1
|
Zhao Z, Liu J, Weir MD, Schneider A, Ma T, Oates TW, Xu HHK, Zhang K, Bai Y. Periodontal ligament stem cell-based bioactive constructs for bone tissue engineering. Front Bioeng Biotechnol 2022; 10:1071472. [PMID: 36532583 PMCID: PMC9755356 DOI: 10.3389/fbioe.2022.1071472] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/17/2022] [Indexed: 09/29/2023] Open
Abstract
Objectives: Stem cell-based tissue engineering approaches are promising for bone repair and regeneration. Periodontal ligament stem cells (PDLSCs) are a promising cell source for tissue engineering, especially for maxillofacial bone and periodontal regeneration. Many studies have shown potent results via PDLSCs in bone regeneration. In this review, we describe recent cutting-edge researches on PDLSC-based bone regeneration and periodontal tissue regeneration. Data and sources: An extensive search of the literature for papers related to PDLSCs-based bioactive constructs for bone tissue engineering was made on the databases of PubMed, Medline and Google Scholar. The papers were selected by three independent calibrated reviewers. Results: Multiple types of materials and scaffolds have been combined with PDLSCs, involving xeno genic bone graft, calcium phosphate materials and polymers. These PDLSC-based constructs exhibit the potential for bone and periodontal tissue regeneration. In addition, various osteo inductive agents and strategies have been applied with PDLSCs, including drugs, biologics, gene therapy, physical stimulation, scaffold modification, cell sheets and co-culture. Conclusoin: This review article demonstrates the great potential of PDLSCs-based bioactive constructs as a promising approach for bone and periodontal tissue regeneration.
Collapse
Affiliation(s)
- Zeqing Zhao
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Jin Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Michael D. Weir
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, United States
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Thomas W. Oates
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, United States
| | - Hockin H. K. Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Liu Y, Guo L, Li X, Liu S, Du J, Xu J, Hu J, Liu Y. Challenges and tissue engineering strategies of periodontal guided tissue regeneration. Tissue Eng Part C Methods 2022; 28:405-419. [PMID: 35838120 DOI: 10.1089/ten.tec.2022.0106] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Periodontitis is a chronic infectious oral disease with a high prevalence rate in the world, and is a major cause of tooth loss. Nowadays, people have realized that the local microenvironment that includes proteins, cytokines, and extracellular matrix has a key influence on the functions of host immune cells and periodontal ligament stem cells during a chronic infectious disease such as periodontitis. The above pathological process of periodontitis will lead to a defect of periodontal tissues. Through the application of biomaterials, biological agents, and stem cells therapy, guided tissue regeneration (GTR) makes it possible to reconstruct healthy periodontal ligament tissue after local inflammation control. To date, substantial advances have been made in periodontal guided tissue regeneration. However, the process of periodontal remodeling experiences complex microenvironment changes, and currently periodontium regeneration still remains to be a challenging feat. In this review, we summarized the main challenges in each stage of periodontal regeneration, and try to put forward appropriate biomaterial treatment mechanisms or potential tissue engineering strategies that provide a theoretical basis for periodontal tissue engineering regeneration research.
