1
|
Wu B, Li X, Wang R, Liu L, Huang D, Ye L, Wang Z. Biomimetic Mineralized Collagen Scaffolds for Bone Tissue Engineering: Strategies on Elaborate Fabrication for Bioactivity Improvement. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406441. [PMID: 39580700 DOI: 10.1002/smll.202406441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/23/2024] [Indexed: 11/26/2024]
Abstract
Biomimetic mineralized collagen (BMC) scaffolds represent an innovative class of bone-repair biomaterials inspired by the natural biomineralization process in bone tissue. Owing to their favorable biocompatibility and mechanical properties, BMC scaffolds have garnered significant attention in bone tissue engineering. However, most studies have overlooked the importance of bioactivity, resulting in collagen scaffolds with suboptimal osteogenic potential. In this review, the composition of the mineralized extracellular matrix (ECM) in bone tissue is discussed to provide guidance for biomimetic collagen mineralization. Subsequently, according to the detailed fabrication procedure of BMC scaffolds, the substances that can regulate both the fabrication process and biological activities is summarized. Furthermore, a potential strategy for developing BMC scaffolds with superior mechanical properties and biological activities for bone tissue engineering is proposed.
Collapse
Affiliation(s)
- Bingfeng Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaohong Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rui Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhenming Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
2
|
Zhang M, Mi M, Hu Z, Li L, Chen Z, Gao X, Liu D, Xu B, Liu Y. Polydopamine-Based Biomaterials in Orthopedic Therapeutics: Properties, Applications, and Future Perspectives. Drug Des Devel Ther 2024; 18:3765-3790. [PMID: 39219693 PMCID: PMC11363944 DOI: 10.2147/dddt.s473007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Polydopamine is a versatile and modifiable polymer, known for its excellent biocompatibility and adhesiveness. It can also be engineered into a variety of nanoparticles and biomaterials for drug delivery, functional modification, making it an excellent choice to enhance the prevention and treatment of orthopedic diseases. Currently, the application of polydopamine biomaterials in orthopedic disease prevention and treatment is in its early stages, despite some initial achievements. This article aims to review these applications to encourage further development of polydopamine for orthopedic therapeutic needs. We detail the properties of polydopamine and its biomaterial types, highlighting its superior performance in functional modification on nanoparticles and materials. Additionally, we also explore the challenges and future prospects in developing optimal polydopamine biomaterials for clinical use in orthopedic disease prevention and treatment.
Collapse
Affiliation(s)
- Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Man Mi
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zilong Hu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Lixian Li
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zhiping Chen
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Di Liu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Bilian Xu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| |
Collapse
|
3
|
Takematsu E, Murphy M, Hou S, Steininger H, Alam A, Ambrosi TH, Chan CKF. Optimizing Delivery of Therapeutic Growth Factors for Bone and Cartilage Regeneration. Gels 2023; 9:gels9050377. [PMID: 37232969 DOI: 10.3390/gels9050377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Bone- and cartilage-related diseases, such as osteoporosis and osteoarthritis, affect millions of people worldwide, impairing their quality of life and increasing mortality. Osteoporosis significantly increases the bone fracture risk of the spine, hip, and wrist. For successful fracture treatment and to facilitate proper healing in the most complicated cases, one of the most promising methods is to deliver a therapeutic protein to accelerate bone regeneration. Similarly, in the setting of osteoarthritis, where degraded cartilage does not regenerate, therapeutic proteins hold great promise to promote new cartilage formation. For both osteoporosis and osteoarthritis treatments, targeted delivery of therapeutic growth factors, with the aid of hydrogels, to bone and cartilage is a key to advance the field of regenerative medicine. In this review article, we propose five important aspects of therapeutic growth factor delivery for bone and cartilage regeneration: (1) protection of protein growth factors from physical and enzymatic degradation, (2) targeted growth factor delivery, (3) controlling GF release kinetics, (4) long-term stability of regenerated tissues, and (5) osteoimmunomodulatory effects of therapeutic growth factors and carriers/scaffolds.
Collapse
Affiliation(s)
- Eri Takematsu
- Department of Surgery, Stanford Medicine, Stanford, CA 94305, USA
| | - Matthew Murphy
- Blond McIndoe Laboratories, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PR, UK
| | - Sophia Hou
- Department of Surgery, Stanford Medicine, Stanford, CA 94305, USA
| | - Holly Steininger
- School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Alina Alam
- Department of Surgery, Stanford Medicine, Stanford, CA 94305, USA
| | - Thomas H Ambrosi
- Department of Orthopaedic Surgery, University of California, Davis, CA 95817, USA
| | - Charles K F Chan
- Department of Surgery, Stanford Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Abdal Dayem A, Lee SB, Lim KM, Kim A, Shin HJ, Vellingiri B, Kim YB, Cho SG. Bioactive peptides for boosting stem cell culture platform: Methods and applications. Biomed Pharmacother 2023; 160:114376. [PMID: 36764131 DOI: 10.1016/j.biopha.2023.114376] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Peptides, short protein fragments, can emulate the functions of their full-length native counterparts. Peptides are considered potent recombinant protein alternatives due to their specificity, high stability, low production cost, and ability to be easily tailored and immobilized. Stem cell proliferation and differentiation processes are orchestrated by an intricate interaction between numerous growth factors and proteins and their target receptors and ligands. Various growth factors, functional proteins, and cellular matrix-derived peptides efficiently enhance stem cell adhesion, proliferation, and directed differentiation. For that, peptides can be immobilized on a culture plate or conjugated to scaffolds, such as hydrogels or synthetic matrices. In this review, we assess the applications of a variety of peptides in stem cell adhesion, culture, organoid assembly, proliferation, and differentiation, describing the shortcomings of recombinant proteins and their full-length counterparts. Furthermore, we discuss the challenges of peptide applications in stem cell culture and materials design, as well as provide a brief outlook on future directions to advance peptide applications in boosting stem cell quality and scalability for clinical applications in tissue regeneration.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun Jin Shin
- Department of Ophthalmology, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Young Bong Kim
- Department of Biomedical Science & Engineering, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
5
|
Kunrath MF, Shah FA, Dahlin C. Bench-to-bedside: Feasibility of nano-engineered and drug-delivery biomaterials for bone-anchored implants and periodontal applications. Mater Today Bio 2023; 18:100540. [PMID: 36632628 PMCID: PMC9826856 DOI: 10.1016/j.mtbio.2022.100540] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/03/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Nanotechnology and drug-release biomaterials have been thoroughly explored in the last few years aiming to develop specialized clinical treatments. However, it is rare to find biomaterials associated with drug delivery properties in the current dental market for application in oral bone- and periodontal-related procedures. The gap between basic scientific evidence and translation to a commercial product remains wide. Several challenges have been reported regarding the clinical translation of biomaterials with drug-delivery systems (BDDS) and nanofeatures. Therefore, processes for BDDS development, application in preclinical models, drug delivery doses, sterilization processes, storage protocols and approval requirements were explored in this review, associated with tentative solutions for these issues. The diversity of techniques and compounds/molecules applied to develop BDDS demands a case-by-case approach to manufacturing and validating a commercial biomaterial. Promising outcomes such as accelerated tissue healing and higher antibacterial response have been shown through basic and preclinical studies using BDDS and nano-engineered biomaterials; however, the adequate process for sterilization, storage, cost-effectiveness and possible cytotoxic effects remains unclear for multifunctional biomaterials incorporated with different chemical compounds; then BDDSs are rarely translated into products. The future benefits of BDDS and nano-engineered biomaterials have been reported suggesting personalized clinical treatment and a promising reduction in the use of systemic antibiotics. Finally, the launch of these specialized biomaterials with solid data and controlled traceability onto the market will generate strong specificity for healthcare treatments.
Collapse
Affiliation(s)
- Marcel F. Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30, Göteborg, Sweden
- Department of Dentistry, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Furqan A. Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30, Göteborg, Sweden
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30, Göteborg, Sweden
| |
Collapse
|
6
|
Mahnavi A, Shahriari-Khalaji M, Hosseinpour B, Ahangarian M, Aidun A, Bungau S, Hassan SSU. Evaluation of cell adhesion and osteoconductivity in bone substitutes modified by polydopamine. Front Bioeng Biotechnol 2023; 10:1057699. [PMID: 36727042 PMCID: PMC9885973 DOI: 10.3389/fbioe.2022.1057699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
Bones damaged due to disease or accidents can be repaired in different ways. Tissue engineering has helped with scaffolds made of different biomaterials and various methods. Although all kinds of biomaterials can be useful, sometimes their weakness in cellular activity or osteoconductivity prevents their optimal use in the fabrication of bone scaffolds. To solve this problem, we need additional processes, such as surface modification. One of the common methods is coating with polydopamine. Polydopamine can not only cover the weakness of the scaffolds in terms of cellular properties, but it can also create or increase osteoconductivity properties. Polydopamine creates a hydrophilic layer on the surface of scaffolds due to a large number of functional groups such as amino and hydroxyl groups. This layer allows bone cells to anchor and adheres well to the surfaces. In addition, it creates a biocompatible environment for proliferation and differentiation. Besides, the polydopamine coating makes the surfaces chemically active by catechol and amine group, and as a result of their presence, osteoconductivity increases. In this mini-review, we investigated the characteristics, structure, and properties of polydopamine as a modifier of bone substitutes. Finally, we evaluated the cell adhesion and osteoconductivity of different polydopamine-modified bone scaffolds.
