1
|
Jiang X, Yan S, Sun H, Kong XZ, Li S, Shi H, Zhu X, Gu X. Preparation of fluorescent polyurethane microspheres and their applications as reusable sensor for 4-nitrophenol detection and as microplastics model for visualizing polyurethane in cells and zebrafish. J Colloid Interface Sci 2024; 673:550-563. [PMID: 38889546 DOI: 10.1016/j.jcis.2024.06.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Fluorescent microspheres are of significant interests due to their wide applications in biotechnology fields. However, their preparation presents several challenges, such as the need for dye labeling, the complexity of materials and often sophisticated preparation conditions. Here a simple process for hydrophilic and crosslinked polyurethane (CPU) microspheres, with carboxyl groups on the surface via one-step precipitation polymerization in 40 min, is presented. The microsphere size is easily adjusted by varying experimental conditions. CPU microspheres exhibit high thermal and pH stability with good redispersibility in water, and emit fluorescence without any modification or dye labeling. The emission mechanism is discussed. CPU microspheres are used as fluorescent probe to detect 4-nitrophenol (4-NP) based on their emission in UV light region, with excellent selectivity and sensitivity. In addition, they are reusable with detection limit unchanged after 7 cycles of reuses, a significant feature of this work. The mechanism of fluorescence detection is thoroughly explored and ascribed to the internal filtration effect. Based on the emission in visible light region, CPU microspheres are used as a model of PU microplastics (MPs) to visualize their biodistribution in HeLa and macrophage cells, as well as in zebrafish larvae, providing a reliable tracer for the visualization and tracking of PU MPs in organisms.
Collapse
Affiliation(s)
- Xubao Jiang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Siqiang Yan
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hao Sun
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shusheng Li
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Haoran Shi
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaoli Zhu
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Xiangling Gu
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China.
| |
Collapse
|
2
|
Chen Z, Luo G, Ren J, Wang Q, Zhao X, Wei L, Wang Y, Liu Y, Deng Y, Li S. Recent Advances in and Application of Fluorescent Microspheres for Multiple Nucleic Acid Detection. BIOSENSORS 2024; 14:265. [PMID: 38920569 PMCID: PMC11201543 DOI: 10.3390/bios14060265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Traditional single nucleic acid assays can only detect one target while multiple nucleic acid assays can detect multiple targets simultaneously, providing comprehensive and accurate information. Fluorescent microspheres in multiplexed nucleic acid detection offer high sensitivity, specificity, multiplexing, flexibility, and scalability advantages, enabling precise, real-time results and supporting clinical diagnosis and research. However, multiplexed assays face challenges like complexity, costs, and sample handling issues. The review explores the recent advancements and applications of fluorescent microspheres in multiple nucleic acid detection. It discusses the versatility of fluorescent microspheres in various fields, such as disease diagnosis, drug screening, and personalized medicine. The review highlights the possibility of adjusting the performance of fluorescent microspheres by modifying concentrations and carrier forms, allowing for tailored applications. It emphasizes the potential of fluorescent microsphere technology in revolutionizing nucleic acid detection and advancing health, disease treatment, and medical research.
Collapse
Affiliation(s)
- Zhu Chen
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Gaoming Luo
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jie Ren
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Qixuan Wang
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xinping Zhao
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Linyu Wei
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yue Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China;
| | - Yuan Liu
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Yan Deng
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| | - Song Li
- MOE Key Lab of Rare Pediatric Diseases & Hengyang Medical School, University of South China, Hengyang 421001, China; (G.L.); (J.R.); (Q.W.); (X.Z.); (L.W.); (Y.L.); (Y.D.)
- Institute for Future Sciences, University of South China, Changsha 410008, China
| |
Collapse
|
3
|
Lu S, Li F, Liu B, Yang K, Tian F, Cheng Z, Ding S, Hou K. Monodisperse Fluorescent Polystyrene Microspheres for Staphylococcus aureus Aerosol Simulation. Polymers (Basel) 2023; 15:3614. [PMID: 37688240 PMCID: PMC10490235 DOI: 10.3390/polym15173614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Staphylococcus aureus (SA) is one of the most common causes of hospital-acquired infections and foodborne illnesses and is commonly found in nature in air, dust, and water. The spread and transmission of SA aerosols in the air has the potential to cause epidemic transmission among humans and between humans and animals. To effectively provide the timely warning of SA aerosols in the atmosphere, the identification and detection of SA aerosol concentrations are required. Due to their homogeneous physicochemical properties, highly monodisperse submicron polystyrene (PS) microspheres can be used as one of the simulants of SA aerosols. In this study, 800 nm monodisperse fluorescent PS (f-PS) microspheres with fluorescence spectra and particle size distribution similar to those of SA were prepared. The 800 nm monodisperse f-PS microspheres had a fluorescence characteristic peak at 465 nm; in aerosols, 800 nm monodisperse f-PS microspheres with a similar particle size distribution to that of SA were further verified, mainly in the range of 500 nm-1000 nm; finally, it was found that the f-PS microspheres still possessed similar fluorescence characteristics after 180 days. The f-PS microspheres prepared in this study are very close to SA in terms of particle size and fluorescence properties, providing a new idea for aerosol analogs of SA.
