1
|
Al-Shadidi JRMH, Al-Shammari S, Al-Mutairi D, Alkhudhair D, Thu HE, Hussain Z. Chitosan Nanoparticles for Targeted Cancer Therapy: A Review of Stimuli-Responsive, Passive, and Active Targeting Strategies. Int J Nanomedicine 2024; 19:8373-8400. [PMID: 39161363 PMCID: PMC11332424 DOI: 10.2147/ijn.s472433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
Despite all major advancements in drug discovery and development in the pharmaceutical industry, cancer is still one of the most arduous challenges for the scientific community. The implications of nanotechnology have certainly resolved major issues related to conventional anticancer modalities; however, the undesired recognition of nanoparticles (NPs) by the mononuclear phagocyte system (MPS), their poor stability in biological fluids, premature release of payload, and low biocompatibility have restricted their clinical translation. In recent decades, chitosan (CS)-based nanodelivery systems (eg, polymeric NPs, micelles, liposomes, dendrimers, conjugates, solid lipid nanoparticles, etc.) have attained promising recognition from researchers for improving the pharmacokinetics and pharmacodynamics of chemotherapeutics. However, the specialty of this review is to mainly focus on and critically discuss the targeting potential of various CS-based NPs for treatment of different types of cancer. Based on their delivery mechanisms, we classified CS-based NPs into stimuli-responsive, passive, or active targeting nanosystems. Moreover, various functionalization strategies (eg, grafting with polyethylene glycol (PEG), hydrophobic substitution, tethering of stimuli-responsive linkers, and conjugation of targeting ligands) adapted to the architecture of CS-NPs for target-specific delivery of chemotherapeutics have also been considered. Nevertheless, CS-NPs based therapeutics hold great promise for improving therapeutic outcomes while mitigating the off-target effects of chemotherapeutics, a long-term safety profile and clinical testing in humans are warranted for their successful clinical translation.
Collapse
Affiliation(s)
- Jafar R M H Al-Shadidi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shahad Al-Shammari
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Danah Al-Mutairi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Dalal Alkhudhair
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hnin Ei Thu
- Department of Pharmacology, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor Branch, Selangor, Malaysia
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
2
|
Antoniraj MG, Jeeva Kumari HL, Shanmugarathinam A, Kandasamy R. pH-responsive chitosan copolymer synthesized via click chemistry for design of polymeric nanoparticles for targeted drug delivery. Carbohydr Res 2024; 542:109200. [PMID: 38964015 DOI: 10.1016/j.carres.2024.109200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
The polymeric nanoparticles (PNPs) loaded with prednisolone were developed to exhibit pH-responsive properties owing to the attachment of a hydrazone linkage between the copolymer chitosan and mPEG. In the diseased cellular environment, the hydrazone bond tends to break due to reduced pH, leading to the release of the drug from the PNPs at the required site of action. The fabricated PNPs exhibit spherical morphology, optimum size (∼200 nm), negative surface charge, and monodispersed particle size distribution. The encapsulation efficiency of the PNPs was determined to be 71.1 ± 0.79 % and two experiments (polymer weight loss and drug release) confirmed the pH-responsive properties of the PNPs. The cellular study cytotoxicity assay showed biocompatibility of PNPs and drug molecule-mediated toxicity to A549 cells. The ligand atrial natriuretic peptide-attached PNPs internalized into A549 cells via natriuretic peptide receptor-A to achieve target specificity. The PNPs cytotoxicity and pH-response medicated inflammation reduction functionality was studied in inflammation-induced RAW264.7 cell lines. The study observed the PNPs effectively reduced the inflammatory mediators NO and ROS levels in RAW264.7. The results showed that pH-responsive properties of PNPs and this novel fabricated delivery system effectively treat inflammatory and cancer diseases.
