1
|
Qiao S, Kang Y, Tan X, Zhou X, Zhang C, Lai S, Liu J, Shao L. Nanomaterials-induced programmed cell death: Focus on mitochondria. Toxicology 2024; 504:153803. [PMID: 38616010 DOI: 10.1016/j.tox.2024.153803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Nanomaterials are widely utilized in several domains, such as everyday life, societal manufacturing, and biomedical applications, which expand the potential for nanomaterials to penetrate biological barriers and interact with cells. Multiple studies have concentrated on the particular or improper utilization of nanomaterials, resulting in cellular death. The primary mode of cell death caused by nanotoxicity is programmable cell death, which includes apoptosis, ferroptosis, necroptosis, and pyroptosis. Based on our prior publications and latest research, mitochondria have a vital function in facilitating programmed cell death caused by nanomaterials, as well as initiating or transmitting death signal pathways associated with it. Therefore, this review takes mitochondria as the focal point to investigate the internal molecular mechanism of nanomaterial-induced programmed cell death, with the aim of identifying potential targets for prevention and treatment in related studies.
Collapse
Affiliation(s)
- Shijia Qiao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiner Tan
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xinru Zhou
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Can Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shulin Lai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
2
|
Joshi AS, Bapat MV, Singh P, Mijakovic I. Viridibacillus culture derived silver nanoparticles exert potent anticancer action in 2D and 3D models of lung cancer via mitochondrial depolarization-mediated apoptosis. Mater Today Bio 2024; 25:100997. [PMID: 38379934 PMCID: PMC10876681 DOI: 10.1016/j.mtbio.2024.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Lung cancer is one of the most commonly occurring cancer types that accounts for almost 2 million cases per year. Its resistance to anticancer drugs, failure of new molecules in clinical trials, severe side-effects of current treatments, and its recurrence limit the success of anticancer therapies. Nanotherapeutic agents offer several advantages over conventional anticancer therapies, including improved retention in tumors, specificity, and anticancer effects at lower concentrations, hence reducing the side-effects. Here, we have explored the anticancer activity of silver nanoparticles synthesized in Viridibacillus sp. enriched culture medium for the first time. Such green nanoparticles, synthesized by biological systems, are superior to chemically synthesized ones in terms of their environmental footprint and production cost, and have one crucial advantage of excellent stability owing to their biological corona. To assess anticancer activity of these nanoparticles, we used conventional 2D cultured A549 cells as well as 3D spheroids of A549 cells. In both models of lung cancer, our silver nanoparticles diminished cell proliferation, arrested DNA synthesis, and showed a dose dependent cytotoxic effect. The nanoparticles damaged the DNA and mitochondrial structures in both A549 cells and A549 spheroids, leading to mitochondrial depolarization and increased cell permeability. Low lethal median doses (LD50) for 2D cultured A549 cells (1 μg/ml) and for A549 spheroids (13 μg/ml) suggest that our nanoparticles are potent anticancer agents. We also developed in vitro tumor progression model and in vitro tumor size model using 3D spheroids to test anticancer potential of our nanoparticles which otherwise would require longer experimental duration along with large number of animals and trained personnel. In these models, our nanoparticles showed strong dose dependent anticancer activity. In case of in vitro tumor progression model, the A549 cells failed to form tight spheroidal mass and showed increased dead cell fraction since day 1 as compared to control. On the other hand, in case of in vitro tumor size model, the 4 and 8 μg/ml nanoparticle treatment led to reduction in spheroid size from 615 ± 53 μm to 440 ± 45 μm and 612 ± 44 μm to 368 ± 62 μm respectively, within the time span of 3 days post treatment. We believe that use of such novel experimental models offers excellent and fast alternative to in vivo studies, and to the best of our knowledge, this is the first report that gives proof-of-concept for use of such novel in vitro cancer models to test anticancer agents such as Viridibacilli culture derived silver nanoparticles. Based on our results, we propose that these nanoparticles offer an interesting alternative for anticancer therapies, especially if they can be combined with classical anticancer drugs.
