1
|
Psarrou M, Vamvakaki M, Karatasos K, Rissanou AN. Interfacial interactions between DNA and polysaccharide-coated magnetic nanoparticles: Insight from simulations and experiments. Colloids Surf B Biointerfaces 2025; 246:114386. [PMID: 39603198 DOI: 10.1016/j.colsurfb.2024.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024]
Abstract
In this work we examine the structural and energetic stability and the interactions between dextran-coated magnetic nanoparticles (MNPs) and a DNA oligonucleotide at ionic strength conditions that are relevant to physiological gene delivery processes. All-atom Molecular Dynamics simulations provided information at the atomic-level regarding the mechanisms responsible for the physical adsorption of Dextran on the magnetic surface and the conditions under which a successful DNA-Dextran complexation can be accomplished. Coulombic interactions were found to play the main role for the formation of the Dextran interfacial layer onto the magnetic surface while hydrogen bonding between the Dextran molecules enhanced the structural integrity of this layer. The Dextran-DNA complexation was also driven by electrostatic interactions between the two moieties. An increase of the salt concentration was found to promote DNA complexation with the DX-coated magnetic nanoparticles, through the modification of the Coulombic interactions between the DX and DNA chains, which worked synergistically with the increase in hydrogen bonding between the two macromolecules. Comparison of the behavior of the coated with the uncoated magnetic nanoparticles, highlighted the significant role of the DX interfacial layer on the DNA association to the magnetic surface. Relevant experimental results provided complementary information for the coated nanoparticle/DNA interactions at different (larger) length scales. A good qualitative agreement was found between the simulation and experimental findings. This study demonstrates that tailoring the nanoparticle coating and ionic strength can optimize the delivery of DNA by fine-tuning the favorable interfacial forces and thus the DNA/MNP binding stability.
Collapse
Affiliation(s)
- Maria Psarrou
- Department of Materials Science and Technology, University of Crete, Heraklion, Crete 700 13, Greece; Institute of Electronic Structure and Laser, FORTH, Heraklion, Crete 700 13, Greece
| | - Maria Vamvakaki
- Department of Materials Science and Technology, University of Crete, Heraklion, Crete 700 13, Greece; Institute of Electronic Structure and Laser, FORTH, Heraklion, Crete 700 13, Greece
| | - Kostas Karatasos
- Department of Chemical Engineering, University of Thessaloniki, P.O. BOX 420, Thessaloniki 54124, Greece
| | - Anastassia N Rissanou
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| |
Collapse
|
2
|
Kara G, Ozpolat B. SPIONs: Superparamagnetic iron oxide-based nanoparticles for the delivery of microRNAi-therapeutics in cancer. Biomed Microdevices 2024; 26:16. [PMID: 38324228 DOI: 10.1007/s10544-024-00698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/08/2024]
Abstract
Non-coding RNA (ncRNA)-based therapeutics that induce RNA interference (RNAi), such as microRNAs (miRNAs), have drawn considerable attention as a novel class of targeted cancer therapeutics because of their capacity to specifically target oncogenes/protooncogenes that regulate key signaling pathways involved in carcinogenesis, tumor growth and progression, metastasis, cell survival, proliferation, angiogenesis, and drug resistance. However, clinical translation of miRNA-based therapeutics, in particular, has been challenging due to the ineffective delivery of ncRNA molecules into tumors and their uptake into cancer cells. Recently, superparamagnetic iron oxide-based nanoparticles (SPIONs) have emerged as highly effective and efficient for the delivery of therapeutic RNAs to malignant tissues, as well as theranostic (therapy and diagnostic) applications, due to their excellent biocompatibility, magnetic responsiveness, broad functional surface modification, safety, and biodistribution profiles. This review highlights recent advances in the use of SPIONs for the delivery of ncRNA-based therapeutics with an emphasis on their synthesis and coating strategies. Moreover, the advantages and current limitations of SPIONs and their future perspectives are discussed.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Houston Methodist Neal Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Zheng J, Jiang X, Li Y, Gao J. Inorganic nanoparticle-integrated mesenchymal stem cells: A potential biological agent for multifaceted applications. MedComm (Beijing) 2023; 4:e313. [PMID: 37533768 PMCID: PMC10390757 DOI: 10.1002/mco2.313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 08/04/2023] Open
Abstract
Mesenchymal stem cell (MSC)-based therapies are flourishing. MSCs could be used as potential therapeutic agents for regenerative medicine due to their own repair function. Meanwhile, the natural predisposition toward inflammation or injury sites makes them promising carriers for targeted drug delivery. Inorganic nanoparticles (INPs) are greatly favored for their unique properties and potential applications in biomedical fields. Current research has integrated INPs with MSCs to enhance their regenerative or antitumor functions. This model also allows the in vivo fate tracking of MSCs in multiple imaging modalities, as many INPs are also excellent contrast agents. Thus, INP-integrated MSCs would be a multifunctional biologic agent with great potential. In this review, the current roles performed by the integration of INPs with MSCs, including (i) enhancing their repair and regeneration capacity via the improvement of migration, survival, paracrine, or differentiation properties, (ii) empowering tumor-killing ability through agent loaded or hyperthermia, and (iii) conferring traceability are summarized. An introduction of INP-integrated MSCs for simultaneous treatment and tracking is also included. The promising applications of INP-integrated MSCs in future treatments are emphasized and the challenges to their clinical translation are discussed.