Collapse
Affiliation(s)
- Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China;
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China;
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China;
| | - Siyan Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China;
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China;
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China;
| | - Jingchao Hu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China;
| | - Yi Liu
- Capital Medical University School of Stomatology, Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction,, Tian Tan Xi Li No.4, Beijing, Beijing , China, 100050;
| |
Collapse
|
3
|
Cheng L, Li Y, Xia Q, Meng M, Ye Z, Tang Z, Feng H, Chen X, Chen H, Zeng X, Luo Y, Dong Q. Enamel matrix derivative (EMD) enhances the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Bioengineered 2021; 12:7033-7045. [PMID: 34587869 PMCID: PMC8806549 DOI: 10.1080/21655979.2021.1971504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To investigate the EMD's capacity in BMSCs osteogenic differentiation. In vivo and in vitro, BMSCs were treated with EMD, scanning electron microscopy, and Alizarin Red staining were used to detect the changes in the osteogenic ability of BMSCs, and the proliferation ability of BMSCs was evaluated by CCK8. In addition, by adding xav939, a typical inhibitor of Wnt/β-catenin signaling pathway, the regulatory function of Wnt/β-catenin signaling was clarified. The results showed that EMD promote cell proliferation and 25 μg/ml EMD had the most significant effect. Cells inducing osteogenesis for 2 and 3 even 4 weeks, the cell staining is deeper in EMD treated group than that of the control (P < 0.05) by alizarin Red staining, suggesting more mineralization of BMSCs. In vivo implanting the titanium plate wrapped with 25 μg/ml EMD treated-BMSC film into nude mice for 8 weeks, more nodules were formed on the surface of the titanium plate than that the control (P < 0.05). HE showed that there is a little blue-violet immature bone-like tissue block. Besides, the expression of RUNX Family Transcription Factor 2 (Runx2), Osterix, Osteocalcin (OCN), collagen I (COLI), alkaline phosphatase (ALP) and β-catenin were inhibited in xav939 group (P < 0.05); Inversely, all were activated in EMD group (P < 0.05). In conclusion, EMD promoted the proliferation and osteogenic differentiation of BMSCs. EMD's function on BMSCs might be associated with the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Lu Cheng
- Department of Prosthodontics, Guiyang Hospital of Stomatology, Guiyang, Gsuizhou Province, 550002, People's Republic of China
| | - Ying Li
- Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - Qian Xia
- Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - MaoHua Meng
- Department of Prosthodontics, School of Stomatology, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - ZhaoYang Ye
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - ZhengLong Tang
- Department of Prosthodontics, School of Stomatology, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China.,Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - HongChao Feng
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, Guizhou Province, 550002, People's Republic of China
| | - Xin Chen
- Department of Prosthodontics, School of Stomatology, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - HeLin Chen
- Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - Xiao Zeng
- Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - Yi Luo
- Department of Prosthodontics, Guiyang Hospital of Stomatology, Guiyang, Gsuizhou Province, 550002, People's Republic of China
| | - Qiang Dong
- Department of Prosthodontics, School of Stomatology, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China.,Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| |
Collapse
|
4
|
Queiroz A, Albuquerque-Souza E, Gasparoni LM, França BND, Pelissari C, Trierveiler M, Holzhausen M. Therapeutic potential of periodontal ligament stem cells. World J Stem Cells 2021; 13:605-618. [PMID: 34249230 PMCID: PMC8246246 DOI: 10.4252/wjsc.v13.i6.605] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory periodontal disease known as periodontitis is one of the most common conditions that affect human teeth and often leads to tooth loss. Due to the complexity of the periodontium, which is composed of several tissues, its regeneration and subsequent return to a homeostatic state is challenging with the therapies currently available. Cellular therapy is increasingly becoming an alternative in regenerative medicine/dentistry, especially therapies using mesenchymal stem cells, as they can be isolated from a myriad of tissues. Periodontal ligament stem cells (PDLSCs) are probably the most adequate to be used as a cell source with the aim of regenerating the periodontium. Biological insights have also highlighted PDLSCs as promising immunomodulator agents. In this review, we explore the state of knowledge regarding the properties of PDLSCs, as well as their therapeutic potential, describing current and future clinical applications based on tissue engineering techniques.