Collapse
Affiliation(s)
- Abhayraj S. Joshi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mugdha V. Bapat
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Priyanka Singh
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Chalmers University of Technology, Sweden
| |
Collapse
|
3
|
Brzóska K, Wojewódzka M, Szczygiel M, Drzał A, Sniegocka M, Michalczyk-Wetula D, Biela E, Elas M, Kucińska M, Piotrowska-Kempisty H, Kapka-Skrzypczak L, Murias M, Urbańska K, Kruszewski M. Silver Nanoparticles Inhibit Metastasis of 4T1 Tumor in Mice after Intragastric but Not Intravenous Administration. MATERIALS 2022; 15:ma15113837. [PMID: 35683135 PMCID: PMC9181667 DOI: 10.3390/ma15113837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022]
Abstract
The potential anticancer activity of different silver nanoformulations is increasingly recognized. In the present work, we use the model of 4T1 tumor in BALB/ccmdb immunocompetent mice to analyze the impact of citrate- and PEG-coated silver nanoparticles (AgNPs) on the development and metastatic potential of breast cancer. One group of mice was intragastrically administered with 1 mg/kg body weight (b.w.) of AgNPs daily from day 1 to day 14 after cancer cells implantation (total dose 14 mg/kg b.w.). The second group was intravenously administered twice with 1 or 5 mg/kg b.w. of AgNPs. A tendency for lowering tumor volume on day 21 (mean volumes 491.31, 428.88, and 386.83 mm3 for control, AgNPs-PEG, and AgNPs-citrate, respectively) and day 26 (mean volumes 903.20, 764.27, and 672.62 mm3 for control, AgNPs-PEG, and AgNPs-citrate, respectively) has been observed in mice treated intragastrically, but the effect did not reach the level of statistical significance. Interestingly, in mice treated intragastrically with citrate-coated AgNPs, the number of lung metastases was significantly lower, as compared to control mice (the mean number of metastases 18.89, 14.90, and 8.03 for control, AgNPs-PEG, and AgNPs-citrate, respectively). No effect of AgNPs treatment on the number of lung metastases was observed after intravenous administration (the mean number of metastases 12.44, 9.86, 12.88, 11.05, and 10.5 for control, AgNPs-PEG 1 mg/kg, AgNPs-PEG 5 mg/kg, AgNPs-citrate 1 mg/kg, and AgNPs-citrate 5 mg/kg, respectively). Surprisingly, inhibition of metastasis was not accompanied by changes in the expression of genes associated with epithelial–mesenchymal transition. Instead, changes in the expression of inflammation-related genes were observed. The presented results support the antitumor activity of AgNPs in vivo, but the effect was limited to the inhibition of metastasis. Moreover, our results clearly point to the importance of AgNPs coating and route of administration for its anticancer activity. Finally, our study supports the previous findings that antitumor AgNPs activity may depend on the activation of the immune system and not on the direct action of AgNPs on cancer cells.
Collapse
Affiliation(s)
- Kamil Brzóska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.W.); (M.K.)
- Correspondence: ; Tel.: +48-22-5041174
| | - Maria Wojewódzka
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.W.); (M.K.)
| | - Małgorzata Szczygiel
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Agnieszka Drzał
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Martyna Sniegocka
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Dominika Michalczyk-Wetula
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Eva Biela
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Martyna Elas
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Małgorzata Kucińska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (H.P.-K.); (M.M.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (H.P.-K.); (M.M.)
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland;
- World Institute for Family Health, Calisia University, 62-800 Kalisz, Poland
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (H.P.-K.); (M.M.)
| | - Krystyna Urbańska
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.S.); (A.D.); (M.S.); (D.M.-W.); (E.B.); (M.E.); (K.U.)
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.W.); (M.K.)