Collapse
Affiliation(s)
- Juan‐Juan Zheng
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Xin‐Chi Jiang
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Yao‐Sheng Li
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Jian‐Qing Gao
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Hangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
4
|
Eskikaya O, Özdemir S, Gonca S, Dizge N, Balakrishnan D, Shaik F, Senthilkumar N. A comparative study of iron nanoflower and nanocube in terms of antibacterial properties. APPLIED NANOSCIENCE 2023; 13:1-13. [PMID: 37362150 PMCID: PMC10073798 DOI: 10.1007/s13204-023-02822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/05/2023] [Indexed: 06/28/2023]
Abstract
It is known that heavy metal containing nanomaterials can easily prevent the formation of microbial cultures. The emergence of new generation epidemic diseases in the last 2 years has increased the importance of both personal and environmental hygiene. For this reason, in addition to preventing the spread of diseases, studies on alternative disinfectant substances are also carried out. In this study, the antibacterial activity of nanoflower and nanocube, which are easily synthesized and nanoparticle species containing iron, were compared. The antioxidant abilities of new synthesized NF@FeO(OH) and NC@α-Fe2O3 were tested by DPPH scavenging activity assay. The highest DPPH inhibition was achieved with NC@α-Fe2O3 as 71.30% at 200 mg/L. NF@FeO(OH) and NC@α-Fe2O3 demonstrated excellent DNA cleavage ability. The antimicrobial capabilities of NF@FeO(OH) and NC@α-Fe2O3 were analyzed with micro dilution procedure. In 500 mg/L, the antimicrobial activity was 100%. In addition to these, the biofilm inhibition of NF@FeO(OH) and NC@α-Fe2O3 were investigated against S. aureus and P. aeruginosa and it was found that they showed significant antibiofilm inhibition. It is suggested that additional studies can be continued to be developed and used as an antibacterial according to the results of the nanoparticles after various toxicological test systems. Supplementary Information The online version contains supplementary material available at 10.1007/s13204-023-02822-5.
