1
|
Silva ACQ, Mendes M, Vitorino C, Montejo U, Alonso-Varona A, Silvestre AJD, Vilela C, Freire CSR. Trilayered nanocellulose-based patches loaded with acyclovir and hyaluronic acid for the treatment of herpetic lesions. Int J Biol Macromol 2024; 277:133843. [PMID: 39032882 DOI: 10.1016/j.ijbiomac.2024.133843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
This study focuses on the preparation of layered bacterial nanocellulose (BNC) patches for drug delivery and wound healing in the context of herpes labialis. Nanostructured patches were prepared by selective aqueous diffusion of acyclovir (ACV, antiviral drug), hyaluronic acid (HA, skin healing promoter), and glycerol (GLY, plasticizer and humectant) in the BNC network, followed by assembly into trilayered patches with ACV on the central layer of the patch (ACVT) or divided between two layers (ACVH), to modulate drug release. Both patches showed good layers' adhesion and thermal stability (125 °C), UV barrier properties, good static (Young's modulus up to 0.9 GPa (dry) and 0.7 GPa (wet)) and dynamic mechanical performance, and adhesion strength (21 kPa) comparable to or higher than other materials and commercial adhesives for wound healing. In vitro drug dissolution showed faster ACV release from the ACVH patch (77 ± 5 %, 10 min) than from the ACVT one (50 ± 7 %), suggesting efficient drug delivery. ACVH closely resembled a commercial cream formulation in terms of release and permeation profiles. The patches were non-cytotoxic toward L929 fibroblasts, promoting cell adhesion and wound closure (in vitro). These results underscore the dual-action potential of the layered patches for managing herpetic lesions.
Collapse
Affiliation(s)
- Ana C Q Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Unai Montejo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Ana Alonso-Varona
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Armando J D Silvestre
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Vilela
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carmen S R Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Lotlikar VB, Sharma S, Londhe VY. Unlocking relief: formulation, characterization, and in vivo assessment of salicylic acid-loaded microemulgel for psoriasis management. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03447-3. [PMID: 39325151 DOI: 10.1007/s00210-024-03447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Psoriasis, a chronic skin condition, affects around 2-5% of the population. Topical corticosteroids treat the vast majority of cases (> 80%). Because of the physicochemical characteristics of the damaged stratum corneum, all treatments are ineffective. Nevertheless, systemic immunosuppression, the oral strategy, has substantial adverse effects that may be avoided using the topical procedure. The research sought to determine if a salicylic acid-loaded microemulsion-based gel (emulgel) could successfully infiltrate and maintain salicylic acid in skin tissue for psoriasis treatment. The pseudo-ternary phase was generated in different Smix ratios (1:1, 2:1, and 3:1; Labrasol:Transcutol® P). At a 3:1 ratio, the Smix had a substantial microemulsion area. Microemulsion was characterized for particle size, pH, etc. For topical application, the selected microemulsion was combined with Carbopol 940 gel, and ex vivo permeation and drug retention study were conducted. The effectiveness of the developed gel was checked using the IMQ-induced psoriatic plaque model. Salicylic acid microemulsion has an average globule size of 79.72 nm, pH 5.93, and 100% transmittance. In an ex vivo diffusion study, emulgel revealed greater penetration and more drug retention than ordinary salicylic acid gel. The emulgel was non-irritating on the skin of rats. In vivo studies revealed significant antipsoriatic activity of microemulsion-loaded gel compared to the marketed product. Developed emulgel was considered a potential product for an effective and safe way to administer salicylic acid for the treatment of skin diseases such as psoriasis.
Collapse
Affiliation(s)
- Viswanath Baboy Lotlikar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, Maharashtra, India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, Maharashtra, India
| | - Vaishali Y Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
3
|
Osanloo M, Pishamad S, Ghanbariasad A, Zarenezhad E, Alipanah M, Alipanah H. Comparison effects of Ferula gummosa essential oil and Beta-pinene Alginate nanoparticles on human melanoma and breast cancer cells proliferation and apoptotic index in short term normobaric hyperoxic model. BMC Complement Med Ther 2023; 23:428. [PMID: 38017466 PMCID: PMC10683214 DOI: 10.1186/s12906-023-04266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Breast cancer is the most common cancer among women, and melanoma is the most dreadful type of skin cancer. Due to the side effects of chemotherapy drugs, the development of new herbal nano-medicines has been considered. METHODS This study first investigated the chemical composition of Ferula gummosa essential oil using GC-MS analysis; β-pinene, with 61.57%, was the major compound. Next, alginate nanoparticles containing β-pinene and the essential oil with particle sizes of 174 ± 7 and 137 ± 6 nm were prepared. Meanwhile, their zeta potentials were 12.4 ± 0.7 and 28.1 ± 1 mV. Besides, the successful loading of β-pinene and the essential oil in nanoparticles was confirmed using ATR-FTIR analysis. After that, their effects on viability and apoptotic index of human melanoma and breast cancer cells were investigated in normoxia and normobaric hyperoxia (NBO) conditions. RESULTS The best efficacy on A-375 and MDA-MB-231 cells was achieved by alginate nanoparticles containing the EO at hyperoxic and normoxia conditions; IC50 76 and 104 µg/mL. Besides, it affected apoptosis-involved genes; as Bax/Bcl-2 ratio was higher than 1, conditions for induction of apoptosis were obtained. Higher sensitivity was observed in the A-375 cell line treated with Alg-EO in the NBO model. CONCLUSIONS Alginate nanoparticles containing F. gummosa EO could be considered for further investigation in anticancer studies. Also, it may be expected that NBO can be a new strategy for delaying cancer progression and improving nanotherapy efficacy.
Collapse
Affiliation(s)
- Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Somayyeh Pishamad
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Ghanbariasad
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Media Alipanah
- Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Hiva Alipanah
- Department of Physiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
4
|
AlMulhim FM, Nair AB, Aldhubiab B, Shah H, Shah J, Mewada V, Sreeharsha N, Jacob S. Design, Development, Evaluation, and In Vivo Performance of Buccal Films Embedded with Paliperidone-Loaded Nanostructured Lipid Carriers. Pharmaceutics 2023; 15:2530. [PMID: 38004510 PMCID: PMC10674218 DOI: 10.3390/pharmaceutics15112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
The therapeutic effectiveness of paliperidone in the treatment of schizophrenia has been limited by its poor oral bioavailability; hence, an alternative route could be appropriate. This study investigates the feasibility of developing a buccal film impregnated with paliperidone-loaded nanostructured lipid carriers (NLCs) and assesses the potential to enhance its bioavailability. Box-Behnken-based design optimization of NLCs was performed by examining the particles' physical characteristics. The polymeric film was used to load optimized NLCs, which were then assessed for their pharmaceutical properties, permeability, and pharmacokinetics. The optimization outcomes indicated that selected formulation variables had a considerable (p < 0.05) impact on responses such as particle size, entrapment efficiency, and % drug release. Desired characteristics such as a negative charge, higher entrapment efficiency, and nanoparticles with ideal size distribution were shown by optimized NLC dispersions. The developed film demonstrated excellent physico-mechanical properties, appropriate texture, good drug excipient compatibility (chemically stable formulation), and amorphous drug nature. A sustained Weibull model drug release (p < 0.0005) and superior flux (~5-fold higher, p < 0.005) were seen in NLC-loaded film compared to plain-drug-loaded film. The pharmacokinetics profile in rabbits supports the goal of buccal therapy as evidenced by significantly higher AUC0-12 (p < 0.0001) and greater relative bioavailability (236%) than the control. These results support the conclusion that paliperidone-loaded NLC buccal film has the potential to be an alternate therapy for its effective administration in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Fahad Mohammed AlMulhim
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.M.A.); (B.A.); (N.S.)
- Department of Pharmacy Services, Johns Hopkins Aramco Health Care (JHAH), Dharan 34464, Saudi Arabia
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.M.A.); (B.A.); (N.S.)
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.M.A.); (B.A.); (N.S.)
| | - Hiral Shah
- Department of Pharmaceutics, Parul College of Pharmacy and Research, Parul University, Ahmedabad 380058, India;
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India; (J.S.); (V.M.)
| | - Vivek Mewada
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India; (J.S.); (V.M.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.M.A.); (B.A.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| |
Collapse
|
5
|
Palezi SC, Fernandes SS, Martins VG. Oral disintegration films: applications and production methods. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2539-2548. [PMID: 37599841 PMCID: PMC10439052 DOI: 10.1007/s13197-022-05589-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/17/2022] [Accepted: 08/28/2022] [Indexed: 08/22/2023]
Abstract
The use of orally disintegrating films (ODF) as a vehicle for the release of active compounds has drawn attention due to the advantages such as ease of swallowing, precise dosage, low thickness, flexibility, greater comfort and acceptability by the patient in relation to oral tablets, for do not require water for administration, it is ideal for people with difficulty in swallowing. In this review, recent advances in ODFs, their applications and production methods will be presented. The production of ODFs uses polymers, plasticizers and active compounds. Among the compounds added to the film that can affect its properties, the polymer used has a strong influence on the disintegration time and on the controlled release of active principles. Polymers used for the production of oral films must be non-toxic, have good wettability and spreadability, and may be of synthetic or natural origin. Regarding the methods used in the production of ODFs, those currently used are solvent evaporation and hot extrusion. However, one of the great challenges for the production of oral films is the scale up, from laboratory to industrial scale, as factors such as heating, mixing speed and temperatures can lead to changes in film quality. Recently, ODFs have been developed as carriers of natural compounds such as vitamins, phenolic compounds, antioxidant and antimicrobial activity. Thus, it was found that orally disintegrating films are an alternative for the release of active compounds, different from those already existing, which justifies the growing interest in this type of film.