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland;
| |
Collapse
|
4
|
Assessment of behavioral changes and antitumor effects of silver nanoparticles synthesized using diosgenin in mice model. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Biosynthesis of silver nanoparticles and the identification of possible reductants for the assessment of in vitro cytotoxic and in vivo antitumor effects. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Liu X, Shan K, Shao X, Shi X, He Y, Liu Z, Jacob JA, Deng L. Nanotoxic Effects of Silver Nanoparticles on Normal HEK-293 Cells in Comparison to Cancerous HeLa Cell Line. Int J Nanomedicine 2021; 16:753-761. [PMID: 33568905 PMCID: PMC7868205 DOI: 10.2147/ijn.s289008] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Biomimetic approaches for the synthesis of silver nanoparticles (AgNPs) had created a substantial impression among the research community that focuses on nano-bio interactions. In this study, an eco-friendly method using Rhizophora apiculata aqueous leaf extract as a reductant-rich hydrosol was followed to synthesize AgNPs and test its cytotoxicity. Methods To optimise the parameters for the synthesis of AgNPs, central composite design based on response surface methodology was used. The particles synthesized at a nano-scale were characterized in our previously published report. The present report further characterizes the nanoparticles by X-ray diffraction, SEM and TEM at varying sites and magnifications. The characterized AgNPs were tested for their cytotoxic effects on HEK-293 and HeLa cells. Results The cytotoxicity on the cell lines was dose-dependent. At a concentration of 2.5 μL/mL of the AgNPs-containing hydrosol, 100% inhibition of HEK-293 cells and 75% inhibition of the HeLa cells were observed. The IC50 value for AgNPs on HEK-293 was 0.622 µL/mL (12.135 ng), whereas, for HeLa cells, it was 1.98 µL/mL (38.629 ng). Conclusion The nanoparticles were three-fold toxic towards the HEK-293 cells in comparison to the HeLa cells. Therefore, the therapeutic index is low for R. apiculata derived AgNPs on HeLa cells when tested in comparison with the HEK-293 cells. The nanotoxicity profile of the synthesized AgNPs seems more prominent than the nanotherapeutic index. According to our knowledge, this is the first-ever report on the optimization of synthesis of AgNPs using response surface methodology and identifying the therapeutic index of mangrove leaf-derived AgNPs.
Collapse
Affiliation(s)
- Xiongwei Liu
- Department of Oncology, Affiliated Jiangyin Hospital of Medical College, Southeast University, Jiangyin, People's Republic of China
| | - Kuizhong Shan
- Department of Oncology, The Second People's Hospital of Kunshan, Kunshan, People's Republic of China
| | - Xiaxia Shao
- Department of Oncology, Affiliated Jiangyin Hospital of Medical College, Southeast University, Jiangyin, People's Republic of China
| | - Xianqing Shi
- Department of Oncology, Liyang People's Hospital, Liyang, People's Republic of China
| | - Yun He
- Department of Oncology, Affiliated Hospital of Chinese Medicine of Changshu City, Nanjing University of Chinese Medicine, Changshu, People's Republic of China
| | - Zhen Liu
- Department of Oncology, Affiliated Jiangyin Hospital of Medical College, Southeast University, Jiangyin, People's Republic of China
| | | | - Lichun Deng
- Department of Oncology, Affiliated Jiangyin Hospital of Medical College, Southeast University, Jiangyin, People's Republic of China
| |
Collapse
|
7
|
Identification of possible reductants in the aqueous leaf extract of mangrove plant Rhizophora apiculata for the fabrication and cytotoxicity of silver nanoparticles against human osteosarcoma MG-63 cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111252. [DOI: 10.1016/j.msec.2020.111252] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 11/23/2022]
|
8
|
Ulagesan S, Nam TJ, Choi YH. Biogenic preparation and characterization of Pyropia yezoensis silver nanoparticles (P.y AgNPs) and their antibacterial activity against Pseudomonas aeruginosa. Bioprocess Biosyst Eng 2020; 44:443-452. [PMID: 33040186 DOI: 10.1007/s00449-020-02454-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022]
Abstract
Marine algae play key roles in several medical, pharmaceutical, agricultural, and aquacultural applications. Furthermore, biosynthesized nanomaterials are becoming an alternative to conventional antibiotics in cost-effective, biocompatible, and non-toxic treatments for bacterial infections. This study features biogenic synthesis of silver nanoparticles using an aqueous extract of the marine red algae Pyropia yezoensis. The formation of silver nanoparticles was initially confirmed by UV-Vis spectroscopy and FTIR spectra were used to identify functional groups. The average crystalline size of the silver nanoparticles was around 20-22 nm, as determined by XRD analysis. Particle size was confirmed by SEM and TEM analyses, which also showed spherical particles without agglomeration. The antibacterial properties of the nanoparticles were assessed against both Gram-positive and Gram-negative bacterial cultures with significant activity observed against Gram negative P. aeruginosa. Our Pyropia yezoensis silver nanoparticles (P.y AgNPs) reduced the growth of P. aeruginosa at concentrations of 200 and 400 µg/ml. Our results strongly imply that P.y AgNPs may be useful in treating bacterial infections.