Collapse
Affiliation(s)
- Aline Queiroz
- Laboratory of Stem Cell Biology in Dentistry-LABITRON, Department of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Emmanuel Albuquerque-Souza
- Department of Stomatology, Division of Periodontics, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Leticia Miquelitto Gasparoni
- Department of Stomatology, Division of Periodontics, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Bruno Nunes de França
- Department of Stomatology, Division of Periodontics, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Cibele Pelissari
- Laboratory of Stem Cell Biology in Dentistry-LABITRON, Department of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marília Trierveiler
- Laboratory of Stem Cell Biology in Dentistry-LABITRON, Department of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marinella Holzhausen
- Department of Stomatology, Division of Periodontics, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
5
|
Huang JP, Wu YM, Liu JM, Zhang L, Li BX, Chen LL, Ding PH, Tan JY. Decellularized matrix could affect the proliferation and differentiation of periodontal ligament stem cells in vitro. J Periodontal Res 2021; 56:929-939. [PMID: 34173232 DOI: 10.1111/jre.12889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/07/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE AND BACKGROUND Recently, decellularized matrix (DCM) is considered as a new biomaterial for tissue regeneration. To explore the possible application of DCM in periodontal regeneration, the effect of DCM from three different cells on the proliferation and differentiation of human periodontal ligament stem cells (PDLSCs) was investigated. METHODS DCM derived from human periodontal ligament cells (PDLCs), dental pulp cells (DPCs), and gingival fibroblasts (GFs) were fabricated using Triton X-100/NH4 OH combined with DNase I. Allogeneic PDLSCs were cultured on PDLC-DCM, DPC-DCM, and GF-DCM, respectively. The proliferative capacity of PDLSCs was evaluated by PicoGreen assay kit. The expression of alkaline phosphatase (ALP), runt-related transcription factor-2 (RUNX2), osteocalcin (OCN), collagen I (COL1), periostin (POSTN), and cementum protein 1 (CEMP1) were detected by qRT-PCR and western blotting. RESULTS PDLC-DCM, DPC-DCM, and GF-DCM had similar and integrated networks of extracellular matrix, as well as significantly decreased DNA content. Compared with control group in which PDLSCs were directly seeded in culture plates, PDLC-DCM, DPC-DCM, and GF-DCM promoted the proliferation of re-seeded PDLSCs. Additionally, PDLSCs on DCM exhibited higher mRNA and protein expression levels of ALP, RUNX2, OCN, and COL1. The expression of POSTN in PDLC-DCM group was significantly higher than control group at both mRNA and protein levels. CONCLUSIONS PDLC-DCM, DPC-DCM, and GF-DCM could enhance the proliferation of PDLSCs. PDLC-DCM facilitated osteogenic differentiation and periodontal ligament differentiation of PDLSCs, while DPC-DCM and GF-DCM promoted osteogenic differentiation.
Collapse
Affiliation(s)
- Jia-Ping Huang
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, The Affiliated Hospital of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Min Wu
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Mei Liu
- Department of Stomatology, Zhejiang Hospital, Hangzhou, China
| | - Lan Zhang
- Department of Stomatology, Zhejiang Hospital, Hangzhou, China
| | - Bo-Xiu Li
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Li Chen
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Pei-Hui Ding
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, The Affiliated Hospital of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing-Yi Tan
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Abstract
The objective of the present work was to investigate the effect of Periostin (POSTN) silencing on autophagy in osteoblasts, and provide an experimental basis for studying the mechanism of dental eruption. The cells were divided into the following four groups according to their viral number: the NC group, pFU-GW-016PSC53349-1; group KD1, LVpFU-GW-016PSC66471-1; group KD2, LVpFU-GW-016PSC66472-1; and group KD3, LVpFU-GW-016PSC66473-1. The lentiviral vector was infected at MOI = 100 in the ENi.S medium containing 5 g/mL Polybrene. The target gene expression was observed by a Celigo® Image Cytometer at 72 hours after infection, and the positive rate of fluorescence was noted. A two-step method of quantitative real-time PCR (qRT-PCR) was used to detect the silencing effect of POSTN. Western blotting was then performed to assess the expression of autophagy-related proteins Beclin-1 and LC3 in the group showing the best gene silencing effects. The experimental results showed that there was strong green fluorescence in group KD3. As confirmed via qRT-PCR analysis, the POSTN silencing efficiency in group KD3 reached 92.1%. The Western blotting revealed that the expression of Beclin-1 protein in group KD3 was significantly higher than that in the NC group. However, the LC3 protein expression was not significantly different from that of the control group. The lentiviral vector targeting POSTN in osteoblasts was constructed successfully. In addition, the expression of autophagy protein in mouse osteoblasts increased after POSTN silencing. This finding may provide new approaches for understanding the molecular signal transduction of POSTN during the tooth eruption process.
