1
|
Eweje F, Walsh ML, Ahmad K, Ibrahim V, Alrefai A, Chen J, Chaikof EL. Protein-based nanoparticles for therapeutic nucleic acid delivery. Biomaterials 2024; 305:122464. [PMID: 38181574 PMCID: PMC10872380 DOI: 10.1016/j.biomaterials.2023.122464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/25/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
To realize the full potential of emerging nucleic acid therapies, there is a need for effective delivery agents to transport cargo to cells of interest. Protein materials exhibit several unique properties, including biodegradability, biocompatibility, ease of functionalization via recombinant and chemical modifications, among other features, which establish a promising basis for therapeutic nucleic acid delivery systems. In this review, we highlight progress made in the use of non-viral protein-based nanoparticles for nucleic acid delivery in vitro and in vivo, while elaborating on key physicochemical properties that have enabled the use of these materials for nanoparticle formulation and drug delivery. To conclude, we comment on the prospects and unresolved challenges associated with the translation of protein-based nucleic acid delivery systems for therapeutic applications.
Collapse
Affiliation(s)
- Feyisayo Eweje
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard and MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard/MIT MD-PhD Program, Boston, MA, USA, 02115; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Michelle L Walsh
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard and MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard/MIT MD-PhD Program, Boston, MA, USA, 02115
| | - Kiran Ahmad
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Vanessa Ibrahim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Assma Alrefai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Su N. Spherical Polyelectrolyte Brushes as Flocculants and Retention Aids in Wet-End Papermaking. Molecules 2023; 28:7984. [PMID: 38138474 PMCID: PMC10745445 DOI: 10.3390/molecules28247984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
As the criteria of energy conservation, emission reduction, and environmental protection become more important, and with the development of wet-end papermaking, developing excellent retention aids is of great significance. Spherical polyelectrolyte brushes (SPBs) bearing polyelectrolyte chains grafted densely to the surface of core particle have the potential to be novel retention aids in wet-end papermaking not only because of their spherical structure, but also due to controllable grafting density and molecular weight. Such characteristics are crucial in order to design multi-functional retention aids in sophisticated papermaking systems. This review presents some important recent advances with respect to retention aids, including single-component system and dual-component systems. Then, basic theory in papermaking is also briefly reviewed. Based on these advances, it emphatically describes spherical polyelectrolyte brushes, focused on their preparation methods, characterization, conformation, and applications in papermaking. This work is expected to contribute to improve a comprehensive understanding on the composition, properties, and function mechanisms of retention aids, which helps in the further investigation on the design of novel retention aids with excellent performance.
Collapse
Affiliation(s)
- Na Su
- Department of Printing and Packaging Engineering, Shanghai Publishing and Printing College, Shanghai 200093, China
| |
Collapse
|
3
|
Xia W, Wang Q, Liu M, Lu S, Yu H, Yin H, You M, Chen Q, Wang B, Lin F. Antifouling and Injectable Granular Hydrogel for the Prevention of Postoperative Intrauterine Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44676-44688. [PMID: 37721504 DOI: 10.1021/acsami.3c07846] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Postoperative intrauterine adhesion (IUA), caused by endometrial basal layer injury, is one of the main causes of female infertility. The excessive deposition of fibrin as well as fibroblast is considered the root cause of IUA. However, few clinical strategies are effective in preventing extracellular matrix (ECM) deposition at endometrial wounds that include protein and cell deposits. Herein, the injectable granular poly(N-(2-hydroxyethyl) acrylamide) (PHEAA) hydrogel (granular PHEAA gel), which presents excellent antifouling properties and remarkably prevents protein and cell adhesions, is used to prevent postoperative IUA. The granular PHEAA gel with a jammed network structure exhibits outstanding injectability and superior stability. Compared with the IUA group, the granular PHEAA gel can promote regeneration of the endometrium while reducing the area of endometrial fibrosis. Immunohistochemical staining experiments indicate that the granular PHEAA gel can improve the proliferation of the endometrium, promote vascularization, and enhance anti-inflammatory effect in IUA rats. And the granular PHEAA gel can effectively slow down the fibrosis of uterine tissue. Importantly, the number of embryos is significantly increased after injecting granular PHEAA gel, inferring that there is an obvious reproductive function recovery of injured endometrium.