Collapse
Affiliation(s)
- Simone Canabarro Palezi
- School of Chemistry and Food Engineering, Federal University of Rio Grande (FURG), Avenida Itália km 8, Carreiros, Rio Grande, RS 96203900 Brazil
| | - Sibele Santos Fernandes
- School of Chemistry and Food Engineering, Federal University of Rio Grande (FURG), Avenida Itália km 8, Carreiros, Rio Grande, RS 96203900 Brazil
| | - Vilásia Guimarães Martins
- School of Chemistry and Food Engineering, Federal University of Rio Grande (FURG), Avenida Itália km 8, Carreiros, Rio Grande, RS 96203900 Brazil
| |
Collapse
|
6
|
Szyk P, Czarczynska-Goslinska B, Mlynarczyk DT, Ślusarska B, Kocki T, Ziegler-Borowska M, Goslinski T. Polymer-Based Nanoparticles as Drug Delivery Systems for Purines of Established Importance in Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2647. [PMID: 37836288 PMCID: PMC10574807 DOI: 10.3390/nano13192647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Many purine derivatives are active pharmaceutical ingredients of significant importance in the therapy of autoimmune diseases, cancers, and viral infections. In many cases, their medical use is limited due to unfavorable physicochemical and pharmacokinetic properties. These problems can be overcome by the preparation of the prodrugs of purines or by combining these compounds with nanoparticles. Herein, we aim to review the scientific progress and perspectives for polymer-based nanoparticles as drug delivery systems for purines. Polymeric nanoparticles turned out to have the potential to augment antiviral and antiproliferative effects of purine derivatives by specific binding to receptors (ASGR1-liver, macrophage mannose receptor), increase in drug retention (in eye, intestines, and vagina), and permeation (intranasal to brain delivery, PEPT1 transport of acyclovir). The most significant achievements of polymer-based nanoparticles as drug delivery systems for purines were found for tenofovir disoproxil in protection against HIV, for acyclovir against HSV, for 6-mercaptopurine in prolongation of mice ALL model life, as well as for 6-thioguanine for increased efficacy of adoptively transferred T cells. Moreover, nanocarriers were able to diminish the toxic effects of acyclovir, didanosine, cladribine, tenofovir, 6-mercaptopurine, and 6-thioguanine.
Collapse
Affiliation(s)
- Piotr Szyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| | - Barbara Ślusarska
- Department of Family and Geriatric Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| |
Collapse
|
7
|
Desai DD, Manikkath J, Lad H, Kulkarni M, Manikkath A, Radhakrishnan R. Nanotechnology-based mucoadhesive and mucus-penetrating drug-delivery systems for transbuccal drug delivery. Nanomedicine (Lond) 2023; 18:1495-1514. [PMID: 37830424 DOI: 10.2217/nnm-2023-0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Buccal drug-delivery systems present a promising approach for the drug delivery to the buccal mucosa, addressing oral cavity-specific problems, enabling systemic delivery and minimizing adverse effects on biological systems. Numerous strategies have been proposed to load drug-containing nanoparticles (NPs) to the buccal mucosa for local and systemic applications. There has been considerable interest in the development of mucoadhesive buccal formulations, particularly hydrogel composites utilizing mucoadhesive films incorporating NPs. Drug permeability and controlled drug release through buccal drug delivery continues to pose a challenge despite the availability of various remedies. This review highlights the need for, mechanisms and latest advances in NP-based transbuccal drug delivery with a focus on various pathological disorders and examples and limitations of the different methods.
Collapse
Affiliation(s)
- Digvijay Dattatray Desai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Hitesh Lad
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Mugdha Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Aparna Manikkath
- Arthur A Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S102TA, United Kingdom
| |
Collapse
|
8
|
Davut Arpa M, Üstündağ Okur N, Koray Gök M, Özgümüş S, Cevher E. Chitosan-based buccal mucoadhesive patches to enhance the systemic bioavailability of tizanidine. Int J Pharm 2023:123168. [PMID: 37356512 DOI: 10.1016/j.ijpharm.2023.123168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Tizanidine hydrochloride (TZN) is a muscle relaxant used to treat a variety of disorders such as painful muscle spasms and chronic spasticity. TZN has low oral bioavailability due to extensive first-pass metabolism and is used orally at a dose of 6-24 mg per day. In the present study, buccal patches were prepared by solvent casting method using chitosan glutamate (Chi-Glu) and novel chitosan azelate (Chi-Aze) which was synthesised in-house for the first time, to enhance the bioavailability of TZN by bypassing first-pass metabolism. The characterisation, mucoadhesion and drug release studies were performed. Chi-Aze patches retained their integrity longer in the buccal medium and showed higher ex vivo drug permeability compared to that prepared with Chi-Glu. In vivo studies revealed that buccal formulation fabricated with Chi-Aze (3%) showed approx 3 times more bioavailability than the orally administered commercial product. Results of the studies indicate that Chi-Aze, prepared by conjugation of chitosan and a fatty acid, the patch formulation is a promising buccal mucoadhesive system due to the physical stability in buccal medium, the good mucoadhesiveness and the high TZN bioavailability. Moreover, Chi-Aze patch might be an alternative to oral formulations of TZN to reduce the dose and frequency of drug administration.
Collapse
Affiliation(s)
- Muhammet Davut Arpa
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Technology, 34085, Istanbul, Türkiye
| | - Neslihan Üstündağ Okur
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmaceutical Technology, 34668, Istanbul, Türkiye
| | - Mehmet Koray Gök
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemical Engineering, 34320, Istanbul, Türkiye
| | - Saadet Özgümüş
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemical Engineering, 34320, Istanbul, Türkiye
| | - Erdal Cevher
- Istanbul University, Department of Pharmaceutical Technology, Faculty of Pharmacy, 34116, Istanbul, Türkiye.
| |
Collapse
|
9
|
Nair VV, Cabrera P, Ramírez-Lecaros C, Jara MO, Brayden DJ, Morales JO. Buccal delivery of small molecules and biologics: Of mucoadhesive polymers, films, and nanoparticles - An update. Int J Pharm 2023; 636:122789. [PMID: 36868332 DOI: 10.1016/j.ijpharm.2023.122789] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/08/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023]
Abstract
Buccal delivery of small and large molecules is an attractive route of administration that has been studied extensively over the past few decades. This route bypasses first-pass metabolism and can be used to deliver therapeutics directly to systemic circulation. Moreover, buccal films are efficient dosage forms for drug delivery due to their simplicity, portability, and patient comfort. Films have traditionally been formulated using conventional techniques, including hot-melt extrusion and solvent casting. However, newer methods are now being exploited to improve the delivery of small molecules and biologics. This review discusses recent advances in buccal film manufacturing, using the latest technologies, such as 2D and 3D printing, electrospraying, and electrospinning. This review also focuses on the excipients used in the preparation of these films, with emphasis on mucoadhesive polymers and plasticizers. Along with advances in manufacturing technology, newer analytical tools have also been used for the assessment of permeation of the active agents across the buccal mucosa, the most critical biological barrier and limiting factor of this route. Additionally, preclinical and clinical trial challenges are discussed, and some small molecule products already on the market are explored.
Collapse
Affiliation(s)
- Varsha V Nair
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Pablo Cabrera
- Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Independencia, Santiago 8380494, Chile; Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| | | | - Miguel O Jara
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, Belfield, Dublin D04 V1W8, Ireland
| | - Javier O Morales
- Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Independencia, Santiago 8380494, Chile; Center of New Drugs for Hypertension (CENDHY), Santiago 8380492, Chile; Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile.
| |
Collapse
|
10
|
Sharma D, Sharma S, Akojwar N, Dondulkar A, Yenorkar N, Pandita D, Prasad SK, Dhobi M. An Insight into Current Treatment Strategies, Their Limitations, and Ongoing Developments in Vaccine Technologies against Herpes Simplex Infections. Vaccines (Basel) 2023; 11:vaccines11020206. [PMID: 36851084 PMCID: PMC9966607 DOI: 10.3390/vaccines11020206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus (HSV) infection, the most prevalent viral infection that typically lasts for a lifetime, is associated with frequent outbreaks of oral and genital lesions. Oral herpes infection is mainly associated with HSV-1 through oral contact, while genital herpes originates due to HSV-2 and is categorized under sexually transmitted diseases. Immunocompromised patients and children are more prone to HSV infection. Over the years, various attempts have been made to find potential targets for the prevention of HSV infection. Despite the global distress caused by HSV infections, there are no licensed prophylactic and therapeutic vaccines available on the market against HSV. Nevertheless, there are numerous promising candidates in the pre-clinical and clinical stages of study. The present review gives an overview of two herpes viruses, their history, and life cycle, and different treatments adopted presently against HSV infections and their associated limitations. Majorly, the review covers the recent investigations being carried out globally regarding various vaccine strategies against oral and genital herpes virus infections, together with the recent and advanced nanotechnological approaches for vaccine development. Consequently, it gives an insight to researchers as well as people from the health sector about the challenges and upcoming solutions associated with treatment and vaccine development against HSV infections.