Collapse
Affiliation(s)
- Selvakumari Ulagesan
- Institute of Fisheries Sciences, Pukyong National University, Busan, 46041, Republic of Korea
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Busan, 46041, Republic of Korea.
| | - Youn-Hee Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan, 46041, Republic of Korea. .,Department of Marine Bio-Materials and Aquaculture, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
9
|
Fabrication of silver nanoparticles employing the cyanobacterium Spirulina platensis and its bactericidal effect against opportunistic nosocomial pathogens of the respiratory tract. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128392] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Zhao Q, Li J, Wu B, Shang Y, Huang X, Dong H, Liu H, Chen W, Gui R, Nie X. Smart Biomimetic Nanocomposites Mediate Mitochondrial Outcome through Aerobic Glycolysis Reprogramming: A Promising Treatment for Lymphoma. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22687-22701. [PMID: 32330381 DOI: 10.1021/acsami.0c05763] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Toxicity and drug resistance caused by chemotherapeutic drugs have become bottlenecks in treating tumors. The delivery of anticancer drugs based on nanocarriers is regarded as an ideal way to solve the aforementioned problems. In this study, a new antilymphoma nanodrug CD20 aptamer-RBCm@Ag-MOFs/PFK15 (A-RAMP) is designed and constructed, and it consists of two parts: (1) metal-organic frameworks Ag-MOFs (AM) loaded with tumor aerobic glycolysis inhibitor PFK15 (P), forming a core part (AMP); (2) targeted molecule CD20 aptamer (A) is inserted into the red blood cell membrane (RBCm) to form the shell part (A-R). A-RAMP under the guidance of CD20 aptamer actively targets B-cell lymphoma both in vitro and in vivo. As a result, A-RAMP not only significantly inhibits the effect on tumor growth but also shows no obvious side effects on the treated nude mice, indicating that A-RAMP can accurately target tumor cells, reprogram aerobic glycolysis, and exert synergistic antitumor effect by Ag+ and PFK 15. Furthermore, the antitumor mechanism of A-RAMP in vivo by apoptotic pathway and targeting metabonomics are explored. These results suggest that A-RAMP has a promising application prospect as an smart, safe, effective, and synergistic antilymphoma agent.
Collapse
Affiliation(s)
- Qiangqiang Zhao
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining 810007, P. R. China
| | - Jian Li
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Bin Wu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Yinghui Shang
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Xueyuan Huang
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Hang Dong
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Haiting Liu
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Rong Gui
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Xinmin Nie
- Clinical Laboratory of the Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| |
Collapse
|
11
|
Huang L, Huang J, Huang J, Xue H, Liang Z, Wu J, Chen C. Nanomedicine - a promising therapy for hematological malignancies. Biomater Sci 2020; 8:2376-2393. [PMID: 32314759 DOI: 10.1039/d0bm00129e] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hematological tumors are a group of diseases defined as the clonal proliferation of blood-forming cells. In recent years, incidences of hematological malignancies have increased. Traditional methods of diagnosing hematological tumors are primarily based on observing morphological features under light microscopy, and molecular diagnostics and immunological indicators are powerful auxiliary diagnostic methods. However, traditional methods cannot efficiently identify tumor markers and limit the efficiency and accuracy of diagnosis. Although treatment methods have been improved continuously, chemotherapy remains a primary technique for the treatment of hematological tumors. Traditional chemotherapy exhibits poor drug selectivity and lacks good biocompatibility and pharmacokinetic properties. The therapeutic effect is not ideal and the risk of toxic side effects is high. The nanosize and surface charge properties of nanodrugs are effective in improving drug delivery efficiency. The high load and rich surface modification methods of nanomaterials provide various possibilities for improving the biocompatibility and pharmacokinetics of drugs, as well as the targeting of drugs. In addition, a nanomedicine loading platform can load multiple drugs simultaneously and design the optimal proportion of combined drug schemes, which can improve the efficacy of drugs and reduce the occurrence of drug resistance. With their unique physical and chemical properties and biological characteristics, the application of nanoparticles in the diagnosis and treatment of hematological tumors has received considerable attention. In this review, we summarize recent advances in the application of various types of nanostructures for the diagnosis and treatment of hematological malignancies, investigate the advantages of nanomedicine compared with the traditional diagnosis and treatment of hematological tumors, and discuss their biological security and application prospects.