Collapse
Affiliation(s)
- Siyu Lu
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| | - Fan Li
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| | - Bo Liu
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| | - Kun Yang
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| | - Feng Tian
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| | - Zhi Cheng
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
- National Bio-Protection Engineering Center, Tianjin 300161, China
| | - Sheng Ding
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| | - Kexin Hou
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (S.L.); (B.L.); (K.Y.); (Z.C.); (S.D.); (K.H.)
| |
Collapse
|
4
|
He J, Yu L, Jiang Y, Lü L, Han Z, Zhao X, Xu Z. Encoding CsPbX3 perovskite quantum dots with different colors in molecularly imprinted polymers as fluorescent probes for the quantitative detection of Sudan I in food matrices. Food Chem 2023; 402:134499. [DOI: 10.1016/j.foodchem.2022.134499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/30/2023]
|
5
|
Xing X, lv Q, Sun C, Song J, Chen Z, Jiang Y, Wang Y, Jiang Y, Wang Z. One-step preparation of PEG segment-functionalized polystyrene microspheres and their application as latex in LOCI. NEW J CHEM 2023. [DOI: 10.1039/d2nj05630e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PEG segment-functionalized polystyrene microspheres were prepared by one-step copolymerization of amphiphilic macromolecular monomers, and further used as the latex for photosensitive polymer microspheres in luminescent oxygen channeling assay (LOCI).
Collapse
Affiliation(s)
- Xiaoxiao Xing
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Qingyu lv
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Chunyu Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jia Song
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Zhixin Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yong Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Ye Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, P. R. China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
6
|
Fluorescence assisted visualization and destruction of particles embedded thin cell walls in polymeric foams via supercritical foaming. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Yao D, Wang H, Lu S, Li C, Liang A, Wen G, Jiang Z. On-signal amplification of silver nanosol RRS/SERS aptamer detection of ultratrace urea by polystyrene nanosphere catalyst. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120353. [PMID: 34492514 DOI: 10.1016/j.saa.2021.120353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
The catalytic amplification signal of polystyrene nanosphere (PN) is used to conveniently fabricate the resonance Rayleigh scattering (RRS)/surface-enhanced Raman scattering (SERS) dual-mode method to sensitively and selectively detect urea in food. PN has strong catalysis of the slow nanoreaction of citrate-Ag(I) to produce yellow silver nanoparticles (AgNP), which exhibit strong RRS effect and SERS effect with molecular probes. When aptamer (Apt) is present, the Apt is adsorbed on the PN surface, the catalysis is weakened, the AgNP is reduced, and the SERS/RRS signal is weakened. After adding urea to exhibit specific Aptamer reaction, the Apt is desorbed from the PN surface and the catalysis is restored. As urea increase, the desorbed PNs increase to produce more AgNPs indicator to increase SERS/RRS signal. The increase value △I of SERS/RRS is linearly to urea concentration. Therefore, a sensitive and selective SERS/RRS dual-mode method for urea is established based on aptamers-regulated the catalysis of PNs. This method is applied to the detection of urea in milk with satisfactory results. The relative standard deviation is 3.9-6.8% and the recovery rate is 94.5-102%.