Collapse
Affiliation(s)
| | - Qilin Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | | | - Shaoping Lu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | - Hui Yu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | - Haiyan Yin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | - Min You
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | - Bujun Wang
- Department of Obstetrics, Pingyang People's Hospital of Wenzhou Medical University, Wenzhou 325499, China
| | | |
Collapse
|
4
|
Van Guyse JFR, Leiske MN, Verjans J, Bernhard Y, Hoogenboom R. Accelerated Post‐Polymerization Amidation of Polymers with Side‐Chain Ester Groups by Intramolecular Activation. Angew Chem Int Ed Engl 2022; 61:e202201781. [DOI: 10.1002/anie.202201781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Joachim F. R. Van Guyse
- Supramolecular Chemistry Group Centre of Macromolecular Chemistry (CMaC) Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
- Present address: Innovation Center of NanoMedicine Kawasaki Institute of Industrial Promotion 3-25-14, Tonomachi, Kawasaki-ku Kawasaki 210-0821 Japan
| | - Meike N. Leiske
- Supramolecular Chemistry Group Centre of Macromolecular Chemistry (CMaC) Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| | - Jente Verjans
- Supramolecular Chemistry Group Centre of Macromolecular Chemistry (CMaC) Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| | - Yann Bernhard
- Supramolecular Chemistry Group Centre of Macromolecular Chemistry (CMaC) Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
- Present address: Université de Lorraine, UMR CNRS 7053 L2CM Faculté des Sciences et Technologies, BP 70239 54506 Vandoeuvre-lès-Nancy Cedex France
| | - Richard Hoogenboom
- Supramolecular Chemistry Group Centre of Macromolecular Chemistry (CMaC) Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| |
Collapse
|
5
|
Van Guyse JFR, Leiske MN, Verjans J, Bernhard Y, Hoogenboom R. Accelerated Post‐Polymerization Amidation of Polymers with Side‐Chain Ester Groups by Intramolecular Activation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Joachim F. R. Van Guyse
- Supramolecular Chemistry Group Centre of Macromolecular Chemistry (CMaC) Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
- Present address: Innovation Center of NanoMedicine Kawasaki Institute of Industrial Promotion 3-25-14, Tonomachi, Kawasaki-ku Kawasaki 210-0821 Japan
| | - Meike N. Leiske
- Supramolecular Chemistry Group Centre of Macromolecular Chemistry (CMaC) Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| | - Jente Verjans
- Supramolecular Chemistry Group Centre of Macromolecular Chemistry (CMaC) Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| | - Yann Bernhard
- Supramolecular Chemistry Group Centre of Macromolecular Chemistry (CMaC) Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
- Present address: Université de Lorraine, UMR CNRS 7053 L2CM Faculté des Sciences et Technologies, BP 70239 54506 Vandoeuvre-lès-Nancy Cedex France
| | - Richard Hoogenboom
- Supramolecular Chemistry Group Centre of Macromolecular Chemistry (CMaC) Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| |
Collapse
|
6
|
Wang F, Sha X, Song X, Bai M, Tian X, Liu L. A Dual-Responsive Peptide-Based Smart Biointerface with Biomimetic Adhesive Behaviors for Bacterial Isolation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14638-14645. [PMID: 34879653 DOI: 10.1021/acs.langmuir.1c02357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As mimics of the extracellular matrix, surfaces with the capability of capturing and releasing specific cells in a smart and controllable way play an important role in bacterial isolation. In this work, we fabricated a dual-responsive smart biointerface via peptide self-assembly and reversible covalent chemistry biomimetic adhesion behavior for bacterial isolation. Compared with that of the biointerface based on a single reversible covalent bond, the bacterial enrichment efficiency obtained in this work was 2.3 times higher. Furthermore, the release of bacteria from the surface could be achieved by dual responsiveness (sugar and enzyme), which makes the biointerface more adaptable and compatible under different conditions. Finally, the reusability of the biointerface was verified via peptide self-assembly and the regenerated smart biointerface still showed good bacterial capture stability and excellent release efficiency, which was highly anticipated to be more widely applied in biomaterial science and biomedicine in the future.