Collapse
Affiliation(s)
- Han Qin
- 1 Department of Stomatology, The Lianyungang Affiliated Hospital of Xuzhou Medical University, Liangyungang, China
| | - Jun Cai
- 2 Department of Anesthesia, The Maternal and Child Health Hospital of Lianyungang City, Liangyungang, China
| |
Collapse
|
7
|
Zhao B, Zhang Y, Xiong Y, Xu X. Rutin promotes the formation and osteogenic differentiation of human periodontal ligament stem cell sheets in vitro. Int J Mol Med 2019; 44:2289-2297. [PMID: 31661130 PMCID: PMC6844602 DOI: 10.3892/ijmm.2019.4384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Cell sheet technology is a novel tissue engineering technology that has been rapidly developed in recent years. As a novel technology, cell sheet technology is expected to become one of the preferred methods for cell transplantation. The present study investigated the biological effects of rutin on the formation of periodontal ligament stem cell (PDLSC) sheets and their resultant osteogenic properties. The results of Cell Counting Kit-8 (CCK-8) assay demonstrated that a concentration of 1×10−6 mol/l rutin promoted the proliferation of PDLSCs more effectively compared with other designed concentrations. Rutin-modified cell sheets could be induced by complete medium supplemented with 20 µg/ml vitamin C (VC) and 1×10−6 mol/l rutin. Rutin-modified cell sheets appeared thicker and more compact compared with the VC-induced PDLSC sheets, demonstrating more layers of cells (3 or 4 layers), which secreted a richer extracellular matrix (ECM). Furthermore, the improved cell sheets exhibited varying degrees of increases in the mRNA and protein expression of collagen type I (COL1), alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2) and osteopontin (OPN). Combined treatment with VC and rutin promoted the formation of PDLSC sheets and enhanced the osteogenic differentiation potential of the cell sheets. Therefore, rutin-modified cell sheets of PDLSCs are expected to play an important role in the treatment of periodontal tissue regeneration by stem cells.
Collapse
Affiliation(s)
- Bin Zhao
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yunpeng Zhang
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yixuan Xiong
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xin Xu
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
8
|
Fu X, Feng Y, Shao B, Zhang Y. Activation of the ERK/Creb/Bcl‑2 pathway protects periodontal ligament stem cells against hydrogen peroxide‑induced oxidative stress. Mol Med Rep 2019; 19:3649-3657. [PMID: 30896883 PMCID: PMC6472112 DOI: 10.3892/mmr.2019.10027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
Periodontal ligament stem cells (PDLSCs) are promising stem cells sources for regenerative medicine, particularly clinical periodontal ligament repair. It is critical to maintain high quality and a large quantity of PDLSCs for clinical usage. However, how PDLSCs respond to environmental stimuli, including reactive oxygen species (ROS), is poorly understood. The aim of the present study was to investigate how PDLSCs react to oxidative stress and the underlying mechanisms. Hydrogen peroxide-induced oxidative stress was used to mimic a ROS increase in rat PDLSCs. The expression levels of Creb were detected under oxidative stress to examine the role that Creb serves in PDLSCs under oxidative stress. The present results demonstrated that the expression of Creb was reduced in a dose-dependent manner in response to the H2O2 stimulus. Overexpressing Creb significantly reduced the ROS levels and protein expression levels of apoptotic genes in PDLSCs. The phosphorylation of the ERK pathway is indispensable in the activation of Creb-induced protection. Our results revealed a protective role of Creb in ROS-induced apoptosis, and validated the ERK/Creb/apoptosis regulator Bcl-2 pathway works as an anti-apoptotic signaling in PDLSCs. These findings will facilitate the in vitro culturing of PDLSCs for clinical usage and promote stem cell based therapy for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Xiaohui Fu
- Department of General Dentistry, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yimiao Feng