Collapse
Affiliation(s)
- Ozan Eskikaya
- Department of Environmental Engineering, Mersin University, 33343 Mersin, Turkey
| | - Sadin Özdemir
- Technical Science Vocational School, Mersin University, Yenisehir, 33343 Mersin, Turkey
| | - Serpil Gonca
- Faculty of Pharmacy, University of Mersin, Turkey, Yenisehir, 33343 Mersin, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, 33343 Mersin, Turkey
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952 Saudi Arabia
| | - Feroz Shaik
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952 Saudi Arabia
| | - Natarajan Senthilkumar
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105 India
| |
Collapse
|
5
|
Wang L, Wu Y, Weng T, Li X, Zhang X, Zhang Y, Yuan L, Zhang Y, Liu M. Binding of combined irinotecan and epicatechin to a pH-responsive DNA tetrahedron for controlled release and enhanced cytotoxicity. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
6
|
Bhagat S, Shaikh H, Nafady A, Sirajuddin, Sherazi STH, Bhanger MI, Shah MR, Abro MI, Memon R, Bhagat R. Trace Level Colorimetric Hg2+ Sensor Driven by Citrus japonica Leaf Extract Derived Silver Nanoparticles: Green Synthesis and Application. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Kazemi-Ashtiyani M, Hajipour-Verdom B, Satari M, Abdolmaleki P, Hosseinkhani S, Shaki H. Estimating the two graph dextran-stearic acid-spermine polymers based on iron oxide nanoparticles as carrier for gene delivery. Biopolymers 2022; 113:e23491. [PMID: 35560028 DOI: 10.1002/bip.23491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022]
Abstract
Non-viral gene carriers have shown noticeable potential in gene delivery because of limited side effects, biocompatibility, simplicity, and the ability to take advantage of electrostatic interactions. However, the low transfection rate of non-viral vectors under physiological conditions is controversial. This study aimed to decrease the transfection time using a static magnetic field. We used self-assembled cationic polysaccharides based on dextran-stearic acid-spermine (DSASP) conjugates associated with Fe3 O4 superparamagnetic nanoparticles to investigate their potential as gene carriers to promote the target delivery. Our findings illustrate that the magnetic nanoparticles are spherical with a positive surface charge and exhibit superparamagnetic behavior. The DSASP-pDNA/Fe3 O4 complexes offered a strong pDNA condensation, protection against DNase degradation, and significant cell viability in HEK 293T cells. Our results demonstrated that although conjugation of stearic acid could play a role in transfection efficiency, DSASP magnetic carriers with more spermine derivatives showed better affinity between the amphiphilic polymer and the negatively charged cell membrane.
Collapse
Affiliation(s)
| | - Behnam Hajipour-Verdom
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Satari
- Department of Biology, Faculty of Sciences, Malayer University, Malayer, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Shaki
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.,Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University Denmark, DTU Health Tech, Kongens Lyngby, Denmark
| |
Collapse
|
8
|
|
9
|
Karimi Jabali M, Allafchian AR, Jalali SAH, Shakeripour H, Mohammadinezhad R, Rahmani F. Design of a pDNA nanocarrier with ascorbic acid modified chitosan coated on superparamagnetic iron oxide nanoparticles for gene delivery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Zhang T, Xu Q, Huang T, Ling D, Gao J. New Insights into Biocompatible Iron Oxide Nanoparticles: A Potential Booster of Gene Delivery to Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001588. [PMID: 32725792 DOI: 10.1002/smll.202001588] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Gene delivery to stem cells is a critical issue of stem cells-based therapies, still facing ongoing challenges regarding efficiency and safety. Recent advances in the controlled synthesis of biocompatible magnetic iron oxide nanoparticles (IONPs) have provided a powerful nanotool for assisting gene delivery to stem cells. However, this field is still at an early stage, with well-designed and scalable IONPs synthesis highly desired. Furthermore, the potential risks or bioeffects of IONPs on stem cells are not completely figured out. Therefore, in this review, the updated researches focused on the gene delivery to stem cells using various designed IONPs are highlighted. Additionally, the impacts of the physicochemical properties of IONPs, as well as the magnetofection systems on the gene delivery performance and biocompatibility are summarized. Finally, challenges attributed to the potential impacts of IONPs on the biologic behaviors of stem cells and the large-scale productions of uniform IONPs are emphasized. The principles and challenges summarized in this review provide a general guidance for the rational design of IONPs-assisted gene delivery to stem cells.
