsions based on hemp oil and less surfactants for oral delivery of baicalein with enhanced bioavailability. Int J Nanomedicine 2017; 12:2923-2931. [PMID: 28435268 PMCID: PMC5391827 DOI: 10.2147/ijn.s131167] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Baicalein (BCL) possesses high pharmacological activities but low solubility and stability in the intestinal tract. This study aimed to probe the potential of nanoemulsions (NEs) consisting of hemp oil and less surfactants in ameliorating the oral bioavailability of BCL. BCL-loaded NEs (BCL-NEs) were prepared by high-pressure homogenization technique to reduce the amount of surfactants. BCL-NEs were characterized by particle size, entrapment efficiency (EE), in vitro drug release, and morphology. Bioavailability was studied in Sprague-Dawley rats following oral administration of BCL suspensions, BCL conventional emulsions, and BCL-NEs. The obtained NEs were ~90 nm in particle size with an EE of 99.31%. BCL-NEs significantly enhanced the oral bioavailability of BCL, up to 524.7% and 242.1% relative to the suspensions and conventional emulsions, respectively. BCL-NEs exhibited excellent intestinal permeability and transcellular transport ability. The cytotoxicity of BCL-NEs was documented to be low and acceptable for oral purpose. Our findings suggest that such novel NEs and preparative process provide a promising alternative to current formulation technologies and suitable for oral delivery of drugs with bioavailability issues.
Collapse
Affiliation(s)
- Juntao Yin
- Department of Pharmaceutics, Huaihe Hospital Affiliated to Henan University, Kaifeng
| | - Cuiyu Xiang
- Department of Pharmaceutics, Huaihe Hospital Affiliated to Henan University, Kaifeng
| | - Peiqing Wang
- Department of Pharmaceutics, Huaihe Hospital Affiliated to Henan University, Kaifeng
| | - Yuyun Yin
- Department of Physiochemical Analysis, Henan Provincial Institute for Food and Drug Control, Zhengzhou
| | - Yantao Hou
- Department of Pharmaceutical Engineering, Henan Vocational College of Applied Technology, Kaifeng, People's Republic of China
| |
Collapse
|
25
|
Yoon HJ, Lee HS, Lim JY, Park JH. Liposomal Indocyanine Green for Enhanced Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5683-5691. [PMID: 28152314 DOI: 10.1021/acsami.6b16801] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this study, we engineered liposomal indocyanine green (ICG) to maximize its photothermal effects while maintaining the fluorescence intensity. Various liposomal formulations of ICG were prepared by varying the lipid composition and the molar ratio between total lipid and ICG, and their photothermal characteristics were evaluated under near-infrared irradiation. We showed that the ICG dispersity in the liposomal membrane and its physical interaction with phospholipids were the main factors determining the photothermal conversion efficiency. In phototherapeutic studies, the optimized formulation of liposomal ICG showed greater anticancer effects in a mouse tumor model compared with other liposomal formulations and the free form of ICG. Furthermore, we utilized liposomal ICG to visualize the metastatic lymph node around the primary tumor under fluorescence imaging guidance and ablate the lymph node with the enhanced photothermal effect, indicating the potential for selective treatment of metastatic lymph node.
Collapse
Affiliation(s)
- Hwan-Jun Yoon
- Department of Bio and Brain Engineering, §Program of Brain and Cognitive Engineering, ⊥Institute for Health Science and Technology, and #Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Hye-Seong Lee
- Department of Bio and Brain Engineering, §Program of Brain and Cognitive Engineering, ⊥Institute for Health Science and Technology, and #Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Ji-Young Lim
- Department of Bio and Brain Engineering, §Program of Brain and Cognitive Engineering, ⊥Institute for Health Science and Technology, and #Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, §Program of Brain and Cognitive Engineering, ⊥Institute for Health Science and Technology, and #Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| |
Collapse
|
26
|
Ding X, Xu X, Zhao Y, Zhang L, Yu Y, Huang F, Yin D, Huang H. Tumor targeted nanostructured lipid carrier co-delivering paclitaxel and indocyanine green for laser triggered synergetic therapy of cancer. RSC Adv 2017. [DOI: 10.1039/c7ra06119f] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NLC co-delivering PTX and ICG for synergetic cancer therapy.