Collapse
Affiliation(s)
- Ali Mahnavi
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Mina Shahriari-Khalaji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | | | - Mostafa Ahangarian
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Amir Aidun
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran,Tissues and Biomaterials Research Group (TBRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran,*Correspondence: Amir Aidun, ; Simona Bungau, ; Syed Shams ul Hassan,
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania,*Correspondence: Amir Aidun, ; Simona Bungau, ; Syed Shams ul Hassan,
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Amir Aidun, ; Simona Bungau, ; Syed Shams ul Hassan,
| |
Collapse
|
7
|
Mo X, Zhang D, Liu K, Zhao X, Li X, Wang W. Nano-Hydroxyapatite Composite Scaffolds Loaded with Bioactive Factors and Drugs for Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24021291. [PMID: 36674810 PMCID: PMC9867487 DOI: 10.3390/ijms24021291] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Nano-hydroxyapatite (n-HAp) is similar to human bone mineral in structure and biochemistry and is, therefore, widely used as bone biomaterial and a drug carrier. Further, n-HAp composite scaffolds have a great potential role in bone regeneration. Loading bioactive factors and drugs onto n-HAp composites has emerged as a promising strategy for bone defect repair in bone tissue engineering. With local delivery of bioactive agents and drugs, biological materials may be provided with the biological activity they lack to improve bone regeneration. This review summarizes classification of n-HAp composites, application of n-HAp composite scaffolds loaded with bioactive factors and drugs in bone tissue engineering and the drug loading methods of n-HAp composite scaffolds, and the research direction of n-HAp composite scaffolds in the future is prospected.
Collapse
Affiliation(s)
- Xiaojing Mo
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Dianjian Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Keda Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Xiaoxi Zhao
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Correspondence: (X.L.); (W.W.)
| | - Wei Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Correspondence: (X.L.); (W.W.)
| |
Collapse
|
8
|
Meganathan I, Pachaiyappan M, Aarthy M, Radhakrishnan J, Mukherjee S, Shanmugam G, You J, Ayyadurai N. Recombinant and genetic code expanded collagen-like protein as a tailorable biomaterial. MATERIALS HORIZONS 2022; 9:2698-2721. [PMID: 36189465 DOI: 10.1039/d2mh00652a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Collagen occurs in nature with a dedicated triple helix structure and is the most preferred biomaterial in commercialized medical products. However, concerns on purity, disease transmission, and the reproducibility of animal derived collagen restrict its applications and warrants alternate recombinant sources. The expression of recombinant collagen in different prokaryotic and eukaryotic hosts has been reported with varying degrees of success, however, it is vital to elucidate the structural and biological characteristics of natural collagen. The recombinant production of biologically functional collagen is restricted by its high molecular weight and post-translational modification (PTM), especially the hydroxylation of proline to hydroxyproline. Hydroxyproline plays a key role in the structural stability and higher order self-assembly to form fibrillar matrices. Advancements in synthetic biology and recombinant technology are being explored for improving the yield and biomimicry of recombinant collagen. It emerges as reliable, sustainable source of collagen, promises tailorable properties and thereby custom-made protein biomaterials. Remarkably, the evolutionary existence of collagen-like proteins (CLPs) has been identified in single-cell organisms. Interestingly, CLPs exhibit remarkable ability to form stable triple helical structures similar to animal collagen and have gained increasing attention. Strategies to expand the genetic code of CLPs through the incorporation of unnatural amino acids promise the synthesis of highly tunable next-generation triple helical proteins required for the fabrication of smart biomaterials. The review outlines the importance of collagen, sources and diversification, and animal and recombinant collagen-based biomaterials and highlights the limitations of the existing collagen sources. The emphasis on genetic code expanded tailorable CLPs as the most sought alternate for the production of functional collagen and its advantages as translatable biomaterials has been highlighted.
Collapse
Affiliation(s)
- Ilamaran Meganathan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Mohandass Pachaiyappan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Mayilvahanan Aarthy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Janani Radhakrishnan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Smriti Mukherjee
- Division of Organic and Bio-organic Chemistry, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India
| | - Ganesh Shanmugam
- Division of Organic and Bio-organic Chemistry, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jingjing You
- Save Sight Institute, Sydney Medical School, University of Sydney, Australia
| | - Niraikulam Ayyadurai
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Poddar D, Jain P. Surface modification of three-dimensional porous polymeric scaffolds in tissue engineering applications: A focus review on physical modifications methods. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2061863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Deepak Poddar
- Department of Chemistry, Netaji Subhas University of Technology, New Delhi, India
| | - Purnima Jain
- Department of Chemistry, Netaji Subhas University of Technology, New Delhi, India
| |
Collapse
|
10
|
Huang C, Zhou J, Rao J, Zhao X, Tian X, He F, Shi H. Fabrication of strontium carbonate-based composite bioceramics as potential bone regenerative biomaterials. Colloids Surf B Biointerfaces 2022; 218:112755. [PMID: 35973237 DOI: 10.1016/j.colsurfb.2022.112755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022]
Abstract
Strontium carbonate (SrC) bioceramics are proposed as potential biomaterials to efficaciously repair the bone defects. However, the development of SrC bioceramics is restricted by their intrinsic low mechanical strength. In this study, SrC-based composite bioceramics (SrC-SrP) were fabricated by incorporating strontium-containing phosphate glass (SrP). The results indicated that aside from the main crystalline phase SrC, new compounds were generated in the SrC-SrP bioceramics. Incorporating 10 wt% SrP promoted densification, thus dramatically improving compressive strength of SrC-SrP bioceramics. The SrC-SrP bioceramics facilitated apatite precipitation on their surface, and sustainedly released strontium, phosphorus and sodium ions. Compared with the well-known β-tricalcium phosphate bioceramics, the SrC-SrP bioceramics with certain amounts of SrP enhanced proliferation, alkaline phosphatase activity and osteogenesis-related gene expressions of mouse bone mesenchymal stem cells. The SrC-SrP bioceramics with appropriate constituent can serve as novel bone regenerative biomaterials.
Collapse
Affiliation(s)
- Changgui Huang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Jielin Zhou
- School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jin Rao
- School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xinyi Zhao
- School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiumei Tian
- The School of Biomedical Engineering, and Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Haishan Shi
- School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China; Artificial Organs and Materials Engineering Research Center, Ministry of Education, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
11
|
Yi J, Liu Q, Zhang Q, Chew TG, Ouyang H. Modular protein engineering-based biomaterials for skeletal tissue engineering. Biomaterials 2022; 282:121414. [DOI: 10.1016/j.biomaterials.2022.121414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/27/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022]
|
12
|
Ghorbani F, Ghalandari B, Liu C. A Facile Method to Synthesize 3D Pomegranate-like Polydopamine Microspheres. Front Bioeng Biotechnol 2022; 9:737074. [PMID: 34993182 PMCID: PMC8724573 DOI: 10.3389/fbioe.2021.737074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Nanospheres have found versatile applications in the biomedical field; however, their possible harmful effects on immune and inflammatory systems are also a crucial concern. Inspired by a pomegranate structure, we demonstrated a novel structure for the nanostructured microspheres to overcome the drawbacks of nanospheres without compromising their merits. In this study, 3D pomegranate-like polydopamine microspheres (PDAMS) were synthesized by self-oxidative polymerization of dopamine hydrochloride. Herein, controlling the pH during polymerization led to synthesizing homogeneous agglomerated nano-sized spheres (400–2000 nm) and finally forming tunable and monodisperse micron-sized particles (21 µm) with uniform spherical shape porous microstructure. PDAMS interaction with the potential targets, Bone morphogenetic protein-2 (BMP2), Decorin, and Matrilin-1, was investigated via molecular calculations. Theoretical energy analysis revealed that PDAMS interaction with BMP2, Decorin, and Matrilin-1 is spontaneous, so that a protein layer formation on the PDAMS surface suggests application in bone and cartilage repair. It was also observed that PDAMS presented in-vitro degradation within 4 weeks. Here, disappearance of the UV-VIS spectrum peak at 280 nm is accompanied by the degradation of catechol groups. Pomegranate-like PDAMS support the biomimetic formation of hydroxyapatite-like layers, making them appropriate candidates for hard tissue applications. Herein, the appearance of peaks in XRD spectrum at 31.37, 39.57, 45.21, and 50.13° attributed to hydroxyapatite-like layers formation. All these results demonstrated that self-oxidative polymerization under a controllable pH can be a green and straightforward technique for preparing the pomegranate-like PDAMS and providing an innovative basis for further pre-clinical and clinical investigations.