Collapse
Affiliation(s)
- Mariya Gover Antoniraj
- Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational Research (CENTRE), University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Henry Linda Jeeva Kumari
- Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational Research (CENTRE), University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - A Shanmugarathinam
- Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational Research (CENTRE), University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational Research (CENTRE), University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
3
|
Mathes D, Macedo LB, Pieta TB, Maia BC, Rodrigues OED, Leal JG, Wendt M, Rolim CMB, Mitjans M, Nogueira-Librelotto DR. Co-Delivery of an Innovative Organoselenium Compound and Paclitaxel by pH-Responsive PCL Nanoparticles to Synergistically Overcome Multidrug Resistance in Cancer. Pharmaceutics 2024; 16:590. [PMID: 38794252 PMCID: PMC11124783 DOI: 10.3390/pharmaceutics16050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, we designed the association of the organoselenium compound 5'-Seleno-(phenyl)-3'-(ferulic-amido)-thymidine (AFAT-Se), a promising innovative nucleoside analogue, with the antitumor drug paclitaxel, in poly(ε-caprolactone) (PCL)-based nanoparticles (NPs). The nanoprecipitation method was used, adding the lysine-based surfactant, 77KS, as a pH-responsive adjuvant. The physicochemical properties presented by the proposed NPs were consistent with expectations. The co-nanoencapsulation of the bioactive compounds maintained the antioxidant activity of the association and evidenced greater antiproliferative activity in the resistant/MDR tumor cell line NCI/ADR-RES, both in the monolayer/two-dimensional (2D) and in the spheroid/three-dimensional (3D) assays. Hemocompatibility studies indicated the safety of the nanoformulation, corroborating the ability to spare non-tumor 3T3 cells and human mononuclear cells of peripheral blood (PBMCs) from cytotoxic effects, indicating its selectivity for the cancerous cells. Furthermore, the synergistic antiproliferative effect was found for both the association of free compounds and the co-encapsulated formulation. These findings highlight the antitumor potential of combining these bioactives, and the proposed nanoformulation as a potentially safe and effective strategy to overcome multidrug resistance in cancer therapy.
Collapse
Affiliation(s)
- Daniela Mathes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (D.M.); (L.B.M.); (B.C.M.); (C.M.B.R.)
- Laboratório de Testes e Ensaios Farmacêuticos In Vitro, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| | - Letícia Bueno Macedo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (D.M.); (L.B.M.); (B.C.M.); (C.M.B.R.)
- Laboratório de Engenharia e Processos Químicos, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil
| | - Taís Baldissera Pieta
- Laboratório de Testes e Ensaios Farmacêuticos In Vitro, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| | - Bianca Costa Maia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (D.M.); (L.B.M.); (B.C.M.); (C.M.B.R.)
- Laboratório de Testes e Ensaios Farmacêuticos In Vitro, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| | - Oscar Endrigo Dorneles Rodrigues
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (O.E.D.R.); (J.G.L.); (M.W.)
| | - Julliano Guerin Leal
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (O.E.D.R.); (J.G.L.); (M.W.)
| | - Marcelo Wendt
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (O.E.D.R.); (J.G.L.); (M.W.)
| | - Clarice Madalena Bueno Rolim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (D.M.); (L.B.M.); (B.C.M.); (C.M.B.R.)
- Laboratório de Testes e Ensaios Farmacêuticos In Vitro, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| | - Montserrat Mitjans
- Departament de Bioquimica i Fisiologia, Facultat de Farmacia i Ciències de l’Alimentaciò, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Daniele Rubert Nogueira-Librelotto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (D.M.); (L.B.M.); (B.C.M.); (C.M.B.R.)