Collapse
Affiliation(s)
- Lifen Huang
- Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Biresaw SS, Damte SM, Taneja P. Green Synthesized Silver Nanoparticles: A Promising Anticancer Agent. INTERNATIONAL JOURNAL OF NANOSCIENCE 2020. [DOI: 10.1142/s0219581x19500273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Silver nanoparticles (AgNPs) have attracted a great deal of attention in the recent years. It is mostly due to their availability, chemical stability, catalytic activity, conductivity, biocompatibility and anticancer activity. There are three major approaches for AgNPs synthesis; i.e., chemical, physical, and biological methods. Today, many chemical and physical methods have become less popular due to usage of hazardous chemicals or their high costs, respectively. The green method has introduced an appropriate substitute synthesis strategy for the conventional physical and chemical approaches. The utilization of the plant extracts as reducing, stabilizing and coating agent of AgNPs is an interesting eco-friendly approach leading to high efficiency. The anticancer synergistic effects among the AgNPs and phytochemicals will enhance their therapeutic potentials. Surprisingly, although many studies have demonstrated the significant enhancement in cytotoxic activities of plant-mediated AgNPs toward cancerous cells, these nanoparticles (NPs) have been found nontoxic to normal human cells in their therapeutic concentrations. This paper provides a specific insight into the mechanism of plant-mediated AgNPs synthesis, their anticancer and cytotoxic activities in vitro cancer cells, in vivo model animals and clinical trials.
Collapse
Affiliation(s)
- Samuel Shiferaw Biresaw
- Department of Biotechnology and Life Sciences, Sharda University, Plot No. 32-34, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
- Life Sciences, Wollo University, Dessie, South Wollo 1145, Ethiopia
| | - Samrawit Mekonnen Damte
- Department of Biotechnology and Life Sciences, Sharda University, Plot No. 32-34, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Pankaj Taneja
- Department of Biotechnology and Life Sciences, Sharda University, Plot No. 32-34, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| |
Collapse
|
13
|
Yang Z, Ma Y, Zhao H, Yuan Y, Kim BYS. Nanotechnology platforms for cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1590. [PMID: 31696664 DOI: 10.1002/wnan.1590] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/18/2022]
Abstract
Various cancer therapies have advanced remarkably over the past decade. Unlike the direct therapeutic targeting of tumor cells, cancer immunotherapy is a new strategy that boosts the host's immune system to detect specific cancer cells for efficient elimination. Nanoparticles incorporating immunomodulatory agents can activate immune cells and modulate the tumor microenvironment to enhance antitumor immunity. Such nanoparticle-based cancer immunotherapies have received considerable attention and have been extensively studied in recent years. This review thus focuses on nanoparticle-based platforms (especially naturally derived nanoparticles and synthetic nanoparticles) utilized in recent advances; summarizes delivery systems that incorporate various immune-modulating agents, including peptides and nucleic acids, immune checkpoint inhibitors, and other small immunostimulating agents; and introduces combinational cancer immunotherapy with nanoparticles, especially nanoparticle-based photo-immunotherapy and nanoparticle-based chemo-immunotherapy. Undoubtedly, the recent studies introduced in this review prove that nanoparticle-incorporated cancer immunotherapy is a highly promising treatment modality for patients with cancer. Nonetheless further research is needed to solve safety concerns and improve efficacy of nanoplatform-based cancer immunotherapy for future clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Zhaogang Yang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Hai Zhao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuan Yuan
- Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
14
|
Murugesan K, Koroth J, Srinivasan PP, Singh A, Mukundan S, Karki SS, Choudhary B, Gupta CM. Effects of green synthesised silver nanoparticles (ST06-AgNPs) using curcumin derivative (ST06) on human cervical cancer cells (HeLa) in vitro and EAC tumor bearing mice models. Int J Nanomedicine 2019; 14:5257-5270. [PMID: 31409988 PMCID: PMC6646051 DOI: 10.2147/ijn.s202404] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background In recent years, green synthesized silver nanoparticles have been increasingly investigated for their anti-cancer potential. In the present study, we aimed at the biosynthesis of silver nanoparticles (AgNPs) using a curcumin derivative, ST06. Although, the individual efficacies of silver nanoparticles or curcumin derivatives have been studied previously, the synergistic cytotoxic effects of curcumin derivative and silver nanoparticles in a single nanoparticulate formulation have not been studied earlier specifically on animal models. This makes this study novel compared to the earlier synthesized curcumin derivative or silver nanoparticles studies. The aim of the study was to synthesize ST06 coated silver nanoparticles (ST06-AgNPs) using ST06 as both reducing and coating agent. Methods The synthesized nanoparticles AgNPs and ST06-AgNPs were characterised for the particle size distribution, morphology, optical properties and surface charge by using UV-visible spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM). Elemental composition and structural properties were studied by energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction spectroscopy (XRD). The presence of ST06 as capping agent was demonstrated by Fourier transform infrared spectroscopy (FTIR). Results The synthesized nanoparticles (ST06-AgNPs) were spherical and had a size distribution in the range of 50–100 nm. UV-Vis spectroscopy displayed a specific silver plasmon peak at 410 nm. The in vitro cytotoxicity effects of ST06 and ST06-AgNPs, as assessed by MTT assay, showed significant growth inhibition of human cervical cancer cell line (HeLa). In addition, studies carried out in EAC tumor-induced mouse model (Ehrlich Ascites carcinoma) using ST06-AgNPs, revealed that treatment of the animals with these nanoparticles resulted in a significant reduction in the tumor growth, compared to the control group animals. Conclusion In conclusion, green synthesized ST06-AgNPs exhibited superior anti-tumor efficacy than the free ST06 or AgNPs with no acute toxicity under both in vitro and in vivo conditions. The tumor suppression is associated with the intrinsic apoptotic pathway. Together, the results of this study suggest that ST06-AgNPs could be considered as a potential option for the treatment of solid tumors.