Collapse
Affiliation(s)
- Divya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Supriya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Natasha Akojwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Ayusha Dondulkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Nikhil Yenorkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Deepti Pandita
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Satyendra K. Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Mahaveer Dhobi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| |
Collapse
|
11
|
Tanaka A, Nakano H, Yoneto K, Yoneto C, Furubayashi T, Suzuki K, Okae A, Ueno T, Sakane T. Topical Xerostomia Treatment with Hyaluronate Sheets Containing Pilocarpine. Biol Pharm Bull 2022; 45:403-408. [DOI: 10.1248/bpb.b21-00763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Akiko Tanaka
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University
| | - Hiroyuki Nakano
- Department of Oral Surgery, Osaka Medical and Pharmaceutical University
| | | | | | | | - Kei Suzuki
- Department of Oral Surgery, Osaka Medical and Pharmaceutical University
| | - Azusa Okae
- Department of Oral Surgery, Osaka Medical and Pharmaceutical University
| | - Takaaki Ueno
- Department of Oral Surgery, Osaka Medical and Pharmaceutical University
| | - Toshiyasu Sakane
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University
| |
Collapse
|
12
|
Jillani U, Mudassir J, Ijaz QA, Latif S, Qamar N, Aleem A, Ali E, Abbas K, Wazir MA, Hussain A, Abbas N, Arshad MS. Design and Characterization of Agarose/HPMC Buccal Films Bearing Ondansetron HCl In Vitro and In Vivo: Enhancement Using Iontophoretic and Chemical Approaches. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1662194. [PMID: 35372569 PMCID: PMC8975656 DOI: 10.1155/2022/1662194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/16/2021] [Accepted: 02/24/2022] [Indexed: 11/23/2022]
Abstract
The study was aimed at designing and characterizing the ondansetron hydrochloride (OND) bearing agarose (AG), and hydroxypropyl methyl cellulose (HPMC) mucoadhesive buccal films employing glycerol as a plasticizer. The buccal delivery of ondansetron hydrochloride was remarkably boosted by employing physical (iontophoresis) and chemical enhancement approaches (chemical penetration enhancers). To explore the influence of different formulation components, i.e., agarose, hydroxypropyl methyl cellulose (HPMC), and glycerol on various evaluating parameters, i.e., tensile strength, swelling index, ex vivo mucoadhesion time, and subsequently on in vitro drug release, a D-optimal design was opted. A buccal film bearing OND was mounted on bovine buccal mucosa for ex vivo permeation studies and impact of chemical and physical enhancement techniques on the permeation profile was also analysed. A linear release profile was revealed in in vitro drug release of OND over 60 minutes and outcomes ascertained the direct relationship between HPMC content and in vitro drug release and inverse relationship was depicted by AG content. The FTIR and DSC thermal analysis was executed to determine the physicochemical interactions and results exposed no chemical interactions between drug and polymers. The drug (OND) appeared as tiny crystals on smooth film surface during scanning electron microscopy (SEM) analysis. A notable enhancement in permeation flux, i.e., 761.02 μg/min of OND during ex vivo permeation studies was witnessed after the application of current (0.5-1 mA) without any time lag and with enhancement ratio of 3.107. A time lag of 15 minutes, 19 minutes, and 26 minutes with permeation flux of 475.34 μg/min, 399.35 μg/min, and 244.81 μg/min was observed after chemical enhancer pretreatment with propylene glycol, Tween 80, and passive, respectively. Rabbit was employed as the experimental animal for pharmacokinetic studies (in vivo) and cats for pharmacological activity (in vivo), and the results illustrated the enhanced bioavailablity (2.88 times) in the iontophoresis animal group when compared with the rabbits of control group. Likewise, a remarkable reduction in emesis events was recorded in cats of iontophoresis group. Conclusively, the histopathological examinations on excised buccal mucosa unveiled no severe necrotic or cytopathetic outcomes of current.
Collapse
Affiliation(s)
- Umair Jillani
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Jahanzeb Mudassir
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Qazi Amir Ijaz
- Akson College of Pharmacy, Mirpur University of Science and Technology, Azad Jammu and Kashmir, Pakistan
- College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Sumera Latif
- Institute of Pharmacy, Lahore college for women university, Lahore, Pakistan
| | - Nadia Qamar
- College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Ambreen Aleem
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Ejaz Ali
- College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Khizar Abbas
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Amjad Hussain
- College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Nasir Abbas
- College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
13
|
|
14
|
Wang S, Gao Z, Liu L, Li M, Zuo A, Guo J. Preparation, in vitro and in vivo evaluation of chitosan-sodium alginate-ethyl cellulose polyelectrolyte film as a novel buccal mucosal delivery vehicle. Eur J Pharm Sci 2022; 168:106085. [PMID: 34856348 DOI: 10.1016/j.ejps.2021.106085] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/22/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
Abstract
This paper describes the development of a film comprising chitosan (CS), sodium alginate (SA), and ethyl cellulose (EC) for buccal mucosal administration. A film of CS-SA unidirectional release drug-containing water-repellent layer EC was produced by interfacial reaction solvent-drying technique using self-made equipment. The CS-SA-EC film had superior mechanical properties compared to CS-EC and SA-EC films. The existence of the amide bond was confirmed by FT-IR. DSC confirmed that the drug was dispersed in the carrier material in an amorphous form. The drug release studies emerged that the model drugs from CS-SA-EC films presented better release properties. The Ritger-Peppas model best describes all ratios of drugs release mechanisms. The permeability characteristics of the films were evaluated in the TR146 cells model and the rabbit buccal mucosae. The cumulative penetration amounts of the model drugs were significantly increased. The permeability mechanism of the film was studied preliminarily using immunofluorescence and Western Blot. The results showed that the film inhibited the expression of ZO-1 protein, and the expressive trend of ZO-1 protein was consistent with the results of in vitro permeation experiments. The pharmacokinetics of the drugs loaded films were evaluated and compared with oral administration in rats. The relative bioavailability of the model drugs was 246.00% (Zolmitriptan) and 142.12% (Etodolac) relative to oral administration. The results of this study demonstrate the potential of CS-SA-EC vehicle in buccal mucosa drug delivery.
Collapse
Affiliation(s)
- Shuangqing Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lei Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Mingxin Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Along Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Yanbian Medical and Health Industry Pilot Base, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Yanbian K&D Biotechnology Co., Ltd. Yanji, 133002, Jilin Province, China.
| | - Jianpeng Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Yanbian Medical and Health Industry Pilot Base, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
15
|
Golestannejad Z, Khozeimeh F, Mehrasa M, Mirzaeei S, Sarfaraz D. A novel drug delivery system using acyclovir nanofiber patch for topical treatment of recurrent herpes labialis: A randomized clinical trial. Clin Exp Dent Res 2021; 8:184-190. [PMID: 34865318 PMCID: PMC8874070 DOI: 10.1002/cre2.512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 09/24/2021] [Accepted: 10/16/2021] [Indexed: 12/04/2022] Open
Abstract
Objectives Topical treatment with acyclovir cream has shown low efficacy in recent studies. Nano drug delivery systems, have received much attention in recent decades. The aim of this study was to compare the efficacy of acyclovir nanofiber patch with acyclovir cream. Material and Methods In this double‐blind three‐armed randomized clinical trial, a total of 60 patients with recurrent labial herpes, were randomly divided into three groups, each consisting of 20. The patients in the first, second, and third groups were treated with acyclovir nanofiber patch, placebo nanofiber patch, and acyclovir cream, respectively. A numerical scale was used by the patients to record the self‐reported symptoms. Symptoms score, crusting time and healing time were assessed by the clinician. Kruskal‐Wallis test was used to compare the symptoms between the three groups, a survival test was also performed to evaluate the crusting and healing time. Data were analyzed in SPSS V22 at P‐value < 0.05. Results The mean scores of symptoms at baseline were 1.6, 1.5, and 1.4 in the first, second, and third groups, respectively. The symptoms were not significantly different between the three groups on different treatment days. The mean crusting time was 2.3, 2.4, and 2.6 days in the three groups, and the mean healing time was 7.4, 7.2, and 7.7 days, respectively. Crusting time and healing time were not significantly different between the three groups. Conclusions Acyclovir nanofiber patches are recommended for accelerating symptom relief in recurrent labial herpes, however, they are not effective in shortening the crusting or healing time. Clinical Trial Registration Number: IRCT20141124020073N2. Registered in: Iranian Registry of Clinical Trials (www.irct.ir).