- Laboratório de Testes e Ensaios Farmacêuticos In Vitro, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| |
Collapse
|
4
|
Wang Y, Li X, Gao N, Wang X, Sun S. Multivariable analysis of egg white protein-chitosan interaction: Influence of pH, temperature, biopolymers ratio, and ionic concentration. Food Chem X 2023; 19:100817. [PMID: 37780322 PMCID: PMC10534167 DOI: 10.1016/j.fochx.2023.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 10/03/2023] Open
Abstract
The influence of pH, temperature, biopolymer ratio, total concentration, and ionic concentration on the interaction between egg white protein (EWP) and chitosan (CS) was investigated through turbidity, zeta potential, and state diagram in our research. In addition, phase behavior was observed under various conditions. The turbidity of EWP remained low (turbidity < 0.03) and basically unchanged at a wide range of pH (4.0-8.0), while the turbidity of CS was slightly higher (turbidity < 0.2) after pH 7.0 than before. Moreover, under the same conditions, a sharply rising peak pattern was observed for the complex between EWP and CS. The maximum turbidity value was observed at 55 °C, and the temperature had a mild effect on turbidity. The optimum EWP to CS ratio was found to be 12:1 based on the turbidity curves and state diagrams influenced by different biopolymer mixing ratios. With the enhanced concentrations of total biopolymer, the maximum turbidity rose insignificantly above 0.1%.
Collapse
Affiliation(s)
- Yuemeng Wang
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong 264003, PR China
- Yantai Key Laboratory of Special Medical Food, Industrial Research Institute of Special Food, Yantai 264003, PR China
| | - Xin Li
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Na Gao
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong 264003, PR China
- Yantai Key Laboratory of Special Medical Food, Industrial Research Institute of Special Food, Yantai 264003, PR China
| | - Xiaojun Wang
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong 264003, PR China
- Yantai Key Laboratory of Special Medical Food, Industrial Research Institute of Special Food, Yantai 264003, PR China
| | - Shengqian Sun
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong 264003, PR China
- Yantai Key Laboratory of Special Medical Food, Industrial Research Institute of Special Food, Yantai 264003, PR China
| |
Collapse
|
5
|
Macedo LB, Nogueira-Librelotto DR, Mathes D, Pieta TB, Mainardi Pillat M, da Rosa RM, Rodrigues OED, Vinardell MP, Rolim CMB. Transferrin-Decorated PLGA Nanoparticles Loaded with an Organoselenium Compound as an Innovative Approach to Sensitize MDR Tumor Cells: An In Vitro Study Using 2D and 3D Cell Models. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2306. [PMID: 37630891 PMCID: PMC10458402 DOI: 10.3390/nano13162306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Multidrug resistance (MDR) is the main challenge in cancer treatment. In this sense, we designed transferrin (Tf)-conjugated PLGA nanoparticles (NPs) containing an organoselenium compound as an alternative to enhance the efficacy of cancer therapy and sensitize MDR tumor cells. Cytotoxicity studies were performed on different sensitive tumor cell lines and on an MDR tumor cell line, and the Tf-conjugated NPs presented significantly higher antiproliferative activity than the nontargeted counterparts in all tested cell lines. Due to the promising antitumor activity of the Tf-decorated NPs, further studies were performed using the MDR cells (NCI/ADR-RES cell line) comparatively to one sensitive cell line (HeLa). The cytotoxicity of NPs was evaluated in 3D tumor spheroids and, similarly to the results achieved in the 2D assays, the Tf-conjugated NPs were more effective at reducing the spheroid's growth. The targeted Tf-NPs were also able to inhibit tumor cell migration, presented a higher cell internalization and induced a greater number of apoptotic events in both cell lines. Therefore, these findings evidenced the advantages of Tf-decorated NPs over the nontargeted counterparts, with the Tf-conjugated NPs containing an organoselenium compound representing a promising drug delivery system to overcome MDR and enhance the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Letícia Bueno Macedo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (L.B.M.); (D.R.N.-L.); (D.M.); (M.M.P.)
| | - Daniele Rubert Nogueira-Librelotto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (L.B.M.); (D.R.N.-L.); (D.M.); (M.M.P.)