Collapse
Affiliation(s)
- Farnaz Ghorbani
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, United Kingdom
| |
Collapse
|
13
|
Recombinant Proteins-Based Strategies in Bone Tissue Engineering. Biomolecules 2021; 12:biom12010003. [PMID: 35053152 PMCID: PMC8773742 DOI: 10.3390/biom12010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
The increase in fracture rates and/or problems associated with missing bones due to accidents or various pathologies generates socio-health problems with a very high impact. Tissue engineering aims to offer some kind of strategy to promote the repair of damaged tissue or its restoration as close as possible to the original tissue. Among the alternatives proposed by this specialty, the development of scaffolds obtained from recombinant proteins is of special importance. Furthermore, science and technology have advanced to obtain recombinant chimera’s proteins. This review aims to offer a synthetic description of the latest and most outstanding advances made with these types of scaffolds, particularly emphasizing the main recombinant proteins that can be used to construct scaffolds in their own right, i.e., not only to impregnate them, but also to make scaffolds from their complex structure, with the purpose of being considered in bone regenerative medicine in the near future.
Collapse
|
14
|
Samiei M, Alipour M, Khezri K, Saadat YR, Forouhandeh H, Abdolahinia ED, Vahed SZ, Sharifi S, Dizaj SM. Application of collagen and mesenchymal stem cells in regenerative dentistry. Curr Stem Cell Res Ther 2021; 17:606-620. [PMID: 34931969 DOI: 10.2174/1574888x17666211220100521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/28/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
Collagen is an important macromolecule of extracellular matrix (ECM) in bones, teeth, and temporomandibular joints. Mesenchymal stem cells (MSCs) interact with the components of the ECM such as collagen, proteoglycans, glycosaminoglycans (GAGs), and several proteins on behalf of variable matrix elasticity and bioactive cues. Synthetic collagen-based biomaterials could be effective scaffolds for regenerative dentistry applications due to mimicking of host tissues' ECM. These biomaterials are biocompatible, biodegradable, readily available, and non-toxic to cells whose capability promotes cellular response and wound healing in the craniofacial region. Collagen could incorporate other biomolecules to induce mineralization in calcified tissues such as bone and tooth. Moreover, the addition of these molecules or other polymers to collagen-based biomaterials could enhance mechanical properties, which is important in load-bearing areas such as the mandible. A literature review was performed via reliable internet database (mainly PubMed) based on MeSH keywords. This review first describes the properties of collagen as a key protein in the structure of hard tissues. Then, it introduces different types of collagens, the correlation between collagen and MSCs, and the methods used to modify collagen in regenerative dentistry including recent progression on the regeneration of periodontium, dentin-pulp complex, and temporomandibular joint by applying collagen. Besides, the prospects and challenges of collagen-based biomaterials in the craniofacial region pointes out.
Collapse
Affiliation(s)
- Mohammad Samiei
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Haleh Forouhandeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Chen Z, Xiao H, Zhang H, Xin Q, Zhang H, Liu H, Wu M, Zuo L, Luo J, Guo Q, Ding C, Tan H, Li J. Heterogenous hydrogel mimicking the osteochondral ECM applied to tissue regeneration. J Mater Chem B 2021; 9:8646-8658. [PMID: 34595487 DOI: 10.1039/d1tb00518a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inspired by the intricate extracellular matrix (ECM) of natural cartilage and subchondral bone, a heterogenous bilayer hydrogel scaffold is fabricated. Gelatin methacrylate (GelMA) and acryloyl glucosamine (AGA) serve as the main components in the upper layer, mimicking the chondral ECM. Meanwhile, vinylphosphonic acid (VPA) as a non-collagen protein analogue is incorporated into the bottom layer to induce the in situ biomineralization of calcium phosphate. The two heterogenous layers are effectively sutured together by the inter-diffusion between the upper and bottom layer hydrogels, together with chelation between the calcium ions and alginate added to separate layers. The interfacial bonding between the two different layers was thoroughly investigated via rheological measurements. The incorporation of AGA promotes chondrocytes to produce collagen type II and glycosaminoglycans and upregulates the expression of chondrogenesis-related genes. In addition, the minerals induced by VPA facilitate the osteogenesis of bone marrow mesenchymal stem cells (BMSCs). In vivo evaluation confirms the biocompatibility of the scaffold with minor inflammation and confirms the best repair ability of the bilayer hydrogel. This cell-free, cost-effective and efficient hydrogel shows great potential for osteochondral repair and inspires the design of other tissue-engineering scaffolds.
Collapse
Affiliation(s)
- Zhuoxin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Hong Xiao
- Department of Pain Management, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu 610041, China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Haochen Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Haixin Liu
- Department of Orthopedics, People's Hospital of Deyang City, No. 173, Taishan North Road, Deyang 618000, China
| | - Mingzhen Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Liangrui Zuo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China. .,CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Beijing 100190, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China. .,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Med-X Center for Materials, Sichuan University, 610041, China
| |
Collapse
|
16
|
Jia B, Yang H, Zhang Z, Qu X, Jia X, Wu Q, Han Y, Zheng Y, Dai K. Biodegradable Zn-Sr alloy for bone regeneration in rat femoral condyle defect model: In vitro and in vivo studies. Bioact Mater 2021; 6:1588-1604. [PMID: 33294736 PMCID: PMC7691683 DOI: 10.1016/j.bioactmat.2020.11.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Bone defects are commonly caused by severe trauma, malignant tumors, or congenital diseases and remain among the toughest clinical problems faced by orthopedic surgeons, especially when of critical size. Biodegradable zinc-based metals have recently gained popularity for their desirable biocompatibility, suitable degradation rate, and favorable osteogenesis-promoting properties. The biphasic activity of Sr promotes osteogenesis and inhibits osteoclastogenesis, which imparts Zn-Sr alloys with the ideal theoretical osteogenic properties. Herein, a biodegradable Zn-Sr binary alloy system was fabricated. The cytocompatibility and osteogenesis of the Zn-Sr alloys were significantly better than those of pure Zn in MC3T3-E1 cells. RNA-sequencing illustrated that the Zn-0.8Sr alloy promoted osteogenesis by activating the wnt/β-catenin, PI3K/Akt, and MAPK/Erk signaling pathways. Furthermore, rat femoral condyle defects were repaired using Zn-0.8Sr alloy scaffolds, with pure Ti as a control. The scaffold-bone integration and bone ingrowth confirmed the favorable in vivo repair properties of the Zn-Sr alloy, which was verified to offer satisfactory biosafety based on the hematoxylin-eosin (H&E) staining and ion concentration testing of important organs. The Zn-0.8Sr alloy was identified as an ideal bone repair material candidate, especially for application in critical-sized defects on load-bearing sites due to its favorable biocompatibility and osteogenic properties in vitro and in vivo.
Collapse
Affiliation(s)
- Bo Jia
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Hongtao Yang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Zechuan Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiufeng Jia
- Department of Orthopaedic Surgery, Wudi People's Hospital, Binzhou, 251900, China
| | - Qiang Wu
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China
| | - Yu Han
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Kerong Dai
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200011, China
| |
Collapse
|
17
|
Meng C, Su W, Liu M, Yao S, Ding Q, Yu K, Xiong Z, Chen K, Guo X, Bo L, Sun T. Controlled delivery of bone morphogenic protein-2-related peptide from mineralised extracellular matrix-based scaffold induces bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112182. [PMID: 34082982 DOI: 10.1016/j.msec.2021.112182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Ideal bone tissue engineering scaffolds composed of extracellular matrix (ECM) require excellent osteoconductive ability to imitate the bone environment. We developed a mineralised tissue-derived ECM-modified true bone ceramic (TBC) scaffold for the delivery of aspartic acid-modified bone morphogenic protein-2 (BMP-2) peptide (P28) and assessed its osteogenic capacity. Decellularized ECM from porcine small intestinal submucosa (SIS) was coated onto the surface of TBC, followed by mineralisation modification (mSIS/TBC). P28 was subsequently immobilised onto the scaffolds in the absence of a crosslinker. The alkaline phosphatase activity and other osteogenic differentiation marker results showed that osteogenesis of the P28/mSIS/TBC scaffolds was significantly greater than that of the TBC and mSIS/TBC groups. In addition, to examine the osteoconductive capability of this system in vivo, we established a rat calvarial bone defect model and evaluated the new bone area and new blood vessel density. Histological observation showed that P28/mSIS/TBC exhibited favourable bone regeneration efficacy. This study proposes the use of mSIS/TBC loaded with P28 as a promising osteogenic scaffold for bone tissue engineering applications.