Collapse
Affiliation(s)
- Zahra Golestannejad
- Department of Oral Medicine, Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faezeh Khozeimeh
- Department of Oral Medicine, Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehrasa
- Department of Biotechnology, School of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Shahla Mirzaeei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dorna Sarfaraz
- Dental Students Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Malik NS, Ahmad M, Alqahtani MS, Mahmood A, Barkat K, Khan MT, Tulain UR, Rashid A. β-cyclodextrin chitosan-based hydrogels with tunable pH-responsive properties for controlled release of acyclovir: design, characterization, safety, and pharmacokinetic evaluation. Drug Deliv 2021; 28:1093-1108. [PMID: 34114907 PMCID: PMC8205001 DOI: 10.1080/10717544.2021.1921074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
In this work, series of pH-responsive hydrogels (FMA1-FMA9) were synthesized, characterized, and evaluated as potential carrier for oral delivery of an antiviral drug, acyclovir (ACV). Different proportions of β-cyclodextrin (β-CD), chitosan (CS), methacrylic acid (MAA) and N' N'-methylenebis-acrylamide (MBA) were used to fabricate hydrogels via free radical polymerization technique. Fourier transform infrared spectroscopy confirmed fabrication of new polymeric network, with successful incorporation of ACV. Scanning electron microscopy (SEM) indicated presence of slightly porous structure. Thermal analysis indicated enhanced thermal stability of polymeric network. Swelling studies were carried out at 37 °C in simulated gastric and intestinal fluids. The drug release data was found best fit to zero-order kinetics. The preliminary investigation of developed hydrogels showed a pH-dependent swelling behavior and drug release pattern. Acute oral toxicity study indicated no significant changes in behavioral, clinical, or histopathological parameters of Wistar rats. Pharmacokinetic study indicated that developed hydrogels caused a significant increase in oral bioavailability of ACV in rabbit plasma as compared to oral suspension when both were administered at a single oral dose of 20 mg kg-1 bodyweight. Hence, developed hydrogel formulation could be used as potential candidate for controlled drug delivery of an antiviral drug acyclovir.
Collapse
Affiliation(s)
- Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Mahmood Ahmad
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Mohammed S. Alqahtani
- Department of Pharmaceutics, Nanobiotechnology Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Muhammad Tariq Khan
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | | | - Ayesha Rashid
- Department of Pharmacy, The Women University, Multan, Pakistan
| |
Collapse
|
17
|
Alaei S, Omidi Y, Omidian H. In vitro evaluation of adhesion and mechanical properties of oral thin films. Eur J Pharm Sci 2021; 166:105965. [PMID: 34375679 DOI: 10.1016/j.ejps.2021.105965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/16/2021] [Accepted: 08/05/2021] [Indexed: 12/01/2022]
Abstract
Oral drug delivery is often challenged with enzymatic degradation of drug molecules in the gastrointestinal tract and high first-pass metabolism, resulting in low bioavailability. Delivery of drug molecules via the oral cavity mucosa is considered a viable option to enhance bioavailability. One of the relatively new dosage forms for transmucosal drug delivery is the oral thin film (OTF) with mucoadhesive properties that offers several advantages over conventional dosage forms, including faster dissolution, higher patient compliance, and extended oral retention by reduced salivary washout. Mucoadhesive OTFs should have sufficient muco-adhesiveness as well as suitable mechanical properties for their best performance, thus such characterization is critical in the successful design and development of OTFs. However, there is currently no FDA or USP-recommended analytical procedure or standard available for evaluating adhesiveness and mechanical properties of mucoadhesive OTFs. Therefore, we aimed to develop a fast and reliable in vitro method capable of differentiating various OTFs in terms of their adhesive strengths using a texture analyzer. We found that an in vitro gel substrate composed of 4% w/v gellan gum and 2% w/v glycerin could be used to discriminate between the adhesive features of the tested film samples. Also, our studies show that the adhesion test parameters of 0.96 N target force, probe speed of 0.1 mm/s, holding time of 15 s, and conditioning medium volume of 200 μL while using the said substrate could successfully differentiate between the adhesion strength of the OTF samples. We further examined the film samples for their physicomechanical properties to obtain a tangible and practical range of mechanical values for pharmaceutical OTFs using the puncture test and folding endurance test. We found a breaking factor above 34.5 N/mm, elongation to puncture less than 5.55% and folding endurance of at least 50 folds can be used as a starting point when designing and manufacturing OTFs.
Collapse
Affiliation(s)
- Samaneh Alaei
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Yadollah Omidi
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Hamid Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States.
| |
Collapse
|
18
|
Jacob S, Nair AB, Boddu SHS, Gorain B, Sreeharsha N, Shah J. An Updated Overview of the Emerging Role of Patch and Film-Based Buccal Delivery Systems. Pharmaceutics 2021; 13:1206. [PMID: 34452167 PMCID: PMC8399227 DOI: 10.3390/pharmaceutics13081206] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Buccal mucosal membrane offers an attractive drug-delivery route to enhance both systemic and local therapy. This review discusses the benefits and drawbacks of buccal drug delivery, anatomical and physiological aspects of oral mucosa, and various in vitro techniques frequently used for examining buccal drug-delivery systems. The role of mucoadhesive polymers, penetration enhancers, and enzyme inhibitors to circumvent the formulation challenges particularly due to salivary renovation cycle, masticatory effect, and limited absorption area are summarized. Biocompatible mucoadhesive films and patches are favored dosage forms for buccal administration because of flexibility, comfort, lightness, acceptability, capacity to withstand mechanical stress, and customized size. Preparation methods, scale-up process and manufacturing of buccal films are briefed. Ongoing and completed clinical trials of buccal film formulations designed for systemic delivery are tabulated. Polymeric or lipid nanocarriers incorporated in buccal film to resolve potential formulation and drug-delivery issues are reviewed. Vaccine-enabled buccal films have the potential ability to produce both antibodies mediated and cell mediated immunity. Advent of novel 3D printing technologies with built-in flexibility would allow multiple drug combinations as well as compartmentalization to separate incompatible drugs. Exploring new functional excipients with potential capacity for permeation enhancement of particularly large-molecular-weight hydrophilic drugs and unstable proteins, oligonucleotides are the need of the hour for rapid advancement in the exciting field of buccal drug delivery.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| |
Collapse
|
19
|
Mucoadhesion and Mechanical Assessment of Oral Films. Eur J Pharm Sci 2021; 159:105727. [DOI: 10.1016/j.ejps.2021.105727] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
|
20
|
Current status and future of delivery systems for prevention and treatment of infections in the oral cavity. Drug Deliv Transl Res 2021; 11:1703-1734. [PMID: 33770415 PMCID: PMC7995675 DOI: 10.1007/s13346-021-00961-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/23/2022]
Abstract
Oral health reflects the general health, and it is fundamental to well-being and quality of life. An infection in the oral cavity can be associated with serious complications in human health. Local therapy of these infections offers many advantages over systemic drug administration, targeting directly to the diseased area while minimizing systemic side effects. Specialized drug delivery systems into the oral cavity have to be designed in such a fashion that they resist to the aqueous environment that is constantly bathed in saliva and subject to mechanical forces. Additionally, a prolonged release of drug should also be provided, which would enhance the efficacy and also decrease the repeated dosing. This review is aimed to summarize the current most relevant findings related to local drug delivery of various drug groups for prevention and treatment of infections (viral, bacterial, fungal) and infection-related manifestations in the oral cavity. Current therapeutic challenges in regard to effective local drug delivery systems will be discussed, and the recent approaches to overcome these obstacles will be reviewed. Finally, future prospects will be overviewed to promote novel strategies that can be implemented in clinical management for prevention and treatment of oral infections.
Collapse
|
21
|
Hu S, Pei X, Duan L, Zhu Z, Liu Y, Chen J, Chen T, Ji P, Wan Q, Wang J. A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery. Nat Commun 2021; 12:1689. [PMID: 33727548 PMCID: PMC7966365 DOI: 10.1038/s41467-021-21989-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
Administration of drugs via the buccal route has attracted much attention in recent years. However, developing systems with satisfactory adhesion under wet conditions and adequate drug bioavailability still remains a challenge. Here, we propose a mussel-inspired mucoadhesive film. Ex vivo models show that this film can achieve strong adhesion to wet buccal tissues (up to 38.72 ± 10.94 kPa). We also demonstrate that the adhesion mechanism of this film relies on both physical association and covalent bonding between the film and mucus. Additionally, the film with incorporated polydopamine nanoparticles shows superior advantages for transport across the mucosal barrier, with improved drug bioavailability (~3.5-fold greater than observed with oral delivery) and therapeutic efficacy in oral mucositis models (~6.0-fold improvement in wound closure at day 5 compared with that observed with no treatment). We anticipate that this platform might aid the development of tissue adhesives and inspire the design of nanoparticle-based buccal delivery systems.