Collapse
Affiliation(s)
- Fenghua Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiangyu Sha
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaolu Song
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Mengqi Bai
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaohua Tian
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
7
|
Hua C, Chen K, Guo X. Boronic acid-functionalized spherical polymer brushes for efficient and selective enrichment of glycoproteins. J Mater Chem B 2021; 9:7557-7565. [PMID: 34551054 DOI: 10.1039/d1tb00835h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glycoproteins are related to many biological activities and diseases, and thereby their efficient capture and enrichment for diagnostics and proteomics have emerged to exhibit great significance. However, the lack of materials with high binding capacity and selectivity is still a big obstacle for further application. Herein, we reported a facile and eco-friendly approach to fabricate spherical polymer brushes with multiple boronic acid groups. Specifically, the whole process can be divided into three steps, the polystyrene (PS) core was obtained by traditional emulsion polymerization, followed by immobilization of a home-made photoinitiator. Subsequently, boronic acid-functionalized polymer chains (PBA) were chemically grafted via photo-emulsion polymerization, leading to spherical polymer brushes (PS-PBA) with boronate affinity. The particle size, morphology, and composition of as-prepared spherical polymer brushes were systematically characterized. The characteristics of glycoproteins binding to the spherical polymer brushes under different conditions, including pH values and ionic strength, were also investigated. PS-PBA brushes possess fast binding speed (30 min) and high binding capacity for glycoprotein ovalbumin (OVA) (377.0 mg g-1) under physiological pH conditions at 25 °C, because the low steric hindrance of flexible polymeric PBA chains facilitates the interaction between boronic acid groups and glycoproteins. Moreover, the binding capacity of PS-PBA brushes for glycoprotein OVA was ∼6.7 times higher than that for non-glycoprotein bovine serum albumin (BSA), indicating the excellent selective adsorption. This study provided a facile and efficient approach for the fabrication of boronic acid-functionalized materials that will be useful in the enrichment and separation of glycoproteins for the diagnosis of diseases.
Collapse
Affiliation(s)
- Chen Hua
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Kaimin Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China. .,Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang 832000, People's Republic of China
| |
Collapse
|
8
|
Cao Y, Liu S, Wu Z, Chen H. Synthesis and antifouling performance of tadpole-shaped poly(N-hydroxyethylacrylamide) coatings. J Mater Chem B 2021; 9:2877-2884. [PMID: 33720249 DOI: 10.1039/d0tb03015e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Linear poly(N-hydroxyethylacrylamide) (PHEAA) is regarded as one of the most promising antifouling materials because of its excellent antifouling properties and good hemocompatibility. However, the antifouling performance of topological PHEAAs remains largely unknown. Herein, the preparation of antifouling surfaces based on a tadpole-shaped PHEAA coating is reported for the first time, and how the tadpole-shaped PHEAA architecture affects antifouling performance is investigated. It is shown that the tadpole-shaped PHEAA-modified surfaces exhibit better antifouling performance than linear copolymer precursor-modified surfaces with identical molar masses and chemical compositions. This may be primarily attributed to the presence of cyclic PHEAA head chain segments in the tadpole-shaped PHEAA copolymer, and the absence of interchain entanglements can facilitate the formation of smoother and densely packed grafts, which result in better antifouling properties.
Collapse
Affiliation(s)
- Yanping Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | | | | | | |
Collapse
|
9
|
Wang Z, Chen K, Hua C, Guo X. Conformation Variation and Tunable Protein Adsorption through Combination of Poly(acrylic acid) and Antifouling Poly( N-(2-hydroxyethyl) acrylamide) Diblock on a Particle Surface. Polymers (Basel) 2020; 12:E566. [PMID: 32143509 PMCID: PMC7182850 DOI: 10.3390/polym12030566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
Adsorption and desorption of proteins on biomaterial surfaces play a critical role in numerous biomedical applications. Spherical diblock polymer brushes (polystyrene with photoiniferter (PSV) as the core) with different block sequence, poly(acrylic acid)-b-poly(N-(2-hydroxyethyl) acrylamide) (PSV@PAA-b-PHEAA) and poly(N-(2-hydroxyethyl) acrylamide)-b-poly(acrylic acid) (PSV@PHEAA-b-PAA) were prepared via surface-initiated photoiniferter-mediated polymerization (SI-PIMP) and confirmed by a series of characterizations including TEM, Fourier transform infrared (FTIR) and elemental analysis. Both diblock polymer brushes show typical pH-dependent properties measured by dynamic light scattering (DLS) and Zeta potential. It is interesting to find out that conformation of PSV@PAA-b-PHEAA uniquely change with pH values, which is due to cooperation of electrostatic repulsion and steric hindrance. High-resolution turbidimetric titration was applied to explore the behavior of bovine serum albumin (BSA) binding to diblock polymer brushes, and the protein adsorption could be tuned by the existence of PHEAA as well as apparent PAA density. These studies laid a theoretical foundation for design of diblock polymer brushes and a possible application in biomedical fields.