Collapse
Affiliation(s)
- Chunqing Meng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weijie Su
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Man Liu
- Department of Gastroenterology and Hepatology, Taikang Tongji Hospital, Wuhan 430050, China
| | - Sheng Yao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiuyue Ding
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Keda Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zekang Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaifang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Bo
- Department of Rheumatology, The second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China.
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
18
|
Huang S, Yu F, Cheng Y, Li Y, Chen Y, Tang J, Bei Y, Tang Q, Zhao Y, Huang Y, Xiang Q. Transforming Growth Factor-β3/Recombinant Human-like Collagen/Chitosan Freeze-Dried Sponge Primed With Human Periodontal Ligament Stem Cells Promotes Bone Regeneration in Calvarial Defect Rats. Front Pharmacol 2021; 12:678322. [PMID: 33967817 PMCID: PMC8103166 DOI: 10.3389/fphar.2021.678322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with a skull defect are at risk of developing cerebrospinal fluid leakage and ascending bacterial meningitis at >10% per year. However, treatment with stem cells has brought great hope to large-area cranial defects. Having found that transforming growth factor (TGF)-β3 can promote the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs), we designed a hybrid TGF-β3/recombinant human-like collagen recombinant human collagen/chitosan (CS) freeze-dried sponge (TRFS) loading hPDLSCs (TRFS-h) to repair skull defects in rats. CFS with 2% CS was selected based on the swelling degree, water absorption, and moisture retention. The CS freeze-dried sponge (CFS) formed a porous three-dimensional structure, as observed by scanning electron microscopy. In addition, cytotoxicity experiments and calcein-AM/PI staining showed that TRFS had a good cellular compatibility and could be degraded completely at 90 days in the implantation site. Furthermore, bone healing was evaluated using micro-computed tomography in rat skull defect models. The bone volume and bone volume fraction were higher in TRFS loaded with hPDLSCs (TRFS-h) group than in the controls (p < 0.01, vs. CFS or TRFS alone). The immunohistochemical results indicated that the expression of Runx2, BMP-2, and collagen-1 (COL Ⅰ) in cells surrounding bone defects in the experimental group was higher than those in the other groups (p < 0.01, vs. CFS or TRFS alone). Taken together, hPDLSCs could proliferate and undergo osteogenic differentiation in TRFS (p < 0.05), and TRFS-h accelerated bone repair in calvarial defect rats. Our research revealed that hPDLSCs could function as seeded cells for skull injury, and their osteogenic differentiation could be accelerated by TGF-β3. This represents an effective therapeutic strategy for restoring traumatic defects of the skull.
Collapse
Affiliation(s)
- Shiyi Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Fenglin Yu
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Yating Cheng
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Yangfan Li
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Yini Chen
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Jianzhong Tang
- Biopharmaceutical R and D Center of Jinan University, Guangzhou, China
| | - Yu Bei
- Biopharmaceutical R and D Center of Jinan University, Guangzhou, China
| | - Qingxia Tang
- Department of Stomatology, Jinan University Medical College, Guangzhou, China
| | - Yueping Zhao
- Department of Stomatology, Jinan University Medical College, Guangzhou, China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R and D Center of Jinan University, Guangzhou, China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Biopharmaceutical R and D Center of Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Zhang Z, Jia B, Yang H, Han Y, Wu Q, Dai K, Zheng Y. Biodegradable ZnLiCa ternary alloys for critical-sized bone defect regeneration at load-bearing sites: In vitro and in vivo studies. Bioact Mater 2021; 6:3999-4013. [PMID: 33997489 PMCID: PMC8085902 DOI: 10.1016/j.bioactmat.2021.03.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
A novel biodegradable metal system, ZnLiCa ternary alloys, were systematically investigated both in vitro and in vivo. The ultimate tensile strength (UTS) of Zn0.8Li0.1Ca alloy reached 567.60 ± 9.56 MPa, which is comparable to pure Ti, one of the most common material used in orthopedics. The elongation of Zn0.8Li0.1Ca is 27.82 ± 18.35%, which is the highest among the ZnLiCa alloys. The in vitro degradation rate of Zn0.8Li0.1Ca alloy in simulated body fluid (SBF) showed significant acceleration than that of pure Zn. CCK-8 tests and hemocompatibility tests manifested that ZnLiCa alloys exhibit good biocompatibility. Real-time PCR showed that Zn0.8Li0.1Ca alloy successfully stimulated the expressions of osteogenesis-related genes (ALP, COL-1, OCN and Runx-2), especially the OCN. An in vivo implantation was conducted in the radius of New Zealand rabbits for 24 weeks, aiming to treat the bone defects. The Micro-CT and histological evaluations proved that the regeneration of bone defect was faster within the Zn0.8Li0.1Ca alloy scaffold than the pure Ti scaffold. Zn0.8Li0.1Ca alloy showed great potential to be applied in orthopedics, especially in the load-bearing sites. The first research work of ZnLiCa alloys to be used as biodegradable metals. The ultimate tensile strength (UTS) of Zn0.8Li0.1Ca alloy reached 567.60 ± 9.56 MPa, which is comparable to pure Ti, one of the most common material used in orthopedics. Porous scaffolds made of Zn0.8Li0.1Ca showed superior bone-defect-treating effects to pure Ti scaffolds in New Zealand rabbits.
Collapse
Affiliation(s)
- Zechuan Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Bo Jia
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Hongtao Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yu Han
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Qiang Wu
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Kerong Dai
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
- Corresponding author. Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Corresponding author. Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
20
|
Yang Y, Campbell Ritchie A, Everitt NM. Recombinant human collagen/chitosan-based soft hydrogels as biomaterials for soft tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111846. [PMID: 33579509 DOI: 10.1016/j.msec.2020.111846] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/15/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022]
Abstract
Animal-derived collagen may contain viruses, and its impurity can cause immunological reactions. Chitosan, always required a neutralization step in fabricating it into the biocompatible tissue engineering scaffolds. To avoid these risks and simplify the production process, a series of recombinant human collagen/carboxylated chitosan (RHC-CHI) based soft hydrogel scaffolds were prepared by crosslinking-induced gelation and then investigated their feasibilities for use as soft tissue engineering scaffolds. The gelation time was optimized by modulating the biopolymer concentration or reaction temperature. The hydrogel swelling, degradation rate, and mechanical properties were also investigated. The results showed that these parameters could be tuned by adjusting either the RHC-to-chitosan ratio or the total polymer concentration. The mechanical properties of the hydrogels were improved by adding chitosan, but excess chitosan reduced the hydrogel mechanical strength and accelerated the degradation speed. Cytotoxicity tests showed that all fabricated soft hydrogels were biocompatible and displayed no cytotoxicity. Cytocompatibility tests and qRT-PCR studies indicated that the hydrogel system promoted the adhesion and proliferation of NIH-3T3 cells, and cellular activities were directly up-regulated by RHC. Finally, our in vivo study proved these hydrogels were able to accelerate the cell infiltration and wound closure. These results show that the soft RHC-CHI hydrogels show promise in soft-tissue engineering.
Collapse
Affiliation(s)
- Yang Yang
- Bioengineering Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Alastair Campbell Ritchie
- Bioengineering Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Nicola M Everitt
- Bioengineering Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
21
|
BMP-2 and VEGF-A modRNAs in collagen scaffold synergistically drive bone repair through osteogenic and angiogenic pathways. Commun Biol 2021; 4:82. [PMID: 33469143 PMCID: PMC7815925 DOI: 10.1038/s42003-020-01606-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Bone has a remarkable potential for self-healing and repair, yet several injury types are non-healing even after surgical or non-surgical treatment. Regenerative therapies that induce bone repair or improve the rate of recovery are being intensely investigated. Here, we probed the potential of bone marrow stem cells (BMSCs) engineered with chemically modified mRNAs (modRNA) encoding the hBMP-2 and VEGF-A gene to therapeutically heal bone. Induction of osteogenesis from modRNA-treated BMSCs was confirmed by expression profiles of osteogenic related markers and the presence of mineralization deposits. To test for therapeutic efficacy, a collagen scaffold inoculated with modRNA-treated BMSCs was explored in an in vivo skull defect model. We show that hBMP-2 and VEGF-A modRNAs synergistically drive osteogenic and angiogenic programs resulting in superior healing properties. This study exploits chemically modified mRNAs, together with biomaterials, as a potential approach for the clinical treatment of bone injury and defects.