Collapse
Affiliation(s)
- Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Qianhao Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daishun Ling
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
11
|
Yadav N, Singh A, Kaushik M. Hydrothermal synthesis and characterization of magnetic Fe 3O 4 and APTS coated Fe 3O 4 nanoparticles: physicochemical investigations of interaction with DNA. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:68. [PMID: 32705385 DOI: 10.1007/s10856-020-06405-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Magnetic nanoparticles (MNPs) especially iron oxide (Fe3O4) NPs have quite extensively been used for in vivo delivery of biomolecules and drugs because of their high bioconjugation efficiency. In this study, Fe3O4 NPs and (3-Aminopropyl) triethoxysilane (APTS) coated Fe3O4 NPs were synthesized and their interaction with Calf thymus (Ct) DNA has been studied in order to understand their usage in biomedical applications. Hydrothermal method was used for the NPs synthesis. Characterization of NPs was done using techniques like UV-Visible spectroscopy, FTIR spectroscopy, FE-SEM, EDAX, Zeta Sizer and powder XRD. Further, interaction studies of NPs with Ct-DNA were investigated using various physicochemical techniques. In UV-Visible studies, hypochromicity with binding constant 3.2 × 105 M-1 was observed. Binding constants calculated using fluorescence studies were found to be k = 3.2 × 104 M-1, 2.9 × 104 M-1 at 293 and 323 K respectively. Results of UV-Visible and fluorescence studies were in correlation with other techniques like UV-TM and CD. All studies suggested alteration in DNA conformation on interaction with surface engineered Fe3O4 NPs, stabilizing DNA-NPs conjugate via partial intercalation and electrostatic interactions. This study may facilitate our understanding regarding the physicochemical properties and DNA-binding ability of APTS-Fe3O4 NPs for their further application in magnetosensitive biosensing and drug delivery. Iron oxide based magnetic nanoparticles are well known for their excellent bio-conjugation efficiency and therefore APTS-Fe3O4 NPs were synthesized via very simple and benign hydrothermal method. Further, the interaction of APTS-Fe3O4 NPs with calf thymus DNA was studied using various physicochemical techniques to explore their potential in biomedical applications.
Collapse
Affiliation(s)
- Neelam Yadav
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
- Department of Chemistry, University of Delhi, Delhi, India
| | - Amit Singh
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
- Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
12
|
Pei W, Liu M, Wu Y, Zhao Y, Liu T, Sun B, Liu Y, Wang Q, Han J. High payload and targeted release of anthracyclines by aptamer-tethered DNA nanotrains - Thermodynamic and release kinetic study. Eur J Pharm Sci 2020; 148:105319. [PMID: 32205231 DOI: 10.1016/j.ejps.2020.105319] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/27/2020] [Accepted: 03/19/2020] [Indexed: 01/21/2023]
Abstract
As one of the most promising drug delivery carriers, self-assembled DNA nanostructures are characterized of well-defined sizes, excellent biocompatibility, high drug loading and ability to control drug release. Studying the interactions between anticancer drugs and DNA nanostructures can help to associate microstructure-drug loading-release rate-therapeutic effect. Herein AS1411 aptamer-tethered DNA nanotrains (AS1411NTrs) were constructed and used as anthracyclines carrier with high payload for targeted delivery. The bindings of doxorubicin (DOX), epirubicin (EPI), and daunorubicin (DAU) to AS1411NTrs were investigated by isothermal titration calorimetry and fluorescence spectroscopy, and thermodynamic parameters were obtained. The high drug payload capacity of AS1411NTrs was verified by the large number of binding sites (~20). The binding mode was determined by differential scanning calorimetry and potassium iodide (KI) quenching experiments. The release experiment data showed that DNase I facilitated drug release and the release followed the first-order kinetic model. MTT cell viability assay demonstrated that the drug-loaded AS1411NTrs had significantly higher cytotoxicity against target HeLa cells than normal human liver L02 cells. These findings revealed that AS1411NTrs had high payload and targeted release capacity for DOX, EPI, and DAU. This result can provide a theoretical basis for constructing reasonable DNA nanostructures based on drug carriers.
Collapse
Affiliation(s)
- Wenxin Pei
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China; School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Yushu Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China.