- Department of Orthodontics, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Bingyi Shao
- Department of Operative Dentistry and Endodontics, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 400015, P.R. China
| | - Yanzhen Zhang
- Department of General Dentistry, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
9
|
Feng Y, Fu X, Lou X. Notch pathway deactivation mediated by F-box/WD repeat domain-containing 7 ameliorates hydrogen peroxide-induced apoptosis in rat periodontal ligament stem cells. Arch Oral Biol 2019; 100:93-99. [PMID: 30822705 DOI: 10.1016/j.archoralbio.2019.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the protective role of F-box/WD repeat domain-containing 7 in rat periodontal ligament stem cells under oxidative stress. MATERIALS AND METHODS The apoptosis of rat periodontal ligament stem cells was induced by exposure to various concentrations of hydrogen peroxide for 24 h, after which cell viability and the cleaved caspase-3 and -9 levels were determined. The levels of proteins in the Notch signaling pathway were determined by western blotting. RESULTS The overexpression of F-box/WD repeat domain-containing 7 increased cell viability following hydrogen peroxide administration and suppressed the activation of caspases-3 and -9. The overexpression of F-box/WD repeat domain-containing 7 inhibited Notch signaling. Furthermore, the protective effect of F-box/WD repeat domain-containing 7 could be resumed by PF-03084014, a Notch-specific inhibitor. CONCLUSIONS These observations suggest a protective role of F-box/WD repeat domain-containing 7 against hydrogen peroxide-induced oxidative stress in rat periodontal ligament stem cells. These findings will facilitate the in vitro culturing of periodontal ligament stem cell for clinical usage and promote stem cell-based therapy for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Yimiao Feng
- Department of Orthodontics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohui Fu
- Department of General Dentistry, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xintian Lou
- Department of Stomatology, Punan Hospital of Pudong New District, Shanghai, China.
| |
Collapse
|
10
|
Tevlek A, Odabas S, Çelik E, Aydin HM. Preparation of MC3T3-E1 cell sheets through short-term osteogenic medium application. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1145-1153. [DOI: 10.1080/21691401.2018.1481081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Atakan Tevlek
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Sedat Odabas
- Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
| | - Ekin Çelik
- Bioengineering Division and Advanced Technologies Application and Research Centre, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Halil Murat Aydin
- Environmental Engineering Department and Bioengineering Division and Centre for Bioengineering, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
Recombinant amelogenin regulates the bioactivity of mouse cementoblasts in vitro. Int J Oral Sci 2018; 10:15. [PMID: 29748557 PMCID: PMC5966809 DOI: 10.1038/s41368-018-0010-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 08/21/2017] [Accepted: 12/15/2017] [Indexed: 01/18/2023] Open
Abstract
Amelogenin (AMG) is a cell adhesion molecule that has an important role in the mineralization of enamel and regulates events during dental development and root formation. The purpose of the present study was to investigate the effects of recombinant human AMG (rhAMG) on mineralized tissue-associated genes in cementoblasts. Immortalized mouse cementoblasts (OCCM-30) were treated with different concentrations (0.1, 1, 10, 100, 1000, 10,000, 100,000 ng · mL-1) of recombinant human AMG (rhAMG) and analyzed for proliferation, mineralization and mRNA expression of bone sialoprotein (BSP), osteocalcin (OCN), collagen type I (COL I), osteopontin (OPN), runt-related transcription factor 2 (Runx2), cementum attachment protein (CAP), and alkaline phosphatase (ALP) genes using quantitative RT-PCR. The dose response of rhAMG was evaluated using a real-time cell analyzer. Total RNA was isolated on day 3, and