Collapse
|
22
|
Surface modification of a three-dimensional polycaprolactone scaffold by polydopamine, biomineralization, and BMP-2 immobilization for potential bone tissue applications. Colloids Surf B Biointerfaces 2021; 199:111528. [PMID: 33385823 DOI: 10.1016/j.colsurfb.2020.111528] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022]
Abstract
Three-dimensional (3D) bioprinting is a free-form fabrication technique enabling fine feature control for tissue engineering applications. Especially, 3D scaffolds capable of supporting cell attachment, proliferation, and osteogenic differentiation are a prerequisite for bone tissue regeneration. Herein, we elaborated this approach to produce a 3D polycaprolactone (PCL) scaffold with long-term osteogenic activity. Specifically, we coated polydopamine (PDA) on 3D PCL scaffolds, subsequently deposited hydroxyapatite (HA) nanoparticles via biomimetic mineralization, and finally immobilized bone morphogenetic protein-2 (BMP-2). Material properties were characterized and compared with various 3D scaffolds, including PCL, PDA-coated PCL (PCL/PDA), and PDA-coated and HA-deposited PCL (PCL/PDA/HA). In vitro cell culture studies with osteoblasts revealed that the PCL/PDA/HA scaffolds immobilized with BMP-2 showed long-term retention of BMP-2 (for up to 21 days) and significantly increased osteoblast proliferation and osteogenic differentiation, as evidenced by metabolic activity, alkaline phosphatase activity, and calcium deposition. We believe that this multifunctional osteogenic 3D scaffold will be useful for bone tissue engineering applications.
Collapse
|
23
|
Chen Z, Fan D, Shang L. Exploring the potential of the recombinant human collagens for biomedical and clinical applications: a short review. ACTA ACUST UNITED AC 2020; 16:012001. [PMID: 32679570 DOI: 10.1088/1748-605x/aba6fa] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural animal collagen and its recombinant collagen are favourable replacements in human tissue engineering due to their remarkable biomedical property. However, this exploitation is largely restricted due to the potential of immunogenicity and virus contamination. Exploring new ways to produce human collagen is fundamental to its biomedical and clinical application. All human fibrillar collagen molecules have three polypeptide chains constructed from a repeating Gly-Xaa-Yaa triplet, where Xaa and Yaa represent one random amino acid. Using cDNA techniques to modify several repeat sequences of the cDNA fragment, a novel human collagen, named recombinant human-like collagen (rHLC), with low immunogenicity and little risk from hidden virus can be engineered and notably tailored to specific applications. Human-like collagen (HLC) was initially used as a coating to modify the tissue engineering scaffold, and then used as the scaffold after cross-link agents were added to increase its mechanical strength. Due to its good biocompatibility, low immunogenicity, stabilised property, and the ability of mass production, HLC has been widely used in skin injury treatments, vascular scaffolds engineering, cartilage, bone defect repair, skincare, haemostatic sponge, and drug delivery, including coating with medical nanoparticles. In this review, we symmetrically reviewed the development, recent advances in design and application of HLC, and other recombinant human collagen-based biomedicine potentials. At the end, future improvements are also discussed.
Collapse
Affiliation(s)
- Zhuoyue Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province 710069, People's Republic of China. Shaanxi Key Laboratory of Degradable Biomedical Materials; Shaanxi R&D Center of Biomaterial and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, People's Republic of China
| | | | | |
Collapse
|
24
|
Ding Q, Cui J, Shen H, He C, Wang X, Shen SGF, Lin K. Advances of nanomaterial applications in oral and maxillofacial tissue regeneration and disease treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1669. [PMID: 33090719 DOI: 10.1002/wnan.1669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
Using bioactive nanomaterials in clinical treatment has been widely aroused. Nanomaterials provide substantial improvements in the prevention and treatment of oral and maxillofacial diseases. This review aims to discuss new progresses in nanomaterials applied to oral and maxillofacial tissue regeneration and disease treatment, focusing on the use of nanomaterials in improving the quality of oral and maxillofacial healthcare, and discuss the perspectives of research in this arena. Details are provided on the tissue regeneration, wound healing, angiogenesis, remineralization, antitumor, and antibacterial regulation properties of nanomaterials including polymers, micelles, dendrimers, liposomes, nanocapsules, nanoparticles and nanostructured scaffolds, etc. Clinical applications of nanomaterials as nanocomposites, dental implants, mouthwashes, biomimetic dental materials, and factors that may interact with nanomaterials behaviors and bioactivities in oral cavity are addressed as well. In the last section, the clinical safety concerns of their usage as dental materials are updated, and the key knowledge gaps for future research with some recommendation are discussed. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Qinfeng Ding
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jinjie Cui
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hangqi Shen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Chuanglong He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Steve G F Shen
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
25
|
Mao J, Wei P, Yuan Z, Jing W, Cao J, Li G, Guo J, Wang H, Chen D, Cai Q. Osteoconductive and osteoinductive biodegradable microspheres serving as injectable micro-scaffolds for bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:229-247. [PMID: 32966753 DOI: 10.1080/09205063.2020.1827922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There are intensive needs for scaffolds with new designs to meet the diverse requirements of bone repairing. Biodegradable microspheres are highlighted as injectable micro-scaffolds thanks to their advantages in filling irregular defects via a minimally invasive surgery. In this study, microspheres with surface micropores were made via the W1/O/W2 double emulsion method using amphiphilic triblock copolymers (PLLA-PEG-PLLA) composed of poly(L-lactide) (PLLA) and poly(ethylene glycol) (PEG) segments. When the PEG fraction was controlled as 10 wt.%, the microspheres demonstrated higher cell affinity than the smooth-surfaced PLLA microspheres. After being further functionalized with polydopamine coating and apatite deposition, the PLLA-PEG-PLLA microspheres could up-regulate the osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs) significantly. Before subcutaneous implantation, bone morphogenetic protein-2 (BMP-2) was adsorbed onto the biomineralized microspheres by taking advantages of the strong affinity of apatite to BMP-2. The resulted microspheres induced ectopic osteogenesis efficiently without causing biocompatibility problems. In summary, this study provided a simple strategy to prepare functionalized microspheres with osteoconductivity and osteoinductivity, which showed great potential in promoting bone regeneration as injectable micro-scaffolds.
Collapse
Affiliation(s)
- Jianping Mao
- Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - Pengfei Wei
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing, P.R. China
| | - Zuoying Yuan
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing, P.R. China
| | - Wei Jing
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing, P.R. China
| | - Jingjing Cao
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - Guangping Li
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - Jianxun Guo
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - Honggang Wang
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing, P.R. China
| |
Collapse
|
26
|
Wu R, Gao G, Xu Y. Electrospun Fibers Immobilized with BMP-2 Mediated by Polydopamine Combined with Autogenous Tendon to Repair Developmental Dysplasia of the Hip in a Porcine Model. Int J Nanomedicine 2020; 15:6563-6577. [PMID: 32982218 PMCID: PMC7490068 DOI: 10.2147/ijn.s259028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Developmental dysplasia of the hip (DDH) can increase the pressure between the joints, which causes secondary hip osteoarthritis. The aim of the present study was to fabricate poly(D, L-lactic acid)-poly(ethylene glycol)-poly(D, L-lactic acid) (PELA) electrospun fibrous scaffolds, immobilized with bone morphogenetic protein-2 (BMP-2), to repair the acetabulum defects. Methods The characteristics of PELA electrospun were analyzed using scanning electron microscopy, the release kinetics of BMP-2 in vitro were analyzed using enzyme-linked immunosorbent assays. Human mesenchymal stem cells (hMSCs) were used for in vitro experiments, the biocompatibility of the electrospinning materials was investigated using a cell counting kit-8 (CCK-8) kit, and osteogenic differentiation was tested via alkaline phosphatase (ALP) activity and relative gene expression. Eighteen miniature pig animal models were used in the in vivo experiment. The pigs were sacrificed at 24 weeks after surgery, and the reconstructed acetabulum was evaluated using histological sections. Results Structural analysis revealed that the diameter of the PELA electrospun fiber was 0.8195 ± 0.16 μm. The PELA electrospun fiber materials showed good hydrophilicity and biocompatibility and could continuously release BMP-2 within 27 days: 16.07 ± 0.11 ng of BMP-2 was released from the scaffold. A total of sixteen implants fully filled the defects, and hematoxylin and eosin staining and Goldner's trichrome staining showed that the simple tendon group (T group) was mostly fibrous tissues, lots of fibroblasts and small amounts of chondrocytes were observed in the polydopamine-coated electrospun fiber group (DP group). The DP plus BMP-2 (DPB) group showed a large number of chondrocytes and partial new bone tissues. Conclusion PELA electrospun fibrous scaffolds are good sustained-release carriers, which can not only induce implant differentiation into cartilage and bone but also are completely degraded without toxicity. Therefore, the material can be used for bone and cartilage regeneration.