Collapse
Affiliation(s)
- Shanshan Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lunliang Duan
- National Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanhua Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Zhou J, Krishnan N, Jiang Y, Fang RH, Zhang L. Nanotechnology for virus treatment. NANO TODAY 2021; 36:101031. [PMID: 33519948 PMCID: PMC7836394 DOI: 10.1016/j.nantod.2020.101031] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 04/14/2023]
Abstract
The continued emergence of novel viruses poses a significant threat to global health. Uncontrolled outbreaks can result in pandemics that have the potential to overburden our healthcare and economic systems. While vaccination is a conventional modality that can be employed to promote herd immunity, antiviral vaccines can only be applied prophylactically and do little to help patients who have already contracted viral infections. During the early stages of a disease outbreak when vaccines are unavailable, therapeutic antiviral drugs can be used as a stopgap solution. However, these treatments do not always work against emerging viral strains and can be accompanied by adverse effects that sometimes outweigh the benefits. Nanotechnology has the potential to overcome many of the challenges facing current antiviral therapies. For example, nanodelivery vehicles can be employed to drastically improve the pharmacokinetic profile of antiviral drugs while reducing their systemic toxicity. Other unique nanomaterials can be leveraged for their virucidal or virus-neutralizing properties. In this review, we discuss recent developments in antiviral nanotherapeutics and provide a perspective on the application of nanotechnology to the SARS-CoV-2 outbreak and future virus pandemics.
Collapse
Affiliation(s)
- Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
23
|
Gurgel Assis MS, Fernandes Pedrosa TC, de Moraes FS, Caldeira TG, Pereira GR, de Souza J, Ruela ALM. Novel Insights to Enhance Therapeutics With Acyclovir in the Management of Herpes Simplex Encephalitis. J Pharm Sci 2021; 110:1557-1571. [PMID: 33450220 DOI: 10.1016/j.xphs.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022]
Abstract
Acyclovir is an antiviral drug poorly absorbed in the gastrointestinal tract due to its hydrophilicity, with low oral bioavailability (~20%). Although acyclovir is prescribed in the management of herpes simplex encephalitis (HSE), the disease has a poor prognosis, particularly if the treatment is delayed, reaching mortality rates of 70% if left untreated. Thus, high acyclovir doses are administered by intravenous (IV) infusion, usually at a dosage of 10 mg kg-1 8-hourly in adults with normal renal function. However, the mortality related to HSE treated with acyclovir remains high (~20%) and permanent sequelae are commonly reported after 1 year (~50%). This review analyzed clinical trials following IV acyclovir administration. Novel insights aiming to improve drug bioavailability were reviewed, including acyclovir or its prodrugs, leading to the systemic distribution of the drug or drug targeting. Much research effort has been made to improve antiviral therapy, searching for delivery systems increasing acyclovir bioavailability by non-invasive pathways, such as oral and nasal pathways, or parenterally administered nanotechnology-based systems leading to drug targeting. Nanocarriers administered by non-invasive pathways represent feasible alternatives to treat HSE, even though not be industrially manufactured yet.
Collapse
Affiliation(s)
- Maria Silvia Gurgel Assis
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | | | - Fernanda Segurasse de Moraes
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Tamires Guedes Caldeira
- Graduate Program in Pharmaceutical Sciences-CiPharma, School of Pharmacy, UFOP, Minas Gerais, Brazil
| | - Gislaine Ribeiro Pereira
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Jacqueline de Souza
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - André Luís Morais Ruela
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
24
|
Aguilera-Correa JJ, Esteban J, Vallet-Regí M. Inorganic and Polymeric Nanoparticles for Human Viral and Bacterial Infections Prevention and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E137. [PMID: 33435597 PMCID: PMC7826792 DOI: 10.3390/nano11010137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Infectious diseases hold third place in the top 10 causes of death worldwide and were responsible for more than 6.7 million deaths in 2016. Nanomedicine is a multidisciplinary field which is based on the application of nanotechnology for medical purposes and can be defined as the use of nanomaterials for diagnosis, monitoring, control, prevention, and treatment of diseases, including infectious diseases. One of the most used nanomaterials in nanomedicine are nanoparticles, particles with a nano-scale size that show highly tunable physical and optical properties, and the capacity to a wide library of compounds. This manuscript is intended to be a comprehensive review of the available recent literature on nanoparticles used for the prevention and treatment of human infectious diseases caused by different viruses, and bacteria from a clinical point of view by basing on original articles which talk about what has been made to date and excluding commercial products, but also by highlighting what has not been still made and some clinical concepts that must be considered for futures nanoparticles-based technologies applications.
Collapse
Affiliation(s)
- John Jairo Aguilera-Correa
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Research Institute Hospital 12 de Octubre (i+12), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, Av. Reyes Católicos 2, 28040 Madrid, Spain;
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Research Institute Hospital 12 de Octubre (i+12), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
25
|
Islam N, Irfan M, Khan SUD, Syed HK, Iqbal MS, Khan IU, Mahdy A, Raafat M, Hossain MA, Inam S, Munir R, Ishtiaq M. Poloxamer-188 and d-α-Tocopheryl Polyethylene Glycol Succinate (TPGS-1000) Mixed Micelles Integrated Orodispersible Sublingual Films to Improve Oral Bioavailability of Ebastine; In Vitro and In Vivo Characterization. Pharmaceutics 2021; 13:54. [PMID: 33406587 PMCID: PMC7823785 DOI: 10.3390/pharmaceutics13010054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Orodispersible sublingual films (OSFs) composed of hydrophilic polymers were loaded with poloxamer-188 and d-α-tocopheryl polyethylene glycol succinate (TPGS-1000) mixed micelles to improve the oral bioavailability of a poorly soluble drug, ebastine (EBT). Mixed micelles formed by thin-film hydration method were incorporated into orodispersible sublingual film, consisting of HPMC and glycerol, using solvent casting technique. The mixed micelles and films were thoroughly evaluated for physicochemical characterization (size, polydispersity index, zeta potential, entrapment efficiency, thickness, weight, surface pH studies, disintegration time, swelling indices, mechanical properties, FTIR, PXRD, DSC, SEM, AFM, in vitro drug release, in vivo bioavailability, and toxicological studies). The results showed that the average particle size of mixed micelles was 73 nm. The mean zeta potential and PDI of the optimal mixed micelles formulation were -26 mV and 0.16, respectively. Furthermore, the maximum entrapment efficiency 82% was attained. The film's disintegration time was in the range of 28 to 102 s in aqueous media. The integrity of micelles was not affected upon incorporation in films. Importantly, the micelles-loaded films revealed rapid absorption, high permeability, and increased bioavailability of EBT as compared to the pure drug. The existence of ebastine loaded mixed micelles in the films enhanced the bioavailability about 2.18 folds as compared to pure drug. Further, the results evidently established in-vitro and in-vivo performance of bioavailability enhancement, biocompatibility, and good safety profile of micelles-loaded orodispersible EBT films. Finally, it was concluded that film loaded with poloxamer-188/TPGS-1000 mixed micelles could be an effective carrier system for enhancing the bioavailability of ebastine.
Collapse
Affiliation(s)
- Nayyer Islam
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia;
| | - Haroon Khalid Syed
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Amina Mahdy
- Pharmacology Department, International School of Medicine, Medipol University, Istanbul 34810, Turkey; or
| | - Mohamed Raafat
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, Makkah P.O. Box 715, Saudi Arabia;
| | - Mohammad Akbar Hossain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al Qura University, Makkah P.O. Box 715, Saudi Arabia;
| | - Sana Inam
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Rabia Munir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Memoona Ishtiaq
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| |
Collapse
|
26
|
Akilesh M S, Wadhwani A. Novel Applications of Nanotechnology in Controlling HIV and HSV Infections. Curr Drug Res Rev 2020; 13:120-129. [PMID: 33238862 DOI: 10.2174/2589977512999201124121931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022]
Abstract
Infectious diseases have been prevalent since many decades and viral pathogens have caused global health crisis and economic meltdown on a devastating scale. High occurrence of newer viral infections in the recent years, in spite of the progress achieved in the field of pharmaceutical sciences defines the critical need for newer and more effective antiviral therapies and diagnostics. The incidence of multi-drug resistance and adverse effects due to the prolonged use of anti-viral therapy is also a major concern. Nanotechnology offers a cutting edge platform for the development of novel compounds and formulations for biomedical applications. The unique properties of nano-based materials can be attributed to the multi-fold increase in the surface to volume ratio at the nano-scale, tunable surface properties of charge and chemical moieties. Idealistic pharmaceutical properties such as increased bioavailability and retention times, lower toxicity profiles, sustained release formulations, lower dosage forms and most importantly, targeted drug delivery can be achieved through the approach of nanotechnology. The extensively researched nano-based materials are metal and polymeric nanoparticles, dendrimers and micelles, nano-drug delivery vesicles, liposomes and lipid based nanoparticles. In this review article, the impact of nanotechnology on the treatment of Human Immunodeficiency Virus (HIV) and Herpes Simplex Virus (HSV) viral infections during the last decade are outlined.