cell mineralization was assessed using von Kossa staining on day 8. COL I, OPN and lysosomal-associated membrane protein-1 (LAMP-1), which is a cell surface binding site for amelogenin, were evaluated using immunocytochemistry. F-actin bundles were imaged using confocal microscopy. rhAMG at a concentration of 100,000 ng · mL-1 increased cell proliferation after 72 h compared to the other concentrations and the untreated control group. rhAMG (100,000 ng · mL-1) upregulated BSP and OCN mRNA expression levels eightfold and fivefold, respectively. rhAMG at a concentration of 100,000 ng · mL-1 remarkably enhanced LAMP-1 staining in cementoblasts. Increased numbers of mineralized nodules were observed at concentrations of 10,000 and 100,000 ng · mL-1 rhAMG. The present data suggest that rhAMG is a potent regulator of gene expression in cementoblasts and support the potential application of rhAMG in therapies aimed at fast regeneration of damaged periodontal tissue. A protein with its roots in dental development stimulates the proliferation and gene expression of cells linked to regeneration. Amelogenin is a mediator of enamel and tooth root formation, and the main component of a recently-developed medicine for periodontal regeneration. An international research group led by Sema Hakki, of Selcuk University, Turkey, has now elucidated the effects of amelogenin on cementoblasts, a type of cell responsible for producing the vital, mineralized layer on surface of the tooth root. Hakki’s team found that the bacteria-derived amelogenin increased the rate of mouse cementoblast proliferation and mineralization in vitro, and increased the expression of genes related to bone and tissue generation. The team also demonstrated the presence of a likely amelogenin receptor on the cells used in their study. These findings support further investigation into amelogenin’s therapeutic potential.
Collapse
|
12
|
Mao W, Zhu Z. Parthenolide inhibits hydrogen peroxide‑induced osteoblast apoptosis. Mol Med Rep 2018; 17:8369-8376. [PMID: 29693172 DOI: 10.3892/mmr.2018.8908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/11/2017] [Indexed: 11/06/2022] Open
Abstract
Parthenolide is a natural product from the shoots of Tanacetum parthenium that has been demonstrated to have immunomodulatory effects in a number of diseases. The present study aimed to determine the effect and mechanism of parthenolide on the apoptotic ability of H2O2‑induced osteoblasts. Cell viability was analyzed with a MTT assay and the apoptotic rate was subsequently measured using flow cytometry. The activity of the antioxidative enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPX), and the serum marker enzymes alkaline phosphatase (ALP), malondialdehyde (MDA) and lactate dehydrogenase (LDH) was measured. Reverse transcription‑quantitative polymerase chain reaction and western blot analyses were performed to analyze the expression levels of osteogenesis and oxidative stress‑associated genes. The results indicated that parthenolide increased cell viability and inhibited the apoptosis of H2O2‑induced osteoblasts. Parthenolide decreased the levels of reactive oxygen species, MDA, LDH and ALP. SOD and GPX levels were increased by parthenolide in H2O2‑induced osteoblasts. This suggested that parthenolide may break the equilibrium state of oxidative stress and inhibit cellular apoptosis. Parthenolide additionally increased the expression levels of oxidative stress‑associated genes, including nuclear factor erythroid 2 like 2, hemeoxygenase‑1 and quinone oxidoreductase 1 in H2O2‑induced osteoblasts. Furthermore, parthenolide increased the expression of osteogenesis‑associated genes, including runt‑related transcription factor 2, osteopontin, osteocalcin and collagen 1 in H2O2‑inducedosteoblasts. Therefore, it was concluded that parthenolide may be used in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Weihuan Mao
- Department of Orthopedics, The Fifth People's Hospital of Yuhang District, Hangzhou, Zhejiang 311100, P.R. China
| | - Ziguan Zhu
- Department of Hand and Reconstructive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
13
|