Collapse
Affiliation(s)
- Dongmei Yao
- Application and Research Center of Agricultural Biotechnology of Hechi University, Hechi University, Yizhou 546300, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| | - Haolin Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Shanshan Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Chongning Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| |
Collapse
|
8
|
Feng X, Yang X, Li M, Qin Y, Li H, Xie Y. Production and method optimization of fluorescent polystyrene. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Tayebi M, Ostad Movahed S, Ahmadpour A. The effect of the surface coating of a strontium mono-aluminate europium dysprosium-based (SrAl2O4:Eu2+,Dy3+) phosphor by polyethylene (PE), polystyrene (PS) and their dual system on the photoluminescence properties of the pigment. RSC Adv 2019; 9:38703-38712. [PMID: 35540199 PMCID: PMC9075974 DOI: 10.1039/c9ra08571h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/11/2019] [Indexed: 11/21/2022] Open
Abstract
SrAl2O4:Eu2+,Dy3+ as a known strontium mono-aluminate europium dysprosium-based phosphor is widely used in paints and coating formulations as a photoluminescence pigment. It has two major drawbacks: improper dispersion in organic-based paints and weak water and moisture resistance. To address the above-mentioned drawbacks, the surface coating of phosphors with polyethylene and polystyrene individually and in combination using a solution technique was performed. The FT-IR spectra showed that the used polymers were coated on the phosphor properly. Also, the EDS spectra showed the presence of elemental carbon for the treated phosphors with different amounts. No regular trend was observed for element ratios when the polyethylene content in the coating layer was reduced from 100 to 0%. Based on the XRD patterns, the crystalline structure of the coated phosphors was not affected by the polymeric coated layer. In the SEM micrographs, the sharp and rough edges of the uncoated phosphor changed to a smooth and soft state for the coated phosphors. The brightness of most of the coated phosphors was independent of time and did not change over a period of 5 minutes after UV irradiation. This property makes the polymeric coated phosphors suitable as photoluminescence pigments in all kinds of paints and coatings. SrAl2O4:Eu2+,Dy3+ as a known strontium mono-aluminate europium dysprosium-based phosphor is widely used in paints and coating formulations as a photoluminescence pigment.![]()
Collapse
Affiliation(s)
- Masumeh Tayebi
- Chemical Engineering Department
- Faculty of Engineering
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Saeed Ostad Movahed
- Department of Chemistry
- Faculty of Science
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| | - Ali Ahmadpour
- Chemical Engineering Department
- Faculty of Engineering
- Ferdowsi University of Mashhad
- Mashhad
- Iran
| |
Collapse
|
10
|
A Superhydrophilic and Anti-Biofouling Polyphenylene Sulfide Microporous Membrane with Quaternary Ammonium Salts. Macromol Res 2018. [DOI: 10.1007/s13233-018-6108-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Jiang N, Shi L, Lin J, Zhang L, Peng Y, Sheng H, Wu P, Pan Q. Comparison of two different combined test strips with fluorescent microspheres or colored microspheres as tracers for rotavirus and adenovirus detection. Virol J 2018. [PMID: 29534739 PMCID: PMC5851252 DOI: 10.1186/s12985-018-0951-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Rotavirus (RV) and enteric adenovirus (AdV) mainly cause infantile infectious gastroenteritis. Several separate test methods for the detection of RV or AdV are currently available, but few tests are able to simultaneously detect both RV and AdV viruses, especially in primary medical institutions. Methods The present study was mainly designed to compare the performance of two combined test strips for the detection of RV and AdV: a rotavirus–adenovirus strip with fluorescent microspheres for tracers (FMT); and the CerTest rotavirus–adenovirus blister strip with colored microspheres for tracers (CMT). To test the strips cultures of RV, AdV and from other enteric pathogens were used, in addition to 350 stool specimens from 45 symptomatic patients with gastrointestinal infections. Results Detection thresholds for RV and AdV cultures using serial dilutions showed that the sensitivity of FMT was significantly higher than that of CMT (both P < 0.05). Specificity evaluation demonstrated that with culture mixtures of Coxsackie (A16), ECHO (type30), and entero- (EV71) viruses there was no detection of cross reaction using the two test strips, i.e., all the results were negative. With regard to the detection of RV in 350 clinical specimens, the total coincidence rate was 92.9%, the positive coincidence rate was 98.2%, and the negative coincidence rate was 90.8%. With regard to AdV detection, the total coincidence rate was 95.4%, the positive coincidence rate was 95.2%, and the negative coincidence rate was 95.5%. Conclusions FMT performed better than CMT with regard to the combined detection of RV and AdV.
Collapse
Affiliation(s)
- Na Jiang
- Clinical Research Center, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lei Shi
- Clinical Research Center, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jieping Lin
- Clinical Research Center, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lifang Zhang
- Clinical Research Center, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yanxia Peng
- Clinical Research Center, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huiying Sheng
- Division of Endocrinology and Metabolism, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Ping Wu
- Clinical Research Center, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Qingjun Pan
- Clinical Research Center, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|