Collapse
Affiliation(s)
- Sai Akilesh M
- Department of Pharmaceutical Biotechnology, JSS Academy of Higher Education & Research - JSS College of Pharmacy, Ooty - 643001, The Nilgiris, Tamil Nadu. India
| | - Ashish Wadhwani
- Department of Pharmaceutical Biotechnology, JSS Academy of Higher Education & Research - JSS College of Pharmacy, Ooty - 643001, The Nilgiris, Tamil Nadu. India
| |
Collapse
|
27
|
Shah J, Nair AB, Shah H, Jacob S, Shehata TM, Morsy MA. Enhancement in antinociceptive and anti-inflammatory effects of tramadol by transdermal proniosome gel. Asian J Pharm Sci 2020; 15:786-796. [PMID: 33363633 PMCID: PMC7750831 DOI: 10.1016/j.ajps.2019.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/29/2019] [Accepted: 05/20/2019] [Indexed: 10/31/2022] Open
Abstract
Oral therapy of tramadol, an opiate analgesic, undergoes extensive hepatic metabolism and requires frequent administration. Transdermal therapy by virtue can overcome these issues and can improve the efficacy and reduce abuse liability of tramadol. The aim of this research was to investigate the possibility of transdermal delivery of tramadol by formulating proniosome gel and evaluate its therapeutic potential in vivo. The effect of formulation composition as well as amount of drug on physicochemical characteristics of prepared proniosomes were examined. Best proniosome gel (F4) was selected and evaluated for drug release, stability and transdermal efficacy by ex vivo and in vivo experiments. The vesicles demonstrated optimal properties including spherical shape, nanosize with good entrapment efficiency, adequate zeta potential, higher stability and greater transdermal flux. The amorphization and dispersion of tramadol in the aqueous core of proniosome vesicles was confirmed by differential scanning calorimeter. Release profile of F4 was distinct (P < 0.001) from control and displayed steady and prolonged tramadol release by Fickian diffusion. Transdermal therapy of F4 showed prominent reduction of induced twitches (P < 0.005) in mice and edema (P < 0.05) in rats, as compared to oral tramadol. The improvement in clinical efficacy of tramadol in transdermal therapy is correlated with the pharmacokinetic data observed. In conclusion, the observed improvement in antinociceptive and anti-inflammatory effects from proniosome carriers signifies its potential to be a suitable alternative to oral therapy of tramadol with greater efficacy.
Collapse
Affiliation(s)
- Jigar Shah
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Anroop B. Nair
- College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Corresponding author. College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia. Tel: +966 536 219868.
| | - Hiral Shah
- Arihant School of Pharmacy & BRI, Gandhinagar 382421, India
| | - Shery Jacob
- College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Tamer M. Shehata
- College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Faculty of Pharmacy, University of Zagazig, Zagazig 44519, Egypt
| | - Mohamed Aly Morsy
- College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
28
|
Kłysik K, Pietraszek A, Karewicz A, Nowakowska M. Acyclovir in the Treatment of Herpes Viruses – A Review. Curr Med Chem 2020. [DOI: 10.2174/0929867325666180309105519] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background:
Herpes Simplex (HSV) viruses are widely spread, highly contagious
human pathogens. The statistics indicate that 50-90% of adults worldwide are seropositive for
these viruses, mainly HSV-1 and HSV-2. The primary infection results in the appearance of
watery blisters (cold sores) on the skin, lips, tongue, buccal mucosa or genitals. The ocular
infection is the major cause of corneal blindness in the Western World. Once the HSV virus
enters human body, it cannot be completely eradicated because HSV viruses are able to
change into their latent form which can survive the treatment. The viron resides in trigeminal
ganglia of the host, who becomes vulnerable to the reoccurrence of the disease during the
whole lifespan. The neurotropic and neuro-invasive properties of HSV are responsible for
neurodegenerative illnesses, such as Alzheimer's disease. Acyclovir and its analogues, being
the inhibitors of the viral DNA replication, are the only approved medicines for HSV infection
therapies.
Objective:
The current paper presents the up-to-date overview of the important pharmacological
features of acyclovir, its analogues and their delivery systems including the mechanism of
action, routes of administration, absorption and metabolism, as well as side effects of the therapy.
Conclusion:
Acyclovir remains the gold standard in the treatment of herpes virus infections,
mainly due to the emerging of the new delivery systems improving considerably its bioavailability.
The analogues of acyclovir, especially their esters, characterized by significantly
higher bioavailability and safety, may gradually replace acyclovir in selected applications.
Collapse
Affiliation(s)
- Katarzyna Kłysik
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Aneta Pietraszek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Anna Karewicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Maria Nowakowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
29
|
Ahmed TA, Bawazir AO, Alharbi WS, Safo MK. Enhancement of Simvastatin ex vivo Permeation from Mucoadhesive Buccal Films Loaded with Dual Drug Release Carriers. Int J Nanomedicine 2020; 15:4001-4020. [PMID: 32606661 PMCID: PMC7294046 DOI: 10.2147/ijn.s256925] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Simvastatin (SMV), a hypocholesterolemic agent, suffers from very low bioavailability due to its poor aqueous solubility and extensive first-pass metabolism. METHODS Two SMV carrier systems, namely, polymeric drug inclusion complex (IC) and mixed micelles (MM) nanoparticles, were developed and loaded into mucoadhesive buccal films to enhance SMV bioavailability. The two carrier systems were characterized and their permeation across human oral epithelial cells (OEC) was studied. The effect of IC to MM ratio (X1) and the mucoadhesive polymer concentration (X2) on the cumulative percent of drug released, elongation percent and the mucoadhesive strength, from the prepared mucoadhesive films, were optimized. Ex vivo permeation across bovine mucosal tissue was investigated. The permeation parameters for the in vitro and ex vivo release data were calculated. RESULTS Complexation of SMV with hydroxypropyl beta-cyclodextrin (HP β-CD) was superior to all other polymers as revealed by the equilibrium saturation solubility, stability constant, complexation efficiency and thermodynamic potential. SMV-HP β-CD IC was utilized to develop a saturated polymeric drug solution. Both carrier systems showed enhanced permeation across OEC when compared to pure drug. X1 and X2 were significantly affecting the characteristics of the prepared films. The optimized mucoadhesive buccal film formulation loaded with SMV IC and drug MM nanoparticles demonstrated superior ex vivo permeation when compared to the corresponding pure drug buccal film, and the calculated permeation parameters confirmed this finding. CONCLUSION Mucoadhesive buccal films containing SMV IC and drug MM can be used to improve drug bioavailability; however, additional pharmacokinetic and pharmacodynamic studies are required.
Collapse
Affiliation(s)
- Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Alaa O Bawazir
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Waleed S Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Martin K Safo
- Department of Medicinal Chemistry and the Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA23298, USA
| |
Collapse
|
30
|
Novel and revisited approaches in nanoparticle systems for buccal drug delivery. J Control Release 2020; 320:125-141. [DOI: 10.1016/j.jconrel.2020.01.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/15/2022]
|
31
|
Shkodra-Pula B, Vollrath A, Schubert US, Schubert S. Polymer-based nanoparticles for biomedical applications. FRONTIERS OF NANOSCIENCE 2020. [DOI: 10.1016/b978-0-08-102828-5.00009-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
HPMC- and PLGA-Based Nanoparticles for the Mucoadhesive Delivery of Sitagliptin: Optimization and In Vivo Evaluation in Rats. MATERIALS 2019; 12:ma12244239. [PMID: 31861192 PMCID: PMC6947415 DOI: 10.3390/ma12244239] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/17/2023]
Abstract
Mucoadhesive nanoparticles represent a potential drug delivery strategy to enhance the therapeutic efficacy in oral therapy. This study assessed the prospective of developing HPMC- and PLGA-based nanoparticles using a nanospray drier as a mucoadhesive extended release drug delivery system for sitagliptin and evaluated their potential in an animal model. Nanoparticles were prepared using a Buchi® B-90 nanospray drier. Optimization of particle size was performed using response surface methodology by examining the influence of spray-drying process variables (inlet temperature, feed flow, and polymer concentration) on the particle size. The prepared nanoparticles were characterized for various physicochemical characteristics (yield, drug content, morphology, particle size, thermal, and crystallographic properties) and assessed for drug release, stability, and mucoadhesive efficacy by ex vivo and in vivo studies in rats. A linear model was suggested by the design of the experiments to be the best fit for the generated design and values. The yield was 77 ± 4%, and the drug content was 90.5 ± 3.5%. Prepared nanoparticles showed an average particle size of 448.8 nm, with a narrow particle size distribution, and were wrinkled. Thermal and crystallographic characteristics showed that the drug present in the nanoparticles is in amorphous dispersion. Nanoparticles exhibited a biphasic drug release with an initial rapid release (24.9 ± 2.7% at 30 min) and a prolonged release (98.9 ± 1.8% up to 12 h). The ex vivo mucoadhesive studies confirmed the adherence of nanoparticles in stomach mucosa for a long period. Histopathological assessment showed that the formulation is safe for oral drug delivery. Nanoparticles showed a significantly higher (p < 0.05) amount of sitagliptin retention in the GIT (gastrointestinal tract) as compared to control. The data observed in this study indicate that the prepared mucoadhesive nanoparticles can be an effective alternative delivery system for the oral therapy of sitagliptin.