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| | - Daniela Mathes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (L.B.M.); (D.R.N.-L.); (D.M.); (M.M.P.)
| | - Taís Baldissera Pieta
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| | - Micheli Mainardi Pillat
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (L.B.M.); (D.R.N.-L.); (D.M.); (M.M.P.)
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil
| | - Raquel Mello da Rosa
- Departamentode Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (R.M.d.R.); (O.E.D.R.)
| | - Oscar Endrigo Dorneles Rodrigues
- Departamentode Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (R.M.d.R.); (O.E.D.R.)
| | - Maria Pilar Vinardell
- Departament de Bioquimica i Fisiologia, Facultat de Farmacia i Ciències de l’Alimentaciò, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Clarice Madalena Bueno Rolim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (L.B.M.); (D.R.N.-L.); (D.M.); (M.M.P.)
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| |
Collapse
|
6
|
Sarkar A, Roy S, Bhatia P, Jaiswal A. Quaternary ammonium substituted dextrin‐based biocompatible cationic nanoparticles with ultrahigh
pH
stability for drug delivery. J Appl Polym Sci 2023. [DOI: 10.1002/app.53626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ankita Sarkar
- School of Biosciences and Bioengineering Indian Institute of Technology Mandi Mandi India
| | - Shounak Roy
- School of Biosciences and Bioengineering Indian Institute of Technology Mandi Mandi India
| | - Prachi Bhatia
- School of Biosciences and Bioengineering Indian Institute of Technology Mandi Mandi India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering Indian Institute of Technology Mandi Mandi India
| |
Collapse
|
7
|
Dornelles RC, Guex CG, de Lima R, Nogueira-Librelotto DR, Casoti R, Engelmann AM, Emanuelli Mello CB, Brandt de Souza J, Melazzo de Andrade C, Machado AK, Pillat MM, Manfron MP, de Freitas Bauermann L. Richardia brasiliensis Gomes: phytochemical characterization, antiproliferative capacity and in vitro and in vivo toxicity. Regul Toxicol Pharmacol 2022; 133:105221. [PMID: 35792244 DOI: 10.1016/j.yrtph.2022.105221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/19/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
Abstract
Richardia brasiliensis, known as poaia branca, is a medicinal species widely distributed throughout Brazil and used in folk medicine. However, studies on its toxicity are practically non-existent, and little is known about its biological activity. This study aimed to investigate its phytochemical compounds, assess its in vitro and in vivo toxicities, and determine its antiproliferative activity. UHPLC-ESI-HRFTMS performed the phytochemical characterization, and the antiproliferative activity was analyzed in different tumor cell lines. In vitro toxicity was evaluated in PBMC cells, and in vivo acute and repeated dose toxicity was evaluated according to OECD guidelines. It was identified alkaloids and terpenes as significant compounds. Regarding its antiproliferative activity, the human melanoma strain decreased its viability by about 95%. In vitro toxicity showed that the extracts maintained the viability of PBMCs; however, higher concentrations were able to increase the production of dsDNA quantity. In vivo tests showed no mortality nor signs of toxicity; the alterations found in hematological and biochemical parameters are within the standards for the species. The results indicate that R. brasiliensis has a good effect against the tumor cell line; still, more studies on its toxicity at higher concentrations are needed.