Collapse
Affiliation(s)
- Ruiqi Wu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| | - Guanying Gao
- Department of Sports Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yan Xu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| |
Collapse
|
27
|
Wan T, Jiao Z, Guo M, Wang Z, Wan Y, Lin K, Liu Q, Zhang P. Gaseous sulfur trioxide induced controllable sulfonation promoting biomineralization and osseointegration of polyetheretherketone implants. Bioact Mater 2020; 5:1004-1017. [PMID: 32671294 PMCID: PMC7339002 DOI: 10.1016/j.bioactmat.2020.06.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 10/25/2022] Open
Abstract
Fabricating a desired porous structure on the surface of biomedical polyetheretherketone (PEEK) implants for enhancing biological functions is crucial and difficult due to its inherent chemical inertness. In this study, a porous surface of PEEK implants was fabricated by controllable sulfonation using gaseous sulfur trioxide (SO3) for different time (5, 15, 30, 60 and 90 min). Micro-topological structure was generated on the surface of sulfonated PEEK implants preserving original mechanical properties. The protein absorption capacity and apatite forming ability was thus improved by the morphological and elemental change with higher degree of sulfonation. In combination of the appropriate micromorphology and bioactive sulfonate components, the cell adhesion, migration, proliferation and extracellular matrix secretion were obviously enhanced by the SPEEK-15 samples which were sulfonated for 15 min. Finding from this study revealed that controllable sulfonation by gaseous SO3 would be an extraordinarily strategy for improving osseointegration of PEEK implants by adjusting the microstructure and chemical composition while maintaining excellent mechanical properties.
Collapse
Affiliation(s)
- Teng Wan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun, 130041, PR China
| | - Zixue Jiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- Corresponding author.
| | - Yizao Wan
- Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, PR China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Qinyi Liu
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun, 130041, PR China
- Corresponding author.
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
- Corresponding author. Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.
| |
Collapse
|
28
|
Liu Y, Qiu Y, Ni S, Zhang X, Sun H, Song W, Li X. Mussel-Inspired Biocoating for Improving the Adhesion of Dental Pulp Stem Cells in Dental Pulp Regeneration. Macromol Rapid Commun 2020; 41:e2000102. [PMID: 32483838 DOI: 10.1002/marc.202000102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/03/2020] [Indexed: 12/21/2022]
Abstract
Dental pulp engineering possesses a promising perspective to replacing lost pulp in the root canal and restoring its functions. Stable adhesion of dental pulp stem cells (DPSCs) on the root canal dentin wall is a key element required for reconstruction of a functional odontoblast layer in dental pulp regeneration. To address this challenge, dopamine-modified hyaluronic acid (DA-HA) is coated on dentin to obtain a stable adhesion of DPSCs. The dopamine segment provides adhesion ability to the coating, and the hyaluronic acid increases the biocompatibility. The results show that DPSCs can adhere on the DA-HA coated dentin slice better than those without coating. Simultaneously, DPSCs proliferation can be further promoted on the prepared coating. Therefore, the DA-HA coating may provide a possible way to immobilize odontoblast cell onto dentin surface for pulp regeneration.
Collapse
Affiliation(s)
- Yanan Liu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130023, P. R. China.,Department of Endodontics, School of Stomatology, Jilin University, Changchun, 130021, P. R. China.,Department of Pathology, School of Stomatology, Jilin University, Changchun, 130021, P. R. China.,ENT Department, Baoding No. 1 Central Hospital, Baoding, 071000, P. R. China
| | - Ying Qiu
- Department of Endodontics, School of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Shilei Ni
- Department of Pathology, School of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Xuewei Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Hongchen Sun
- Department of Pathology, School of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Wenlong Song
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Xiangwei Li
- Department of Endodontics, School of Stomatology, Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
29
|
Natural Sources and Applications of Demineralized Bone Matrix in the Field of Bone and Cartilage Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:3-14. [DOI: 10.1007/978-981-15-3258-0_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Wang Z, Sun J, Li Y, Chen C, Xu Y, Zang X, Li L, Meng K. Experimental study of the synergistic effect and network regulation mechanisms of an applied combination of BMP-2, VEGF, and TGF-β1 on osteogenic differentiation. J Cell Biochem 2019; 121:2394-2405. [PMID: 31646676 DOI: 10.1002/jcb.29462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/10/2019] [Indexed: 02/03/2023]
Abstract
The study aimed to explore the osteogenic effect induced by the combined use of bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), and transforming growth factor-β1 (TGF-β1), attain the best combination for osteogenic quality and efficiency, and explore the network regulation mechanisms of induced osteogenesis. MC3T3-E1 cells were cultured in vitro, and BMP-2, VEGF, and TGF β1 were added to osteogenic induction mediums in different combinations to conduct experiments. At 7 and 14 days, the alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining of the applied BMP-2 and VEGF combination were deeper and the quantitative analysis were higher than those of the other groups. After optimizing the time-effect relationship of the combined application, with BMP-2, VEGF, and TGF-β1 adding in the early stage and BMP-2 and VEGF adding in the late, the ALP and ARS staining of these groups were deeper and the quantitative analyses were meaningfully higher than the BMP-2 and VEGF combination group at 7 and 14 days. The expression of the RUNX2 gene and the Smad1 signaling pathway in the optimized combination group was also significantly higher. The results demonstrate that the combination of BMP-2, VEGF, and TGF-β1 applied according to the time-effect relationship can significantly promote osteogenic differentiation mainly through the classical BMP-receptor-Smad signal pathway.
Collapse
Affiliation(s)
- Zhihao Wang
- Department of Oral & Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Jian Sun
- Department of Oral & Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, Shandong, China.,Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, Shandong, China.,Shandong Provincial Key Laboratory of Digital Medicine and Computer-assisted Surgery, Qingdao, Shandong, China
| | - Yali Li
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chen Chen
- Department of Oral & Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yaoxiang Xu
- Department of Oral & Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaolong Zang
- Department of Oral & Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Li Li
- Department of Oral & Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Kun Meng
- Department of Oral & Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
31
|
Newly Designed Human-Like Collagen to Maximize Sensitive Release of BMP-2 for Remarkable Repairing of Bone Defects. Biomolecules 2019; 9:biom9090450. [PMID: 31487971 PMCID: PMC6769454 DOI: 10.3390/biom9090450] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 12/18/2022] Open
Abstract
Designing the “ideal” hydrogel/matrix which can load bone morphogenetic protein-2 (BMP-2) in a low dose and with a sustained release is the key for its successful therapeutic application to enhance osteogenesis. The current use of natural collagen sponges as hydrogel/matrix is limited due to the collagen matrix showing weak mechanical strength and unmanageable biodegradability. Furthermore, the efficiency and safe dose usage of the BMP-2 has never been seriously considered other than purely chasing the lowest dose usage and extended-release time. In this paper, we customized a novel enzymatically cross-linked recombinant human-like collagen (HLC) sponge with low immunogenicity, little risk from hidden viruses, and easy production. We obtained a unique vertical pore structure and the porosity of the HLC, which are beneficial for Mesenchymal stem cells (MSCs) migration into the HLC sponge and angiopoiesis. This HLC sponge loading with low dose BMP-2 (1 µg) possessed high mechanical strength along with a burst and a sustained release profile. These merits overcome previous limitations of HLC in bone repair and are safer and more sensitive than commercial collagens. For the first time, we identified that a 5 µg dose of BMP-2 can bring about the side effect of bone overgrowth through this sensitive delivery system. Osteoinduction of the HLC-BMP sponges was proved by an in vivo mouse ectopic bone model and a rat cranial defect repair model. The method and the HLC-BMP sponge have the potential to release other growth factors and aid other tissue regeneration. Additionally, the ability to mass-produce HLC in our study overcomes the current supply shortage, which limits bone repair in the clinic.