Collapse
|
33
|
Pinto S, Pintado ME, Sarmento B. In vivo, ex vivo and in vitro assessment of buccal permeation of drugs from delivery systems. Expert Opin Drug Deliv 2019; 17:33-48. [PMID: 31786958 DOI: 10.1080/17425247.2020.1699913] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Buccal mucosa has been described as an attractive site for local and systemic drug delivery, owing its accessibility, safety, and excellent blood supply. The absorption of drugs through buccal mucosa has been assessed by in vivo, ex vivo and in vitro permeability studies, using animal and cell-based models with close resemblance to the human buccal mucosa.Areas covered: This paper focuses on the current in vivo, ex vivo and in vitro permeability studies to analyze the absorption of compounds of interest through buccal mucosa, as well as their advantages and limitations in the preclinical studies of the drugs absorption profiles. The techniques for preparation and preservation of the animal buccal tissue are also discussed to evaluate their interference in the integrity and permeability of the tissues.Expert opinion: Overall, the permeability studies have been useful to evaluate the drugs absorption and to clarify the mechanism of transport of drugs across human buccal mucosa, as well as to explain the enhancement of permeability provided by certain dosage forms. Currently, several researchers have demonstrated particular interest in ex vivo permeability studies, due to their effectiveness in the evaluation of drug absorption and low costs in the acquisition of buccal mucosa samples.
Collapse
Affiliation(s)
- Soraia Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Manuela E Pintado
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto Universitário de Ciências da Saúde, CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal
| |
Collapse
|
34
|
Tran PH, Duan W, Tran TT. Recent developments of nanoparticle-delivered dosage forms for buccal delivery. Int J Pharm 2019; 571:118697. [DOI: 10.1016/j.ijpharm.2019.118697] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/23/2022]
|
35
|
Feitosa RC, Geraldes DC, Beraldo-de-Araújo VL, Costa JSR, Oliveira-Nascimento L. Pharmacokinetic Aspects of Nanoparticle-in-Matrix Drug Delivery Systems for Oral/Buccal Delivery. Front Pharmacol 2019; 10:1057. [PMID: 31607914 PMCID: PMC6771228 DOI: 10.3389/fphar.2019.01057] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/20/2019] [Indexed: 01/01/2023] Open
Abstract
Oral route maintains its predominance among the ones used for drug delivery, especially when medicines are self-administered. If the dosage form is solid, therapy gains in dose precision and drug stability. Yet, some active pharmaceutical substances do not present the required solubility, permeability, or release profile for incorporation into traditional matrices. The combination of nanostructured drugs (nanoparticle [NP]) with these matrices is a new and little-explored alternative, which could bring several benefits. Therefore, this review focused on combined delivery systems based on nanostructures to administer drugs by the oral cavity, intended for buccal, sublingual, gastric, or intestinal absorption. We analyzed published NP-in-matrix systems and compared main formulation characteristics, pharmacokinetics, release profiles, and physicochemical stability improvements. The reported formulations are mainly semisolid or solid polymers, with polymeric or lipid NPs and one active pharmaceutical ingredient. Regarding drug specifics, most of them are poorly permeable or greatly metabolized. The few studies with pharmacokinetics showed increased drug bioavailability and, sometimes, a controlled release rate. From our knowledge, the gathered data make up the first focused review of these trendy systems, which we believe will help to gain scientific deepness and future advancements in the field.
Collapse
Affiliation(s)
- Renata Carvalho Feitosa
- Laboratory of Pharmaceutical Technology (Latef), Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, Brazil.,Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Danilo Costa Geraldes
- Laboratory of Pharmaceutical Technology (Latef), Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, Brazil.,Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Viviane Lucia Beraldo-de-Araújo
- Laboratory of Pharmaceutical Technology (Latef), Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, Brazil
| | - Juliana Souza Ribeiro Costa
- Laboratory of Pharmaceutical Technology (Latef), Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, Brazil.,Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Laura Oliveira-Nascimento
- Laboratory of Pharmaceutical Technology (Latef), Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, Brazil
| |
Collapse
|
36
|
Tian Y, Orlu M, Woerdenbag HJ, Scarpa M, Kiefer O, Kottke D, Sjöholm E, Öblom H, Sandler N, Hinrichs WLJ, Frijlink HW, Breitkreutz J, Visser JC. Oromucosal films: from patient centricity to production by printing techniques. Expert Opin Drug Deliv 2019; 16:981-993. [DOI: 10.1080/17425247.2019.1652595] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yu Tian
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| | - Mine Orlu
- School of Pharmacy, University College London, London, Bloomsbury, UK
| | - Herman J. Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| | | | - Olga Kiefer
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dina Kottke
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Erica Sjöholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI, Finland
| | - Heidi Öblom
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI, Finland
| | - Niklas Sandler
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI, Finland
| | - Wouter L. J. Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - J. Carolina Visser
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| |
Collapse
|
37
|
Emerging strategies for enhancing buccal and sublingual administration of nutraceuticals and pharamaceuticals. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Shah J, Nair AB, Jacob S, Patel RK, Shah H, Shehata TM, Morsy MA. Nanoemulsion Based Vehicle for Effective Ocular Delivery of Moxifloxacin Using Experimental Design and Pharmacokinetic Study in Rabbits. Pharmaceutics 2019; 11:pharmaceutics11050230. [PMID: 31083593 PMCID: PMC6571706 DOI: 10.3390/pharmaceutics11050230] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 11/16/2022] Open
Abstract
Nanoemulsion is one of the potential drug delivery strategies used in topical ocular therapy. The purpose of this study was to design and optimize a nanoemulsion-based system to improve therapeutic efficacy of moxifloxacin in ophthalmic delivery. Moxifloxacin nanoemulsions were prepared by testing their solubility in oil, surfactants, and cosurfactants. A pseudoternary phase diagram was constructed by titration technique and nanoemulsions were obtained with four component mixtures of Tween 80, Soluphor® P, ethyl oleate and water. An experiment with simplex lattice design was conducted to assess the influence of formulation parameters in seven nanoemulsion formulations (MM1–MM7) containing moxifloxacin. Physicochemical characteristics and in vitro release of MM1–MM7 were examined and optimized formulation (MM3) was further evaluated for ex vivo permeation, antimicrobial activity, ocular irritation and stability. Drug pharmacokinetics in rabbit aqueous humor was assessed for MM3 and compared with conventional commercial eye drop formulation (control). MM3 exhibited complete drug release in 3 h by Higuchi diffusion controlled mechanism. Corneal steady state flux of MM3 (~32.01 µg/cm2/h) and control (~31.53 µg/cm2/h) were comparable. Ocular irritation study indicated good tolerance of MM3 and its safety for ophthalmic use. No significant changes were observed in the physicochemical properties of MM3 when stored in the refrigerator for 3 months. The greater aqueous humor concentration (Cmax; 555.73 ± 133.34 ng/mL) and delayed Tmax value (2 h) observed in MM3 suggest a reduced dosing frequency and increased therapeutic efficacy relative to control. The area under the aqueous humor concentration versus time curve (AUC0–8 h) of MM3 (1859.76 ± 424.51 ng·h/mL) was ~2 fold higher (p < 0.0005) than the control, suggesting a significant improvement in aqueous humor bioavailability. Our findings suggest that optimized nanoemulsion (MM3) enhanced the therapeutic effect of moxifloxacin and can therefore be used as a safe and effective delivery vehicle for ophthalmic therapy.
Collapse
Affiliation(s)
- Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Rakesh K Patel
- Shree S.K. Patel College of Pharmaceutical Education and Research, Kherva, Ganpat Vidyanagar, Mehsana, Gujarat 384012, India.
| | - Hiral Shah
- Arihant School of Pharmacy & BRI, Gandhinagar, Gujarat 382421, India.
| | - Tamer M Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, University of Zagazig, Zagazig 44519, Egypt.
| | - Mohamed Aly Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt.