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Tingting Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Bin Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Yinglin Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Hunan Road, Liaocheng 252059, China
| |
Collapse
|
13
|
Sosa-Acosta JR, Iriarte-Mesa C, Ortega GA, Díaz-García AM. DNA–Iron Oxide Nanoparticles Conjugates: Functional Magnetic Nanoplatforms in Biomedical Applications. Top Curr Chem (Cham) 2020; 378:13. [DOI: 10.1007/s41061-019-0277-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023]
|
14
|
Sarkar N, Sharma RS, Kaushik M. Green synthesis and physiochemical characterization of nickel oxide nanoparticles: Interaction studies with Calf thymus DNA. LUMINESCENCE 2019; 35:178-186. [DOI: 10.1002/bio.3709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Niloy Sarkar
- Nano‐bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi Delhi India
- Department of Environmental StudiesUniversity of Delhi Delhi India
| | | | - Mahima Kaushik
- Nano‐bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi Delhi India
| |
Collapse
|
15
|
Synthesis and characterization of hydrothermally synthesized superparamagnetic APTS–ZnFe2O4 nanoparticles: DNA binding studies for exploring biomedical applications. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00953-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Tao C, Lina X, Changxuan W, Cong L, Xiaolan Y, Tao H, Hong A. Orthogonal test design for the optimization of superparamagnetic chitosan plasmid gelatin microspheres that promote vascularization of artificial bone. J Biomed Mater Res B Appl Biomater 2019; 108:1439-1449. [PMID: 31605570 PMCID: PMC7187448 DOI: 10.1002/jbm.b.34491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/06/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022]
Abstract
The optimal conditions for the preparation of superparamagnetic chitosan plasmid (pReceiver‐M29‐VEGF165/DH5a) gelatin microspheres (SPCPGMs) were determined. Then, the performance of the SPCPGMs during neovascularization was evaluated in vivo. The SPCPGMs were prepared through a cross‐linking curing method and then filled into the hollow scaffold of an artificial bone. Neovascularization at the bone defect position was histologically examined in samples collected 2, 4, 6, and 8 weeks after the operation. The cellular magnetofection rate of superparamagnetic chitosan nanoparticles/plasmid (pReceiver‐M29‐VEGF165/DH5a) complexes reached 1–3% under static magnetic field (SMF). Meanwhile, the optimal conditions for SPCPGM fabrication were 20% Fe3O4 (w/v), 4 mg of plasmid, 5.3 mg of glutaraldehyde, and 500 rpm of emulsification rotate speed. Under oscillating magnetic fields (OMFs), 4–6 μg of plasmids was released daily for 21 days. Under the combined application of SMF and OMF, evident neovascularization occurred at the bone defect position 6 weeks after the operation. This result is expected to provide a new type of angiogenesis strategy for the research of bone tissue engineering.
Collapse
Affiliation(s)
- Chen Tao
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy
| | - Xie Lina
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy
| | - Wang Changxuan
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy
| | - Luo Cong
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy
| | - Yang Xiaolan
- Department of Pharmacology, Chongqing Medical University, Yuzhong District, Yixueyuan Road1#, Chongqing, 400016, China
| | - Huang Tao
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy
| | - An Hong
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Youyi Road 1#, Chongqing, 400016, China
| |
Collapse
|
17
|
Chuan D, Jin T, Fan R, Zhou L, Guo G. Chitosan for gene delivery: Methods for improvement and applications. Adv Colloid Interface Sci 2019; 268:25-38. [PMID: 30933750 DOI: 10.1016/j.cis.2019.03.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 03/19/2019] [Indexed: 02/05/2023]
Abstract
Gene therapy is a promising strategy for treating challenging diseases. The successful delivery of genes is a critical step for gene therapy. However, concerns about immunogenicity and toxicity are the main obstacles against the widespread use of effective viral systems. Therefore, nonviral vectors are regarded as good alternatives to viral vectors. Chitosan is a natural cationic polysaccharide that could be used to create nonviral gene delivery vectors. Various methods have been developed to improve the properties of chitosan related to gene delivery. This review introduces the features of chitosan in gene delivery, summarizes current progress toward methods promoting the properties of chitosan related to gene delivery, and presents different applications of chitosan in gene delivery vectors. Finally, future prospects of gene vectors based on chitosan are discussed.
Collapse
Affiliation(s)
- Di Chuan
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Tao Jin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Rangrang Fan
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Liangxue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| |
Collapse
|
18
|
Komal, Sonia, Kukreti S, Kaushik M. Exploring the potential of environment friendly silver nanoparticles for DNA interaction: Physicochemical approach. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 194:158-165. [PMID: 30954875 DOI: 10.1016/j.jphotobiol.2019.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 03/13/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
Abstract
Nanosilver, being the most prominent nanoproduct has diverse bio-medical applications and hence the effects associated with their exposure need to be investigated in detail. The interaction of metal nanoparticles with DNA has become a matter of interest, as their effect on structural integrity, synthesis and replication could be explored through it. Present work aims at the facile synthesis and characterization of spherical silver nanoparticles (AgNPs) using Epipremnum aureum leaves extract. Nanoparticles were characterized using UV-Visible spectroscopy, Transmission Electron Microscopy (TEM), High Resolution X-ray Diffraction (HR-XRD) and Dynamic Light Scattering (DLS) studies. The interaction of AgNPs with Calf thymus DNA (CT-DNA) was investigated using different spectroscopic techniques like UV-Visible spectroscopy, UV-thermal melting, Circular Dichroism and fluorescence spectroscopic studies. Fluorescence results suggest van der Waals and H-bonding interactions, which are predominantly responsible for the interaction of AgNPs with CT-DNA. Circular dichroism and thermal melting studies are pointing towards the groove binding of AgNPs to CT-DNA. DNA duplex destabilization was confirmed by the decreased thermal melting temperature of CT-DNA on addition of AgNPs. Present study might open up new vistas for the study of unusual kind of DNA binders, which can destabilize DNA and may further be used for various biomedical applications.