Collapse
Affiliation(s)
- Rafaela Castro Dornelles
- Programa de Pós Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Camille Gaube Guex
- Programa de Pós Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Rachel de Lima
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Rosana Casoti
- Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Ana Martiele Engelmann
- Programa de Pós Graduação em Medicina Veterinária, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Camila Benaduce Emanuelli Mello
- Programa de Pós Graduação em Medicina Veterinária, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Julia Brandt de Souza
- Programa de Pós Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cinthia Melazzo de Andrade
- Programa de Pós Graduação em Medicina Veterinária, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Micheli Mainardi Pillat
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Melânia Palermo Manfron
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Liliane de Freitas Bauermann
- Programa de Pós Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
8
|
Macedo LB, Nogueira-Librelotto DR, Mathes D, de Vargas JM, da Rosa RM, Rodrigues OED, Vinardell MP, Mitjans M, Rolim CMB. Overcoming MDR by Associating Doxorubicin and pH-Sensitive PLGA Nanoparticles Containing a Novel Organoselenium Compound-An In Vitro Study. Pharmaceutics 2021; 14:80. [PMID: 35056975 PMCID: PMC8779681 DOI: 10.3390/pharmaceutics14010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we developed PLGA nanoparticles (NPs) as an effective carrier for 5'-Se-(phenyl)-3-(amino)-thymidine (ACAT-Se), an organoselenium compound, nucleoside analogue that showed promising antitumor activity in vitro. The PLGA NPs were prepared by the nanoprecipitation method and modified with a pH-responsive lysine-based surfactant (77KL). The ACAT-Se-PLGA-77KL-NPs presented nanometric size (around 120 nm), polydispersity index values < 0.20 and negative zeta potential values. The nanoencapsulation of ACAT-Se increased its antioxidant (DPPH and ABTS assays) and antitumor activity in MCF-7 tumor cells. Hemolysis study indicated that ACAT-Se-PLGA-77KL-NPs are hemocompatible and that 77KL provided a pH-sensitive membranolytic behavior to the NPs. The NPs did not induce cytotoxic effects on the nontumor cell line 3T3, suggesting its selectivity for the tumor cells. Moreover, the in vitro antiproliferative activity of NPs was evaluated in association with the antitumor drug doxorubicin. This combination result in synergistic effect in sensitive (MCF-7) and resistant (NCI/ADR-RES) tumor cells, being especially able to successfully sensitize the MDR cells. The obtained results suggested that the proposed ACAT-Se-loaded NPs are a promising delivery system for cancer therapy, especially associated with doxorubicin.
Collapse
Affiliation(s)
- Letícia Bueno Macedo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil; (L.B.M.); (D.M.); (C.M.B.R.)
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil;
| | - Daniele Rubert Nogueira-Librelotto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil; (L.B.M.); (D.M.); (C.M.B.R.)
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil;
| | - Daniela Mathes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil; (L.B.M.); (D.M.); (C.M.B.R.)
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil;
| | - Josiele Melo de Vargas
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil;
| | - Raquel Mello da Rosa
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil; (R.M.d.R.); (O.E.D.R.)
| | - Oscar Endrigo Dorneles Rodrigues
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil; (R.M.d.R.); (O.E.D.R.)
| | - Maria Pilar Vinardell
- Departament de Bioquimica i Fisiologia, Facultat de Farmacia i Ciències de l’Alimentaciò, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain;
- Institute of Nanocience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 465, 08028 Barcelona, Spain
| | - Montserrat Mitjans
- Departament de Bioquimica i Fisiologia, Facultat de Farmacia i Ciències de l’Alimentaciò, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain;
- Institute of Nanocience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 465, 08028 Barcelona, Spain
| | - Clarice Madalena Bueno Rolim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil; (L.B.M.); (D.M.); (C.M.B.R.)