Yusof MFH, Zahari W, Hashim SNM, Osman ZF, Chandra H, Kannan TP, Noordin KBAA, Azlina A. Angiogenic and osteogenic potentials of dental stem cells in bone tissue engineering. J Oral Biol Craniofac Res 2018; 8:48-53. [PMID: 29556464 PMCID: PMC5854554 DOI: 10.1016/j.jobcr.2017.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023] Open
Abstract
Manipulation of dental stem cells (DSCs) using current technologies in tissue engineering unveil promising prospect in regenerative medicine. DSCs have shown to possess angiogenic and osteogenic potential in both in vivo and in vitro. Neural crest derived DSCs can successfully be isolated from various dental tissues, exploiting their intrinsic great differentiation potential. In this article, researcher team intent to review the characteristics of DSCs, with focus on their angiogenic and osteogenic differentiation lineage. Clinical data on DSCs are still lacking to prove their restorative abilities despite extensive contemporary literature, warranting research to further validate their application for bone tissue engineering.
Collapse
Affiliation(s)
- Muhammad Fuad Hilmi Yusof
- Basic Sciences and Oral Biology Unit, School of Dental Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Wafa’ Zahari
- Basic Sciences and Oral Biology Unit, School of Dental Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Nurnasihah Md Hashim
- Basic Sciences and Oral Biology Unit, School of Dental Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Zul Faizuddin Osman
- Basic Sciences and Oral Biology Unit, School of Dental Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Hamshawagini Chandra
- Basic Sciences and Oral Biology Unit, School of Dental Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Thirumulu Ponnuraj Kannan
- Basic Sciences and Oral Biology Unit, School of Dental Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
- Human Genome Center, School of Medical Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | | | - Ahmad Azlina
- Basic Sciences and Oral Biology Unit, School of Dental Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
- Human Genome Center, School of Medical Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
14
|
Kim JH, Ko SY, Lee JH, Kim DH, Yun JH. Evaluation of the periodontal regenerative properties of patterned human periodontal ligament stem cell sheets. J Periodontal Implant Sci 2017; 47:402-415. [PMID: 29333326 PMCID: PMC5764766 DOI: 10.5051/jpis.2017.47.6.402] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/23/2017] [Indexed: 12/19/2022] Open
Abstract
Purpose The aim of this study was to determine the effects of patterned human periodontal ligament stem cell (hPDLSC) sheets fabricated using a thermoresponsive substratum. Methods In this study, we fabricated patterned hPDLSC sheets using nanotopographical cues to modulate the alignment of the cell sheet. Results The hPDLSCs showed rapid monolayer formation on various surface pattern widths. Compared to cell sheets grown on flat surfaces, there were no significant differences in cell attachment and growth on the nanopatterned substratum. However, the patterned hPDLSC sheets showed higher periodontal ligamentogenesis-related gene expression in early stages than the unpatterned cell sheets. Conclusions This experiment confirmed that patterned cell sheets provide flexibility in designing hPDLSC sheets, and that these stem cell sheets may be candidates for application in periodontal regenerative therapy.
Collapse
Affiliation(s)
- Joong-Hyun Kim
- Department of Periodontology, Chonbuk National University School of Dentistry and Institute of Oral Bioscience, Jeonju, Korea
| | - Seok-Yeong Ko
- Department of Periodontology, Chonbuk National University School of Dentistry and Institute of Oral Bioscience, Jeonju, Korea
| | - Justin Ho Lee
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Jeong-Ho Yun
- Department of Periodontology, Chonbuk National University School of Dentistry and Institute of Oral Bioscience, Jeonju, Korea.,Research Institute of Clinical Medicine, Chonbuk National University, Jeonju, Korea.,Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|