Collapse
|
32
|
Zheng L, Li D, Wang W, Zhang Q, Zhou X, Liu D, Zhang J, You Z, Zhang J, He C. Bilayered Scaffold Prepared from a Kartogenin-Loaded Hydrogel and BMP-2-Derived Peptide-Loaded Porous Nanofibrous Scaffold for Osteochondral Defect Repair. ACS Biomater Sci Eng 2019; 5:4564-4573. [PMID: 33448830 DOI: 10.1021/acsbiomaterials.9b00513] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recently, a bilayered scaffold with an anisotropic structure mimicking a native osteochondral tissue shows considerable potential for treating osteochondral defects. Herein, a bilayered scaffold consisting of biomimetic cartilage and a subchondral bone architecture was constructed for repairing osteochondral defect. A hydrogel prepared by the Schiff base reaction of gelatin, silk fibroin, and oxidized dextran was designed as the cartilage layer, while a nanofibrous scaffold with a macroporous structure prepared from the polymer blend of poly(l-lactic acid)/poly(lactic-co-glycolic acid)/poly(ε-caprolactone) using the dual phase separation technique served as a subchondral layer. The subchondral layer was then treated with polydopamine coating for osteogenic factor immobilization. To facilitate the chondrogenic and osteogenic differentiation of bone marrow mesenchymal stem cells on the bilayered scaffold, the cartilage-inducing drug kartogenin (KGN) and osteogenic-inducing factor bone morphogenetic protein 2-derived peptides (P24 peptides) were, respectively, loaded on the subchondral layer. Next, the in vitro release of KGN and P24 peptide from the corresponding layer was monitored, respectively, and the results showed that both the release time of KGN and P24 peptides would last for more than 28 days. The in vitro results indicated that the KGN-loaded cartilage layer and P24 peptides-loaded subchondral layer were capable of supporting cell proliferation, and induced the chondrogenic and osteogenic differentiation, respectively. Furthermore, the in vivo experiments suggested that the bilayered scaffold significantly accelerated the regeneration of the osteochondral tissue in the rabbit knee joint model. Consequently, this bilayered scaffold loaded with KGN and P24 peptides would be a promising candidate for repairing osteochondral defect.
Collapse
Affiliation(s)
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201301, China
| | | | | | | | | | | | | | - Jundong Zhang
- Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China
| | | |
Collapse
|
33
|
Ramshaw JA, Werkmeister JA, Glattauer V. Recent progress with recombinant collagens produced in Escherichia coli. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Zeng JH, Qiu P, Xiong L, Liu SW, Ding LH, Xiong SL, Li JT, Xiao ZB, Zhang T. Bone repair scaffold coated with bone morphogenetic protein-2 for bone regeneration in murine calvarial defect model: Systematic review and quality evaluation. Int J Artif Organs 2019; 42:325-337. [PMID: 30905250 DOI: 10.1177/0391398819834944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To systematically assess the effects of hydroxyapatite bone repair scaffold coated with bone morphogenetic protein-2 on murine calvarial defect models and to determine the quality of studies according to the Animal Research Reporting in In Vivo Experiments guidelines. Internet search was performed in duplicate using PubMed, MEDLINE, Ovid and Embase databases (without restrictions on publication date). The Animal Research Reporting in In Vivo Experiments guidelines were used to evaluate the quality of selected studies. Following screening, 12 studies were eligible for the review. Studies with average quality coefficients predominated (66.67%), followed by poor (25%) and excellent (8.33%) quality coefficients. Minimum quality scores were assigned to the Animal Research Reporting in In Vivo Experiments guideline items: housing and husbandry (9), allocation (11), outcomes (12), interpretation (18) and generalizability (19). Sprague–Dawley rats were the most frequently used (50%) species, and most studies had a sample size of more than 30 (58.33%). A defect dimension of 5 mm was the most common (33.33%). The biological hydroxyapatite composite scaffold was common (50%), and the bioactive factors were bone morphogenetic protein-2 (50%) and recombinant human bone morphogenetic protein-2 (50%). Histomorphometric results showed that bone morphogenetic protein-2 enhanced the capacity to regenerate bone considerably. In addition, scaffolds with bone morphogenetic protein-2 resulted in a significant increase in the blood vessel in the new bone. The findings suggested that data on animal experiments of hydroxyapatite scaffold coated with bone morphogenetic protein-2 in murine calvarial defect models lack homogeneity. Animal experiment should follow the Animal Research Reporting in In Vivo Experiments guidelines to promote the high quality, integrity and reproducibility. This systematic review suggested that bone morphogenetic protein-2 enhanced the capacity to regenerate bone and the angiogenesis in the new bone.
Collapse
Affiliation(s)
- Jian-Hua Zeng
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Peng Qiu
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Long Xiong
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Shi-Wei Liu
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Ling-Hua Ding
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | | | - Jing-Tang Li
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Ze-Bu Xiao
- Department of Rehabilitation Medicine, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Tao Zhang
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| |
Collapse
|
35
|
Ye K, Liu D, Kuang H, Cai J, Chen W, Sun B, Xia L, Fang B, Morsi Y, Mo X. Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. J Colloid Interface Sci 2019; 534:625-636. [DOI: 10.1016/j.jcis.2018.09.071] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022]
|
36
|
Chen L, Shao L, Wang F, Huang Y, Gao F. Enhancement in sustained release of antimicrobial peptide and BMP-2 from degradable three dimensional-printed PLGA scaffold for bone regeneration. RSC Adv 2019; 9:10494-10507. [PMID: 35515290 PMCID: PMC9062520 DOI: 10.1039/c8ra08788a] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/26/2019] [Indexed: 11/24/2022] Open
Abstract
One of the goals of bone tissue engineering is to create scaffolds with well-defined, inter-connected pores, excellent biocompatibility and osteoinductive ability. Three-dimensional (3D)-printed polymer scaffold coated with bioactive peptide are an effective approach to fabricating ideal bone tissue engineering scaffolds for bone defect repair. However, the current strategy of adding bioactive peptides generally cause degradation to the polymer materials or damage the bioactivity of the biomolecules. Thus, in this study, we used a biomimetic process via poly(dopamine) coating to prepare functional 3D PLGA porous scaffolds with immobilized BMP-2 and ponericin G1 that efficiently regulate the osteogenic differentiation of preosteoblasts (MC3T3-E1) and simultaneously inhibit of pathogenic microbes, thereby enhancing biological activity. In this study, we analysed a 3D PLGA porous scaffold by scanning electron microscopy, water contact angle measurements, and materials testing. Subsequently, we examined the adsorption, release and in vitro antimicrobial activity of the 3D PLGA. Surface characterization showed that poly(dopamine) surface modification could more efficiently mediate the immobilization of BMP-2 and ponericin G1 onto the scaffold surfaces than physical adsorption, and that ponericin G1-immobilized 3D PLGA scaffolds were able to maintain long-term antibacterial activity. We evaluated the influence on cell adhesion, proliferation and differentiation by culturing MC3T3-E1 cells on different modified 3D PLGA scaffolds in vitro. The biological results indicate that MC3T3-E1 cell attachment and proliferation on BMP-2/ponericin G1-immobilized 3D PLGA scaffolds were much higher than those on other groups. Calcium deposition, and gene expression results showed that the osteogenic differentiation of cells was effectively improved by loading the 3D PLGA scaffold with BMP-2 and ponericin G1. In summary, our findings indicated that the polydopamine-assisted surface modification method can be a useful tool for grafting biomolecules onto biodegradable implants, and the dual release of BMP-2 and ponericin G1 can enhance the osteointegration of bone implants and simultaneously inhibit of pathogenic microbes. Therefore, we conclude that the BMP-2/ponericin G1-loaded PLGA 3D scaffolds are versatile and biocompatible scaffolds for bone tissue engineering. One of the goals of bone tissue engineering is to create scaffolds with well-defined, inter-connected pores, excellent biocompatibility and osteoinductive ability.![]()
Collapse
Affiliation(s)
- Lei Chen
- Department of Joints and Sports Medicine
- The First Hospital of Jilin University
- Changchun
- PR China
| | - Liping Shao
- Department of Joints and Sports Medicine
- The First Hospital of Jilin University
- Changchun
- PR China
| | - Fengping Wang
- Department of Joints and Sports Medicine
- The First Hospital of Jilin University
- Changchun
- PR China
| | - Yifan Huang
- Department of Joints Surgery
- The First Hospital of Jilin University
- Changchun
- PR China
| | - Fenghui Gao
- Department of Orthopedic
- The First Hospital of Jilin University
- Changchun
- PR China
| |
Collapse
|
37
|
Ghorbani F, Zamanian A, Behnamghader A, Joupari MD. A facile method to synthesize mussel-inspired polydopamine nanospheres as an active template for in situ formation of biomimetic hydroxyapatite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:729-739. [PMID: 30423759 DOI: 10.1016/j.msec.2018.10.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/15/2018] [Accepted: 10/02/2018] [Indexed: 12/23/2022]
Abstract
In this study, Mussel-inspired polydopamine (PDA) nanospheres were synthesized via spontaneous oxidative polymerization of dopamine hydrochloride (dopa-HCl) in a deionized water-alcohol mixed solvent at room temperature and atmospheric air, under alkaline condition. Field-emission scanning electron microscopy (FE-SEM) demonstrated production of sphere-like shape with a smooth surface and tunable size, while monodispersity increased by utilizing isopropanol instead of ethanol owing to lower Ra values based on Hansen solubility parameter (HSP) theory. Dropwise addition of monomer played an undeniable role in the fabrication of uniform and smaller spheres. The difference of the charge repulsion of constructs in the range of pH led to different dispersive behavior in a variety of solvents, exhibiting versatile applications. The presence of active functional groups on the surface of PDA spheres made them an appropriate option for PDA-assisted biomimetic mineralization of hydroxyapatite (HA), which is the result of the interaction between abundant catecholamine moieties in PDA and Ca+2 ions in simulated body fluid. Bio-adhesive nature of PDA in water and the presence of amino and hydroxyl functional groups support desirable L929 mouse fibroblast cell spreading. The viability of >90% fibroblast cells proved the biocompatibility of polymerized structure. All the achievements indicated that PDA nanospheres provide a biocompatible and bioactive template for green synthesizing hydroxyapatite and the innovative basis for further tissue engineering applications.