Collapse
Affiliation(s)
- Komal
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Sonia
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
19
|
Du X, Wang J, Zhou Q, Zhang L, Wang S, Zhang Z, Yao C. Advanced physical techniques for gene delivery based on membrane perforation. Drug Deliv 2018; 25:1516-1525. [PMID: 29968512 PMCID: PMC6058615 DOI: 10.1080/10717544.2018.1480674] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gene delivery as a promising and valid tool has been used for treating many serious diseases that conventional drug therapies cannot cure. Due to the advancement of physical technology and nanotechnology, advanced physical gene delivery methods such as electroporation, magnetoporation, sonoporation and optoporation have been extensively developed and are receiving increasing attention, which have the advantages of briefness and nontoxicity. This review introduces the technique detail of membrane perforation, with a brief discussion for future development, with special emphasis on nanoparticles mediated optoporation that have developed as an new alternative transfection technique in the last two decades. In particular, the advanced physical approaches development and new technology are highlighted, which intends to stimulate rapid advancement of perforation techniques, develop new delivery strategies and accelerate application of these techniques in clinic.
Collapse
Affiliation(s)
- Xiaofan Du
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Jing Wang
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Quan Zhou
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Luwei Zhang
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Sijia Wang
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Zhenxi Zhang
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Cuiping Yao
- a Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China
| |
Collapse
|
20
|
Alternating current (AC) susceptibility as a particle-focused probe of coating and clustering behaviour in magnetic nanoparticle suspensions. J Colloid Interface Sci 2018; 532:536-545. [DOI: 10.1016/j.jcis.2018.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 11/20/2022]
|
21
|
Sonia, Komal, Kukreti S, Kaushik M. Exploring the DNA damaging potential of chitosan and citrate-reduced gold nanoparticles: Physicochemical approach. Int J Biol Macromol 2018; 115:801-810. [DOI: 10.1016/j.ijbiomac.2018.04.115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 01/27/2023]
|
22
|
Arias LS, Pessan JP, Vieira APM, Lima TMTD, Delbem ACB, Monteiro DR. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics (Basel) 2018; 7:antibiotics7020046. [PMID: 29890753 PMCID: PMC6023022 DOI: 10.3390/antibiotics7020046] [Citation(s) in RCA: 326] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 12/26/2022] Open
Abstract
Medical applications and biotechnological advances, including magnetic resonance imaging, cell separation and detection, tissue repair, magnetic hyperthermia and drug delivery, have strongly benefited from employing iron oxide nanoparticles (IONPs) due to their remarkable properties, such as superparamagnetism, size and possibility of receiving a biocompatible coating. Ongoing research efforts focus on reducing drug concentration, toxicity, and other side effects, while increasing efficacy of IONPs-based treatments. This review highlights the methods of synthesis and presents the most recent reports in the literature regarding advances in drug delivery using IONPs-based systems, as well as their antimicrobial activity against different microorganisms. Furthermore, the toxicity of IONPs alone and constituting nanosystems is also addressed.