Collapse
Affiliation(s)
| | - Jinsha Koroth
- Institute of Bioinformatics and Applied Biotechnology (IBAB) , Bangalore, India.,Department of Pharmaceutical Chemistry, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | | - Amrita Singh
- Water Analysis Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Sanjana Mukundan
- Institute of Bioinformatics and Applied Biotechnology (IBAB) , Bangalore, India
| | - Subhas S Karki
- KLE Academy of Higher Education & Research, KLE College of Pharmacy, Bangalore, KN, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology (IBAB) , Bangalore, India
| | - Chhitar M Gupta
- Institute of Bioinformatics and Applied Biotechnology (IBAB) , Bangalore, India
| |
Collapse
|
15
|
Pan Q, Zhang J, Li X, Zou Q, Zhang P, Luo Y, Jin Y. Construction of novel multifunctional luminescent nanoparticles based on DNA bridging and their inhibitory effect on tumor growth. RSC Adv 2019; 9:15042-15052. [PMID: 35516329 PMCID: PMC9064234 DOI: 10.1039/c9ra01381d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/07/2019] [Indexed: 01/10/2023] Open
Abstract
Cyclic RGD peptide was introduced onto the surface of silver nanoparticle (AgNP)-single strand DNA (ssDNA)-graphene quantum dots (GQDs) (ADG) after coating with a hybrid phospholipid material (ADG-DDPC) to be used for antitumor treatment. The Ag and ssDNA content was quantified. The morphology and properties of the nanoparticles were characterized by ultraviolet-visible absorption spectroscopy (UV-VIS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The etching effect of H2O2 on the AgNPs and the cleavage of DNA was observed. The cytotoxicity of the ADG-DDPC was investigated using the cell viability and LDH content. The cell uptake was evaluated by using the fluorescence recovery of the GQDs in the ADG-DDPC. The antitumor effects of ADG-DDPC were also evaluated. The content of the ssDNA was 15.3 μg mL-1. The content of the silver element in AgNPs was 3.75 μg mL-1 and 20.43 μg mL-1 in ADG-DDPC. ADG were distributed uniformly with the GQDs on the surface. After coating with hybrid phospholipid membranes containing DSPE-PEG2000-cRGD, ADG-DDPC was detected with an average size of 25.2 nm with a low IC50 of 209.68 ng mL-1 and showed LDH activity on HeLa cells. A better cellular uptake of ADG-DDPC was observed in HeLa cells, compared with cRGD-unmodified ADG nanoparticles (ADG-DDP), up to 6 and 12 h using the fluorescence recovery of GQDs as a measurement. Compared with ADG-DDP (3.6 mg of silver equivalent per kg body weight), ADG-DDPC at the same dose significantly halted 50.9% of tumor growth with little change to body weights when compared with a PTX Injection (10 mg kg-1). The novel nanoparticles, ADG-DDPC, could target tumor sites to exhibit multifunctional inhibition on tumor growth with little toxicity.