Collapse
Affiliation(s)
- Farnaz Ghorbani
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran; Stem cell Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Biomaterials, Aprin Advanced Technologies Development Company, Tehran, Iran.
| | - Aliasghar Behnamghader
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Morteza Daliri Joupari
- Department of Animal, Avian and Marine Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
38
|
Synergistic Effects of Controlled-Released BMP-2 and VEGF from nHAC/PLGAs Scaffold on Osteogenesis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3516463. [PMID: 30345299 PMCID: PMC6174819 DOI: 10.1155/2018/3516463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/12/2018] [Accepted: 09/04/2018] [Indexed: 01/18/2023]
Abstract
Tissue engineering bones take great advantages in massive bone defect repairing; under the induction of growth factors, seed cells differentiate into osteoblasts, and the scaffold materials gradually degrade and are replaced with neogenetic bones, which simulates the actual pathophysiological process of bone regeneration. However, mechanism research is required and further developed to instruct elements selection and optimization. In the present study, we prepared vascular endothelial growth factor/bone morphogenetic protein-2- nanohydroxyapatite/collagen (VEGF/ BMP-2- nHAC/ PLGAs) scaffolds and inoculated mouse MC3T3-E1 preosteoblasts to detect osteogenic indexes and activation of related signaling pathways. The hypothesis is to create a three-dimensional environment that simulates bone defect repairing, and p38 mitogen-activated kinase (p38) inhibitor was applied and osterix shRNA was transferred into mouse MC3T3-E1 preosteoblasts to further investigate the molecular mechanism of crosstalk between BMP-2 and VEGF. Our results demonstrated the following: (1) BMP-2 and VEGF were sustainably released from PLGAs microspheres. (2) nHAC/PLGAs scaffold occupied a three-dimensional porous structure and has excellent physical properties. (3) MC3T3-E1 cells proliferated and differentiated well in the scaffold. (4) Osteogenic differentiation related factors expression of VEGF/BMP-2 loaded scaffold was obviously higher than that of other groups; p38 inhibitor SB203580 decreased the nucleus/cytoplasm ratio of osterix expression. To conclude, the active artificial bone we prepared could provide a favorable growth space for MC3T3-E1 cells, and osteogenesis and maturation reinforced by simultaneous VEGF and BMP-2 treatment may be mainly through the activation of the p38 MAPK pathway to promote nuclear translocation of osterix protein.
Collapse
|
39
|
He B, Zhao J, Ou Y, Jiang D. Biofunctionalized peptide nanofiber-based composite scaffolds for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:728-738. [PMID: 29853144 DOI: 10.1016/j.msec.2018.04.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 04/15/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022]
Abstract
Bone tissue had moderate self-healing capabilities, but biomaterial scaffolds were required for the repair of some defects such as large bone defects. Peptide nanofiber scaffolds demonstrated important potential in regenerative medicine. Functional modification and controlled release of signal molecules were two significant approaches to increase the bioactivity of biofunctionalized peptide nanofiber scaffolds, but peptide scaffolds were limited by insufficient mechanical strength. Thus, it was necessary to combine peptide scaffolds with other materials including polymers, hydroxyapatite, demineralized bone matrix (DBM) and metal materials based on the requirement of different bone defects. As the development of peptide-based composite scaffolds continued to evolve, ultimate translation to the clinical environment may allow for improved therapeutic outcomes for bone repair.
Collapse
Affiliation(s)
- Bin He
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jinqiu Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Dianming Jiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
40
|
Chen Z, Zhang Z, Feng J, Guo Y, Yu Y, Cui J, Li H, Shang L. Influence of Mussel-Derived Bioactive BMP-2-Decorated PLA on MSC Behavior in Vitro and Verification with Osteogenicity at Ectopic Sites in Vivo. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11961-11971. [PMID: 29561589 DOI: 10.1021/acsami.8b01547] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Osteoinductive activity of the implant in bone healing and regeneration is still a challenging research topic. Therapeutic application of recombinant human bone morphogenetic protein-2 (BMP-2) is a promising approach to enhance osteogenesis. However, high dose and uncontrolled burst release of BMP-2 may introduce edema, bone overgrowth, cystlike bone formation, and inflammation. In this study, low-dose BMP-2 of 1 μg was used to design PLA-PD-BMP for functionalization of polylactic acid (PLA) implants via mussel-inspired polydopamine (PD) assist. For the first time, the binding property and efficiency of the PD coating with BMP-2 were directly demonstrated and analyzed using an antigen-antibody reaction. The obtained PLA-PD-BMP surface immobilized with this low BMP-2 dose can endow the implants with abilities of introducing strong stem cell adhesion and enhanced osteogenicity. Furthermore, in vivo osteoinduction of the PLA-PD-BMP-2 scaffolds was confirmed by a rat ectopic bone model, which is marked as the "gold standard" for the evidence of osteoinductive activity. The microcomputed tomography, Young's modulus, and histology analyses were also employed to demonstrate that PLA-PD-BMP grafted with 1 μg of BMP-2 can induce bone formation. Therefore, the method in this study can be used as a model system to immobilize other growth factors onto various different types of polymer substrates. The highly biomimetic mussel-derived strategy can therefore improve the clinical outcome of polymer-based medical implants in a facile, safe, and effective way.
Collapse
|
41
|
Cheng D, Liang Q, Li Y, Fan J, Wang G, Pan H, Ruan C. Strontium incorporation improves the bone-forming ability of scaffolds derived from porcine bone. Colloids Surf B Biointerfaces 2018; 162:279-287. [DOI: 10.1016/j.colsurfb.2017.11.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/28/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022]
|
42
|
Goh SC, Luan Y, Wang X, Du H, Chau C, Schellhorn HE, Brash JL, Chen H, Fang Q. Polydopamine–polyethylene glycol–albumin antifouling coatings on multiple substrates. J Mater Chem B 2018; 6:940-949. [DOI: 10.1039/c7tb02636f] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polydopamine–PEG coatings on different substrates: effects of PDA layer properties on PEG grafting and anti-biofouling properties.
Collapse
Affiliation(s)
- S. C. Goh
- School of Biomedical Engineering
- McMaster University
- Hamilton
- Canada
| | - Y. Luan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - X. Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - H. Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - C. Chau
- School of Biomedical Engineering
- McMaster University
- Hamilton
- Canada
| | | | - J. L. Brash
- School of Biomedical Engineering
- McMaster University
- Hamilton
- Canada
| | - H. Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Q. Fang
- School of Biomedical Engineering
- McMaster University
- Hamilton
- Canada
- Department of Engineering Physics, McMaster University
| |
Collapse
|
43
|
Deng Z, Tang M, Zhao L, Long Y, Wen Z, Cheng Y, Zheng H. Targeted H+-Triggered Bubble-Generating Nanosystems for Effective Therapy in Cancer Cells. Colloids Surf B Biointerfaces 2017; 160:207-214. [DOI: 10.1016/j.colsurfb.2017.09.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/10/2017] [Accepted: 09/12/2017] [Indexed: 01/05/2023]
|
44
|
Zhang J, Li J, Jia G, Jiang Y, Liu Q, Yang X, Pan S. Improving osteogenesis of PLGA/HA porous scaffolds based on dual delivery of BMP-2 and IGF-1 via a polydopamine coating. RSC Adv 2017. [DOI: 10.1039/c7ra12062a] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To engineer bone tissue, an ideal biodegradable implant should be biocompatible, biodegradable, osteoinductive and osteoconductive.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- China
| | - Jianan Li
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- China
| | - Guoliang Jia
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- China
| | - Yikun Jiang
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- China
| | - Qinyi Liu
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- China
| | - Su Pan
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- China
| |
Collapse
|