| |
Collapse
|
39
|
Jacob S, Nair AB. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug Dev Res 2018; 79:201-217. [PMID: 30188584 DOI: 10.1002/ddr.21452] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 02/05/2023]
Abstract
Cyclodextrins (CDs) have been widely investigated as a unique pharmaceutical excipient for past few decades and is still explored for new applications. They are highly versatile oligosaccharides which possess multifunctional characteristics, and are mainly used to improve the physicochemical stability, solubility, dissolution rate, and bioavailability of drugs. Stability constant, factors affecting complexation, techniques to enhance complexation efficiency, the preparation methods for molecular inclusion complexes and release of guest molecules are discussed in brief. In addition, different CD derivatives and their pharmacokinetics are elaborated. Further, the significance of CD complex in aqueous solubility, dissolution and bioavailability, stability, and taste masking is explained. The recent advancement of CDs in developing various drug delivery systems is enlightened. Indeed, the potential of CDs by means of inclusion complex formation have widen the applicability of these materials in various drug delivery systems including ocular, osmotic, mucoadhesive, transdermal, nasal, and targeted delivery systems. Feasibility studies have been performed on the benefit of these cyclic oligomers as nanocarriers, a strategy that can modify the drugs with improved physicochemical properties. Studies also demonstrated the feasibility of CDs to self-assemble in the form of stable nanoaggregates, which may extend the scope of CDs in drug delivery to the continually expanding list of new drug entities.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
40
|
Tavakoli A, Ataei-Pirkooh A, Mm Sadeghi G, Bokharaei-Salim F, Sahrapour P, Kiani SJ, Moghoofei M, Farahmand M, Javanmard D, Monavari SH. Polyethylene glycol-coated zinc oxide nanoparticle: an efficient nanoweapon to fight against herpes simplex virus type 1. Nanomedicine (Lond) 2018; 13:2675-2690. [PMID: 30346253 DOI: 10.2217/nnm-2018-0089] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AIM We aimed to determine the possible inhibitory effects of zinc oxide nanoparticles (ZnO-NPs) and polyethylene glycol (PEG)-coated ZnO-NPs (ZnO-PEG-NPs) on herpes simplex virus type 1 (HSV-1). MATERIALS & METHODS PEGylated ZnO-NPs were synthesized by the mechanical method. Antiviral activity was assessed by 50% tissue culture infectious dose (TCID50) and real-time PCR assays. To confirm the antiviral activity of ZnO-NPs on expression of HSV-1 antigens, indirect immunofluorescence assay was also conducted. RESULTS 200 μg/ml ZnO-PEG-NPs could result in 2.5 log10 TCID50 reduction in virus titer, with inhibition rate of approximately 92% in copy number of HSV-1 genomic DNA. CONCLUSION ZnO-PEG-NPs could be proposed as a new agent for efficient HSV-1 inhibition. Our results indicated that PEGylation is effective in reducing cytotoxicity and increasing antiviral activity of nanoparticles.
Collapse
Affiliation(s)
- Ahmad Tavakoli
- Department of Medical Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran 449614535, Iran
| | - Angila Ataei-Pirkooh
- Department of Medical Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran 449614535, Iran
| | - Gity Mm Sadeghi
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Farah Bokharaei-Salim
- Department of Medical Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran 449614535, Iran
| | - Peyman Sahrapour
- Department of Medicine, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Seyed J Kiani
- Department of Medical Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran 449614535, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6716777816, Iran
| | - Mohammad Farahmand
- Department of Medical Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Davod Javanmard
- Department of Medical Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran 449614535, Iran
| | - Seyed H Monavari
- Department of Medical Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran 449614535, Iran
| |
Collapse
|
41
|
|
42
|
Pamornpathomkul B, Ngawhirunpat T, Tekko IA, Vora L, McCarthy HO, Donnelly RF. Dissolving polymeric microneedle arrays for enhanced site-specific acyclovir delivery. Eur J Pharm Sci 2018; 121:200-209. [DOI: 10.1016/j.ejps.2018.05.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/12/2018] [Accepted: 05/13/2018] [Indexed: 01/23/2023]
|
43
|
Castro PM, Sousa F, Magalhães R, Ruiz-Henestrosa VMP, Pilosof AM, Madureira AR, Sarmento B, Pintado ME. Incorporation of beads into oral films for buccal and oral delivery of bioactive molecules. Carbohydr Polym 2018; 194:411-421. [DOI: 10.1016/j.carbpol.2018.04.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022]
|
44
|
Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide. Int J Pharm 2018; 547:593-601. [DOI: 10.1016/j.ijpharm.2018.05.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 01/19/2023]
|
45
|
Abozaid D, Ramadan A, Barakat H, Khalafallah N. Acyclovir lipid nanocapsules gel for oromucosal delivery: A preclinical evidence of efficacy in the chicken pouch membrane model. Eur J Pharm Sci 2018; 121:228-235. [PMID: 29778782 DOI: 10.1016/j.ejps.2018.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/02/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023]
Abstract
The study aimed to develop a patient-friendly acyclovir gel with improved efficacy in viral mouth infections, in response to patients' need for an intraoral acyclovir product. Acyclovir was loaded in lipid nanocapsules in gel form, and formulae were evaluated for oromucosal delivery. Lipid nanocapsules were prepared by the phase inversion method. Formulae were optimized to achieve maximum acyclovir entrapment and minimum acyclovir precipitation. Colloidal properties, and pharmaceutical performance indicators were assessed. Drug-loaded lipid nanocapsules were in the nanorange (39-120 nm), PdI (0.03-0.2), negative zeta potential, and entrapment efficiency (33-64%). Acyclovir (0.3% w/w) lipid nanocapsules gels were prepared using hydroxyethylcellulose (3% w/w). Resulting gel attributes were considered suitable. Lipid nanocapsules gels (0.3% w/w) showed enhanced Ex vivo acyclovir permeation across, and comparable retention in chicken pouch membrane compared to the 5% marketed cream despite lower drug content. The data provides basis for future exploration of lipid nanocapsules as carrier for transmucosal delivery of acyclovir; the enhanced acyclovir retention in chicken pouch membrane, compared to controls, suggests suitability of lipid nanocapsules for drug delivery to the viral lesion within the buccal membrane.
Collapse
Affiliation(s)
- Darine Abozaid
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Alyaa Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Heba Barakat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Nawal Khalafallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
46
|
Goyal AK, Singh R, Chauhan G, Rath G. Non-invasive systemic drug delivery through mucosal routes. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:539-551. [DOI: 10.1080/21691401.2018.1463230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Amit K. Goyal
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Ranjit Singh
- Department of Pharmaceutics, Shobhit University, Meerut, India
| | - Gaurav Chauhan
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, India
- Instituto Tecnologico y de Estudios Superiores de Monterrey, Sensors and Devices Research Group, School of Engineering and Sciences, Monterrey, Mexico
| | - Goutam Rath
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| |
Collapse
|
47
|
Mahdizadeh Barzoki Z, Emam-Djomeh Z, Mortazavian E, Rafiee-Tehrani N, Behmadi H, Rafiee-Tehrani M, Moosavi-Movahedi AA. Determination of diffusion coefficient for released nanoparticles from developed gelatin/chitosan bilayered buccal films. Int J Biol Macromol 2018; 112:1005-1013. [PMID: 29408415 DOI: 10.1016/j.ijbiomac.2018.01.215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 01/21/2018] [Accepted: 01/31/2018] [Indexed: 01/23/2023]
Abstract
This study aims at the mathematical optimization by Box-Behnken statistical design, fabrication by ionic gelation technique and in vitro characterization of insulin nanoparticles containing thiolated N- dimethyl ethyl chitosan (DMEC-Cys) conjugate. Then Optimized insulin nanoparticles were loaded into the buccal film, and in-vitro drug release from films was investigated, and diffusion coefficient was predicted. The optimized nanoparticles were shown to have mean particle size diameter of 148nm, zeta potential of 15.5mV, PdI of 0.26 and AE of 97.56%. Cell viability after incubation with optimized nanoparticles and films were assessed using an MTT biochemical assay. In vitro release study, FTIR and cytotoxicity also indicated that nanoparticles made of this thiolated polymer are suitable candidates for oral insulin delivery.
Collapse
Affiliation(s)
- Zahra Mahdizadeh Barzoki
- Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, PO Box: 4111, 31587-11167 Karaj, Iran
| | - Zahra Emam-Djomeh
- Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, PO Box: 4111, 31587-11167 Karaj, Iran; Center of Excellence for Application of Modern Technologies for Producing Functional Foods and Drinks, Iran.
| | | | | | - Homa Behmadi
- Agricultural Engineering Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | | |
Collapse
|
48
|
|
49
|
Jug M, Hafner A, Lovrić J, Kregar ML, Pepić I, Vanić Ž, Cetina-Čižmek B, Filipović-Grčić J. An overview of in vitro dissolution/release methods for novel mucosal drug delivery systems. J Pharm Biomed Anal 2018; 147:350-366. [DOI: 10.1016/j.jpba.2017.06.072] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 01/12/2023]
|
50
|
Morales JO, Brayden DJ. Buccal delivery of small molecules and biologics: of mucoadhesive polymers, films, and nanoparticles. Curr Opin Pharmacol 2017; 36:22-28. [PMID: 28800417 DOI: 10.1016/j.coph.2017.07.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 01/28/2023]
Abstract
Buccal delivery of macromolecules (biologics) sets a great challenge for researchers. Although several niche small molecule products have been approved as simple sprays, tablets and oral films, it is not simply a case of adapting existing technologies to biologics. Buccal delivery of insulin has reached clinical trials with two approaches: oromucosal sprays of the peptide with permeation enhancers, and embedded gold nanoparticles in a dissolvable film. However, neither of these approaches have led to FDA approvals likely due to poor efficacy, submaximal peptide loading in the dosage form, and to wide intra-subject variability in pharmacokinetics and pharmacodynamics. It is likely however that printed film designs with lower molecular weight stable biotech payloads including lipophilic glucagon-like 1 (GLP-1) agonists and macrocycles with long half-lives will generate greater efficacy than was achieved to date for insulin.
Collapse
Affiliation(s)
- Javier O Morales
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile; Pharmaceutical Biomaterial Research Group, Department of Health Sciences, Luleå University of Technology, Luleå 97187, Sweden.
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|