Collapse
Affiliation(s)
- Xuefang Ding
- School of Pharmaceutical Science
- Nanjing Tech University
- Nanjing
- China
| | - Xian Xu
- School of Pharmaceutical Science
- Nanjing Tech University
- Nanjing
- China
| | - Ye Zhao
- School of Pharmaceutical Science
- Nanjing Tech University
- Nanjing
- China
| | - Lihui Zhang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing
- China
| | - Yadong Yu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Fei Huang
- School of Pharmaceutical Science
- Nanjing Tech University
- Nanjing
- China
| | - Dezhou Yin
- School of Pharmaceutical Science
- Nanjing Tech University
- Nanjing
- China
| | - He Huang
- School of Pharmaceutical Science
- Nanjing Tech University
- Nanjing
- China
| |
Collapse
|
27
|
Wang Y, Wang C, Ding Y, Li J, Li M, Liang X, Zhou J, Wang W. Biomimetic HDL nanoparticle mediated tumor targeted delivery of indocyanine green for enhanced photodynamic therapy. Colloids Surf B Biointerfaces 2016; 148:533-540. [PMID: 27690242 DOI: 10.1016/j.colsurfb.2016.09.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/13/2016] [Accepted: 09/25/2016] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy has emerged as a promising strategy for cancer treatment. To ensure the efficient delivery of a photosensitizer to tumor for anticancer effect, a safe and tumor-specific delivery system is highly desirable. Herein, we introduce a novel biomimetic nanoparticle named rHDL/ICG (rHDL/I), by loading amphiphilic near-infrared (NIR) fluorescent dye indocyanine green (ICG) into reconstituted high density lipoproteins (rHDL). In this system, rHDL can mediate photoprotection effect and receptor-guided tumor-targeting transportation of cargos into cells. Upon NIR irradiation, ICG can generate fluorescent imaging signals for diagnosis and monitoring therapeutic activity, and produce singlet oxygen to trigger photodynamic therapy (PDT). Our studies demonstrated that rHDL/I exhibited excellent size and fluorescence stability, light-triggered controlled release feature, and neglectable hemolytic activity. It also showed equivalent NIR response compared to free ICG under laser irradiation. Importantly, the fluorescent signal of ICG loaded in rHDL/I could be visualized subcellularly in vitro and exhibited metabolic distribution in vivo, presenting superior tumor targeting and internalization. This NIR-triggered image-guided nanoparticle produced outstanding therapeutic outcomes against cancer cells, demonstrating great potential of biomimetic delivery vehicles in future clinical practice.