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil;
| |
Collapse
|
9
|
Scheeren LE, Nogueira-Librelotto DR, Mathes D, Pillat MM, Macedo LB, Mitjans M, Vinardell MP, Rolim CMB. Multifunctional PLGA nanoparticles combining transferrin-targetability and pH-stimuli sensitivity enhanced doxorubicin intracellular delivery and in vitro antineoplastic activity in MDR tumor cells. Toxicol In Vitro 2021; 75:105192. [PMID: 33984456 DOI: 10.1016/j.tiv.2021.105192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/22/2021] [Accepted: 05/09/2021] [Indexed: 11/29/2022]
Abstract
Targeted delivery aims to enhance cellular uptake and improve therapeutic outcome with higher disease specificity. The expression of transferrin receptor (TfR) is upregulated on tumor cells, which make the protein Tf and its receptor vastly relevant when applied to targeting strategies. Here, we proposed Tf-decorated pH-sensitive PLGA nanoparticles containing the chemosensitizer poloxamer as a carrier for doxorubicin delivery to tumor cells (Tf-DOX-PLGA-NPs), aiming at alleviating multidrug resistance (MDR). We performed a range of in vitro studies to assess whether targeted NPs have the ability to improve DOX antitumor potential on resistant NCI/ADR-RES cells. All evaluations of the Tf-decorated NPs were performed comparatively to the nontargeted counterparts, aiming to evidence the real role of NP surface functionalization, along with the benefits of pH-sensitivity and poloxamer, in the improvement of antiproliferative activity and reversal of MDR. Tf-DOX-PLGA-NPs induced higher number of apoptotic events and ROS generation, along with cell cycle arrest. Moreover, they were efficiently internalized by NCI/ADR-RES cells, increasing DOX intracellular accumulation, which supports the greater cell killing ability of these targeted NPs with respect to MDR cells. Altogether, these findings supported the effectiveness of the Tf-surface modification of DOX-PLGA-NPs for an improved antiproliferative activity. Therefore, our pH-responsive Tf-inspired NPs are a promising smart drug delivery system to overcome MDR effect at some extent, enhancing the efficacy of DOX antitumor therapy.
Collapse
Affiliation(s)
- Laís E Scheeren
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, 97105-900 Santa Maria, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, 97105-900 Santa Maria, RS, Brazil
| | - Daniele R Nogueira-Librelotto
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, 97105-900 Santa Maria, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, 97105-900 Santa Maria, RS, Brazil.
| | - Daniela Mathes
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, 97105-900 Santa Maria, RS, Brazil
| | - Micheli M Pillat
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, 97105-900 Santa Maria, RS, Brazil; Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Av. Roraima 1000, 97105-900 Santa Maria, RS, Brazil
| | - Letícia B Macedo
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, 97105-900 Santa Maria, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, 97105-900 Santa Maria, RS, Brazil
| | - Montserrat Mitjans
- Departament de Bioquimica i Fisiologia, Facultat de Farmacia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - M Pilar Vinardell
- Departament de Bioquimica i Fisiologia, Facultat de Farmacia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Clarice M B Rolim
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, 97105-900 Santa Maria, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
10
|
Nogueira-Librelotto DR, Scheeren LE, Macedo LB, Vinardell MP, Rolim CM. pH-Sensitive chitosan-tripolyphosphate nanoparticles increase doxorubicin-induced growth inhibition of cervical HeLa tumor cells by apoptosis and cell cycle modulation. Colloids Surf B Biointerfaces 2020; 190:110897. [DOI: 10.1016/j.colsurfb.2020.110897] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/17/2020] [Accepted: 02/23/2020] [Indexed: 12/11/2022]
|
11
|
Ajdnik U, Finšgar M, Fras Zemljič L. Characterization of chitosan-lysine surfactant bioactive coating on silicone substrate. Carbohydr Polym 2020; 232:115817. [PMID: 31952614 DOI: 10.1016/j.carbpol.2019.115817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 12/22/2022]
Abstract
Chitosan (Chi) and anionic surfactant derived from lysine (77KS) were used to prepare a novel bioactive coating and as a drug delivery system for amoxicillin (AMOX) on a model polydimethylsiloxane (PDMS) surface. The bioactive coating was formulated as polyelectrolyte-surfactant complex (PESC). Aggregation behaviour between the cationic Chi and oppositely charged 77KS in bulk was analysed using turbidity and ζ-potential measurement. Furthermore, the adsorption and stability of the formulations were evaluated using quartz crystal microbalance with dissipation (QCM-D). The effect of the ionic strength and of the ultraviolet/ozone (UVO) activation of the PDMS films on the adsorption behaviour of the PESC complex was also examined. QCM-D monitoring showed stable adsorption of bare and AMOX-loaded complex on non-activated PDMS films, while the coating on UVO-activated PDMS samples desorbed after the rinsing step. Finally, X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry confirmed successful and homogenously distributed compounds.