Collapse
Affiliation(s)
- Laís Salomão Arias
- Department of Pediatric Dentistry and Public Health, School of Dentistry, Araçatuba, São Paulo State University (Unesp), 16015-050 Araçatuba/São Paulo, Brazil.
| | - Juliano Pelim Pessan
- Department of Pediatric Dentistry and Public Health, School of Dentistry, Araçatuba, São Paulo State University (Unesp), 16015-050 Araçatuba/São Paulo, Brazil.
| | - Ana Paula Miranda Vieira
- Department of Pediatric Dentistry and Public Health, School of Dentistry, Araçatuba, São Paulo State University (Unesp), 16015-050 Araçatuba/São Paulo, Brazil.
| | - Taynara Maria Toito de Lima
- Graduate Program in Dentistry (GPD-Master's Degree), University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente/São Paulo, Brazil.
| | - Alberto Carlos Botazzo Delbem
- Department of Pediatric Dentistry and Public Health, School of Dentistry, Araçatuba, São Paulo State University (Unesp), 16015-050 Araçatuba/São Paulo, Brazil.
| | - Douglas Roberto Monteiro
- Graduate Program in Dentistry (GPD-Master's Degree), University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente/São Paulo, Brazil.
| |
Collapse
|
23
|
Okuma K, Oba A, Kuramoto R, Iwashita H, Nagahora N, Shioji K, Noguchi R, Fukuda M. Synthesis and Fluorescence Properties of 1,1-Dimethyl-1,4-Dihydrodibenzo[b
,h
][1,6]naphthyridinium Iodides: Turn-on Type Detection of DNA. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kentaro Okuma
- Department of Chemistry; Fukuoka University; Jonan-ku 814-0180 Fukuoka Japan
| | - Akinori Oba
- Department of Chemistry; Fukuoka University; Jonan-ku 814-0180 Fukuoka Japan
| | - Risa Kuramoto
- Department of Chemistry; Fukuoka University; Jonan-ku 814-0180 Fukuoka Japan
| | - Hidefumi Iwashita
- Department of Chemistry; Fukuoka University; Jonan-ku 814-0180 Fukuoka Japan
| | - Noriyoshi Nagahora
- Department of Chemistry; Fukuoka University; Jonan-ku 814-0180 Fukuoka Japan
| | - Kosei Shioji
- Department of Chemistry; Fukuoka University; Jonan-ku 814-0180 Fukuoka Japan
| | - Ryoma Noguchi
- Department of Chemistry; Fukuoka University; Jonan-ku 814-0180 Fukuoka Japan
| | - Masatora Fukuda
- Department of Chemistry; Fukuoka University; Jonan-ku 814-0180 Fukuoka Japan
| |
Collapse
|
24
|
Li J, Zou S, Gao J, Liang J, Zhou H, Liang L, Wu W. Block copolymer conjugated Au-coated Fe 3O 4 nanoparticles as vectors for enhancing colloidal stability and cellular uptake. J Nanobiotechnology 2017; 15:56. [PMID: 28743275 PMCID: PMC5526242 DOI: 10.1186/s12951-017-0290-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Polymer surface-modified inorganic nanoparticles (NPs) provide a multifunctional platform for assisting gene delivery. Rational structure design for enhancing colloidal stability and cellular uptake is an important strategy in the development of safe and highly efficient gene vectors. RESULTS Heterogeneous Au-coated Fe3O4 (Fe3O4@Au) NPs capped by polyethylene glycol-b-poly1-(3-aminopropyl)-3-(2-methacryloyloxy propylimidazolium bromine) (PEG-b-PAMPImB-Fe3O4@Au) were prepared for DNA loading and magnetofection assays. The Au outer shell of the NPs is an effective platform for maintaining the superparamagnetism of Fe3O4 and for PEG-b-PAMPImB binding via Au-S covalent bonds. By forming an electrostatic complex with DNA at the inner PAMPImB shell, the magnetic nanoplexes offer steric protection from the outer corona PEG, thereby promoting high colloidal stability. Transfection efficiency assays in human esophageal cancer cells (EC109) show that the nanoplexes have high transfection efficiency at a short incubation time in the presence of an external magnetic field, due to increased cellular internalization via magnetic acceleration. Finally, after transfection with the magnetic nanoplexes EC109 cells acquire magnetic properties, thus allowing for selective separation of transfected cells. CONCLUSION Precisely engineered architectures based on neutral-cationic block copolymer-conjugated heterogeneous NPs provide a valuable strategy for improving the applicability and efficacy of synthesized vectors.
Collapse
Affiliation(s)
- Junbo Li
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Sheng Zou
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Jiayu Gao
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Ju Liang
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Huiyun Zhou
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Lijuan Liang
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Wenlan Wu
- School of Medicine, Henan University of Science & Technology, Luo Yang, 471023 China
| |
Collapse
|