Collapse
MESH Headings
- Animals
- Biomimetic Materials/administration & dosage
- Biomimetic Materials/chemistry
- Biomimetic Materials/pharmacokinetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Survival/drug effects
- Drug Delivery Systems/methods
- Drug Liberation
- Drug Stability
- Female
- Hemolysis/drug effects
- Hep G2 Cells
- Humans
- Indocyanine Green/administration & dosage
- Indocyanine Green/chemistry
- Indocyanine Green/pharmacokinetics
- Infrared Rays
- Lipoproteins, HDL/administration & dosage
- Lipoproteins, HDL/chemistry
- Lipoproteins, HDL/pharmacokinetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice, Inbred BALB C
- Mice, Nude
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Nanoparticles/ultrastructure
- Photochemotherapy/methods
- Rabbits
- Reactive Oxygen Species/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Yazhe Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Cheng Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Min Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Xiao Liang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
28
|
Porcu EP, Salis A, Gavini E, Rassu G, Maestri M, Giunchedi P. Indocyanine green delivery systems for tumour detection and treatments. Biotechnol Adv 2016; 34:768-789. [PMID: 27090752 DOI: 10.1016/j.biotechadv.2016.04.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 01/16/2023]
Abstract
Indocyanine green (ICG) is a cyanine compound that displays fluorescent properties in the near infrared region. This dye is employed for numerous indications but nowadays its major application field regards tumour diagnosis and treatments. Optical imaging by near infrared fluorescence provides news opportunities for oncologic surgery. The imaging of ICG can be useful for intraoperative identification of several solid tumours and metastases, and sentinel lymph node detection. In addition, ICG can be used as an agent for the destruction of malignant tissue, by virtue of the production of reactive oxygen species and/or induction of a hyperthermia effect under irradiation. Nevertheless, ICG shows several drawbacks, which limit its clinical application. Several formulative strategies have been studied to overcome these problems. The rationale of the development of ICG containing drug delivery systems is to enhance the in vivo stability and biodistribution profile of this dye, allowing tumour accumulation and resulting in better efficacy. In this review, ICG containing nano-sized carriers are classified based on their chemical composition and structure. In addition to nanosystems, different formulations including hydrogel, microsystems and others loaded with ICG will be illustrated. In particular, this report describes the preparation, in vitro characterization and in vivo application of ICG platforms for cancer imaging and treatment. The promising results of all systems confirm their clinical utility but further studies are required prior to evaluating the formulations in human trials.
Collapse
Affiliation(s)
- Elena P Porcu
- PhD in Experimental Medicine, Department of Diagnostic, Paediatric, Clinical and Surgical Science, Pavia, Italy
| | - Andrea Salis
- University of Sassari, Department of Chemistry and Pharmacy, Sassari, Italy
| | - Elisabetta Gavini
- University of Sassari, Department of Chemistry and Pharmacy, Sassari, Italy
| | - Giovanna Rassu
- University of Sassari, Department of Chemistry and Pharmacy, Sassari, Italy
| | | | - Paolo Giunchedi
- University of Sassari, Department of Chemistry and Pharmacy, Sassari, Italy.
| |
Collapse
|
29
|
Mehra NK, Cai D, Kuo L, Hein T, Palakurthi S. Safety and toxicity of nanomaterials for ocular drug delivery applications. Nanotoxicology 2016; 10:836-60. [PMID: 27027670 DOI: 10.3109/17435390.2016.1153165] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multifunctional nanomaterials are rapidly emerging for ophthalmic delivery of therapeutics to facilitate safe and effective targeting with improved patient compliance. Because of their extremely high area to volume ratio, nanomaterials often have physicochemical properties that are different from those of their larger counterparts. There exists a complex relationship between the physicochemical properties (composition, size, shape, charge, roughness, and porosity) of the nanomaterials and their interaction with the biological system. The eye is a very sensitive accessible organ and is subjected to intended and unintended exposure to nanomaterials. Currently, various ophthalmic formulations are available in the market, while some are underway in preclinical and clinical phases. However, the data on safety, efficacy, and toxicology of these advanced nanomaterials for ocular drug delivery are sparse. Focus of the present review is to provide a comprehensive report on the safety, biocompatibility and toxicities of nanomaterials in the eye.
Collapse
Affiliation(s)
- Neelesh K Mehra
- a Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy , Texas A&M Health Science Center , Kingsville , TX , USA
| | - Defu Cai
- a Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy , Texas A&M Health Science Center , Kingsville , TX , USA
| | - Lih Kuo
- b Department of Medical Physiology, College of Medicine , Texas A&M Health Science Center , Temple , TX , USA ;,c Department of Surgery and Scott & White Eye Institute, College of Medicine , Texas A&M Health Science Center , Temple , TX , USA
| | - Travis Hein
- c Department of Surgery and Scott & White Eye Institute, College of Medicine , Texas A&M Health Science Center , Temple , TX , USA
| | - Srinath Palakurthi
- a Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy , Texas A&M Health Science Center , Kingsville , TX , USA
| |
Collapse
|