Collapse
Affiliation(s)
- Urban Ajdnik
- University of Maribor, Faculty of Mechanical Engineering, Institute for Engineering Materials and Design, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Matjaž Finšgar
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Lidija Fras Zemljič
- University of Maribor, Faculty of Mechanical Engineering, Institute for Engineering Materials and Design, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
12
|
Protective effect of guarana-loaded liposomes on hemolytic activity. Colloids Surf B Biointerfaces 2020; 187:110636. [DOI: 10.1016/j.colsurfb.2019.110636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 11/20/2022]
|
13
|
Scheeren LE, Nogueira-Librelotto DR, Macedo LB, de Vargas JM, Mitjans M, Vinardell MP, Rolim CMB. Transferrin-conjugated doxorubicin-loaded PLGA nanoparticles with pH-responsive behavior: a synergistic approach for cancer therapy. JOURNAL OF NANOPARTICLE RESEARCH 2020; 22:72. [PMID: 0 DOI: 10.1007/s11051-020-04798-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/28/2020] [Indexed: 05/20/2023]
|
14
|
Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int J Pharm 2019; 561:244-264. [PMID: 30851391 DOI: 10.1016/j.ijpharm.2019.03.011] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
Abstract
Nanomedicines are now considered as the new-generation medication in the current era mainly because of their features related to nano size. The efficacy of many drugs in their micro/macro formulations is shown to have poor bioavailability and pharmacokinetics after oral administration. To overcome this predicament, use of natural/synthetic biodegradable polymeric nanoparticles (NPs) have gained prominence in the field of nanomedicine for targeted drug delivery to improve biocompatibility, bioavailability, safety, enhanced permeability, better retention time and lower toxicity. For drug delivery, it is essential to have biodegradable nanoparticle formulations for safe and efficient transport and release of drug at the intended site. Moreover, depending on the target organ, a suitable biodegradable polymer can be selected as the drug-carrier for target specific as well as for sustained drug delivery. The aim of this review is to present the current status and scope of natural biodegradable polymers as well as some emerging polymers with special characteristics as suitable carriers for drug delivery applications. The most widely preferred preparation methods are discussed along with their characterization using different analytical techniques. Further, the review highlights significant features of methods developed using natural polymers for drug entrapment and release studies.
Collapse
|
15
|
Bodratti AM, Alexandridis P. Amphiphilic block copolymers in drug delivery: advances in formulation structure and performance. Expert Opin Drug Deliv 2018; 15:1085-1104. [DOI: 10.1080/17425247.2018.1529756] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Andrew M. Bodratti
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| |
Collapse
|
16
|
Scheeren LE, Nogueira-Librelotto DR, Fernandes JR, Macedo LB, Marcolino AIP, Vinardell MP, Rolim CMB. Comparative Study of Reversed-Phase High-Performance Liquid Chromatography and Ultraviolet–Visible Spectrophotometry to Determine Doxorubicin in pH-Sensitive Nanoparticles. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1380034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Laís E. Scheeren
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Daniele R. Nogueira-Librelotto
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Joana R. Fernandes
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Letícia B. Macedo
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Ana Isa P. Marcolino
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - M. Pilar Vinardell
- Departament de Bioquimica I Fisiologia, Facultat de Farmàcia I Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Clarice M. B. Rolim
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
17
|
Deveci P, Taner B, Albayatı SHM. Mesoporous silica and chitosan based pH-sensitive smart nanoparticles for tumor targeted drug delivery. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0741-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Implications of molecular diversity of chitin and its derivatives. Appl Microbiol Biotechnol 2017; 101:3513-3536. [DOI: 10.1007/s00253-017-8229-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/26/2017] [Accepted: 03/04/2017] [Indexed: 02/03/2023]
|