Collapse
Affiliation(s)
- Qiaobei Pan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine Nanchang Jiangxi Province People's Republic of China +86-791-8711-9610
| | - Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine Nanchang Jiangxi Province People's Republic of China
| | - Xiang Li
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine Nanchang Jiangxi Province People's Republic of China +86-791-8711-9661
| | - Qian Zou
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine Nanchang Jiangxi Province People's Republic of China +86-791-8711-9661
| | - Peng Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine Nanchang Jiangxi Province People's Republic of China
| | - Ying Luo
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine Nanchang Jiangxi Province People's Republic of China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine Nanchang Jiangxi Province People's Republic of China +86-791-8711-9610
| |
Collapse
|
16
|
Vieira Costa JA, Machado Terra AL, Cruz ND, Gonçalves IS, Moreira JB, Kuntzler SG, de Morais MG. Microalgae Cultivation and Industrial Waste: New Biotechnologies for Obtaining Silver Nanoparticles. MINI-REV ORG CHEM 2019. [DOI: 10.2174/1570193x15666180626141922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Industrial effluents containing heavy metals can have harmful effects on organisms and the
ecosystem. Silver is a waste from textile, galvanic and photographic industries, and when released into
the environment, it can harm human health and cause biological modification. Removal of metals, such
as silver, has been traditionally carried out using physicochemical methods that produce a high concentration
of sludge and expend a significant amount of energy. Researchers are seeking innovative technologies
for more efficient removal of silver or for using this heavy metal to obtain new products. The
use of microalgae is a promising alternative to traditional remediation methods because several species
can absorb and assimilate heavy metals. When exposed to toxic substances, microalgae excrete molecules
in the medium that induce the reduction of silver particles to nanoparticles. Biosynthesized silver
nanoparticles (AgNPs) can be used in medicine, food packaging, the production of cosmetics and pharmaceuticals,
civil engineering, sensors and water purification. Thus, microalgal biosynthesis of metal
nanoparticles has the capacity to bioremediate metals and subsequently convert them into non-toxic
forms in the cell. In this context, this review addresses the use of microalgal biotechnology for industrial
waste remediation of silver, which includes the simultaneous biosynthesis of AgNPs. We also discuss
the potential applications of these nanoparticles.
Collapse
Affiliation(s)
- Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande (FURG), P.O. Box 474, 96203-900, Rio Grande, RS, Brazil
| | - Ana Luiza Machado Terra
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande (FURG), P.O. Box 474, 96203-900, Rio Grande, RS, Brazil
| | - Nidria Dias Cruz
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande (FURG), P.O. Box 474, 96203-900, Rio Grande, RS, Brazil
| | - Igor Severo Gonçalves
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande (FURG), P.O. Box 474, 96203-900, Rio Grande, RS, Brazil
| | - Juliana Botelho Moreira
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande (FURG), P.O. Box 474, 96203-900, Rio Grande, RS, Brazil
| | - Suelen Goettems Kuntzler
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande (FURG), P.O. Box 474, 96203-900, Rio Grande, RS, Brazil
| | - Michele Greque de Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande (FURG), P.O. Box 474, 96203-900, Rio Grande, RS, Brazil
| |
Collapse
|
17
|
Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner APF, Patra HK. A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun (Camb) 2019; 55:6964-6996. [DOI: 10.1039/c9cc01741k] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emerging properties of noble metal nanoparticles are attracting huge interest from the translational scientific community. In this feature article, we highlight recent advances in the adaptation of noble metal nanomaterials and their biomedical applications in therapeutics, diagnostics and sensing.
Collapse
Affiliation(s)
- Mohammad Azharuddin
- Department of Clinical and Experimental Medicine
- Linkoping University
- Linkoping
- Sweden
| | - Geyunjian H. Zhu
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge
- UK
| | - Debapratim Das
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Erdogan Ozgur
- Hacettepe University
- Faculty of Science
- Department of Chemistry
- Ankara
- Turkey
| | - Lokman Uzun
- Hacettepe University
- Faculty of Science
- Department of Chemistry
- Ankara
- Turkey
| | | | - Hirak K. Patra
- Department of Clinical and Experimental Medicine
- Linkoping University
- Linkoping
- Sweden
- Department of Chemical Engineering and Biotechnology
| |
Collapse
|
18
|
Chen L, Wu LY, Yang WX. Nanoparticles induce apoptosis via mediating diverse cellular pathways. Nanomedicine (Lond) 2018; 13:2939-2955. [DOI: 10.2217/nnm-2018-0167] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
With a special size and structure, nanoparticles (NPs) have excellent application prospects in various fields and are widely used in the biomedicine, cosmetics and chemical industries nowadays. However, there have been some reports on the biosafety of this new type of material, pointing out its cytotoxicity in inducing apoptosis. With different physicochemical properties in size, shape, surface charge, and ligand, NPs exhibit different biocompatibilities when interacting with different cells. Therefore, a comprehensive and deep study into the proapoptotic mechanism of NPs is necessary. In the present review, we summarize the NP-triggered apoptotic signal pathways in detail and highlight some important functional molecules involved. We hope our findings and perspectives provide a new direction for the sound development of nanotechnology in the future.
Collapse
Affiliation(s)
- Liang Chen
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liu-Yun Wu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Ma YB, Lu CJ, Junaid M, Jia PP, Yang L, Zhang JH, Pei DS. Potential adverse outcome pathway (AOP) of silver nanoparticles mediated reproductive toxicity in zebrafish. CHEMOSPHERE 2018; 207:320-328. [PMID: 29803881 DOI: 10.1016/j.chemosphere.2018.05.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 05/11/2023]
Abstract
Recently, the augmented utilization of silver nanoparticles (AgNPs) resulted in increasingrates of its release to aquatic environment, which potentially caused adverse effects to aquatic organisms. Therefore, this study investigated - reproductive toxicity and associated potential adverse outcome pathway (AOP) in zebrafish after chronic exposure to AgNPs. To serve the purpose, three-month-old adult zebrafish were exposed to different concentrations (0, 10, 33 and 100 μg/L) of AgNPs for five weeks. Exposure to 33 and 100 μg/L of AgNPs significantly decreased the fecundity in female zebrafish, accompanied by increasing apoptotic cells in the ovarian and testicular tissue using TUNEL assay. Increasing tissue burdens of AgNPs and reactive oxygen species (ROS) production were also found in both ovary and testis after five-week exposure to AgNPs. To explore the mechanism of the apoptotic pathway, the transcription levels of various genes (bax, bcl-2, caspase-3, and caspase-9) associated with the mitochondrion-mediated apoptosis pathway were examined in zebrafish after exposure to AgNPs. The results showed that the expression patterns of all the investigated genes were altered to some extent. These findings demonstrated that AgNPs exposure caused oxidative stress, induced germ cells apoptosis via mitochondrial-dependent pathway, and ultimately impaired the reproduction in zebrafish.
Collapse
Affiliation(s)
- Yan-Bo Ma
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Chun-Jiao Lu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Muhammad Junaid
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan-Pan Jia
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Yang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jing-Hui Zhang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - De-Sheng Pei
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
20
|
A Current Overview of the Biological and Cellular Effects of Nanosilver. Int J Mol Sci 2018; 19:ijms19072030. [PMID: 30002330 PMCID: PMC6073671 DOI: 10.3390/ijms19072030] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
Nanosilver plays an important role in nanoscience and nanotechnology, and is becoming increasingly used for applications in nanomedicine. Nanosilver ranges from 1 to 100 nanometers in diameter. Smaller particles more readily enter cells and interact with the cellular components. The exposure dose, particle size, coating, and aggregation state of the nanosilver, as well as the cell type or organism on which it is tested, are all large determining factors on the effect and potential toxicity of nanosilver. A high exposure dose to nanosilver alters the cellular stress responses and initiates cascades of signalling that can eventually trigger organelle autophagy and apoptosis. This review summarizes the current knowledge of the effects of nanosilver on cellular metabolic function and response to stress. Both the causative effects of nanosilver on oxidative stress, endoplasmic reticulum stress, and hypoxic stress—as well as the effects of nanosilver on the responses to such stresses—are outlined. The interactions and effects of nanosilver on cellular uptake, oxidative stress (reactive oxygen species), inflammation, hypoxic response, mitochondrial function, endoplasmic reticulum (ER) function and the unfolded protein response, autophagy and apoptosis, angiogenesis, epigenetics, genotoxicity, and cancer development and tumorigenesis—as well as other pathway alterations—are examined in this review.
Collapse
|
21
|
|
22
|
Ye RR, Tan CP, Chen MH, Hao L, Ji LN, Mao ZW. Mono- and Dinuclear Phosphorescent Rhenium(I) Complexes: Impact of Subcellular Localization on Anticancer Mechanisms. Chemistry 2016; 22:7800-9. [DOI: 10.1002/chem.201505160] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Rui-Rong Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| | - Mu-He Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| |
Collapse
|