Collapse
Affiliation(s)
- Zun Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.W.); (C.H.)
| | - Kaimin Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Chen Hua
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.W.); (C.H.)
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.W.); (C.H.)
| |
Collapse
|
10
|
Zhang Y, Chen K, Cao L, Li K, Wang Q, Fu E, Guo X. Stabilization of Pickering Emulsions by Hairy Nanoparticles Bearing Polyanions. Polymers (Basel) 2019; 11:E816. [PMID: 31067697 PMCID: PMC6571738 DOI: 10.3390/polym11050816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/13/2019] [Accepted: 04/28/2019] [Indexed: 11/23/2022] Open
Abstract
Pickering emulsions are increasingly applied in drug delivery, oil-water separation, composite materials preparation, and other fields. However, systematic studies on the stabilization of Pickering emulsions to satisfy the growing application demands in multiple fields with long-term conservation are rare. Compared to conventional solid nanoparticles, polyanion-modified hairy nanoparticles are more stable in practical environments and are investigated in this study. Poly (sodium p-styrenesulfonate) was grafted to a polystyrene (PS) core via a photoemulsion polymerization. A hairy nanoparticle bearing polyanions called poly (sodium p-styrenesulfonate) brush (PS@PSS) was synthesized. The size and uniformity of the Pickering emulsions stabilized by PS@PSS were investigated via a polarizing microscope. The stability of Pickering emulsions were optimized by adjusting critical factors like ultrasonic power and time, standing time, oil phases, salt concentration, and water:oil ratio. Results indicated that the Pickering emulsions could be stabilized by PS@PSS nanoparticles, which showed remarkable and adjustable partial wetting properties. It was found that the optimized conditions were ultrasonic power of 150 W, ultrasonic time of 3 min, salt concentration of 0.1 mM, oil phase of hexadecane, and water:oil ratio of 1:1. The formation and stability of Pickering emulsion are closely related to the hairy poly (sodium p-styrenesulfonate) brush layer on the nanoparticle surface.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Kaimin Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Lan Cao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Kai Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Qiaoling Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Enyu Fu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
11
|
Chen K, Cao L, Zhang Y, Li K, Qin X, Guo X. Conformation Study of Dual Stimuli-Responsive Core-Shell Diblock Polymer Brushes. Polymers (Basel) 2018; 10:E1084. [PMID: 30961009 PMCID: PMC6403727 DOI: 10.3390/polym10101084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 11/16/2022] Open
Abstract
Stimuli-responsive nanoparticles are among the most popular research topics. In this study, two types of core-shell (polystyrene with a photoiniferter (PSV) as the core and diblock as the shell) polymer brushes (PSV@PNIPA-b-PAA and PSV@PAA-b-PNIPA) were designed and prepared using surface-initiated photoiniferter-mediated polymerization (SI-PIMP). Moreover, their pH- and temperature-stimuli responses were explored by dynamic light scattering (DLS) and turbidimeter under various conditions. The results showed that the conformational change was determined on the basis of the competition among electrostatic repulsion, hydrophobic interaction, hydrogen bonding, and steric hindrance, which was also confirmed by protein adsorption experiments. These results are not only helpful for the design and synthesis of stimuli-responsive polymer brushes but also shed light on controlled protein immobilization under mild conditions.
Collapse
Affiliation(s)
- Kaimin Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Lan Cao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ying Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Kai Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xue Qin
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
12
|
Gal N, Schroffenegger M, Reimhult E. Stealth Nanoparticles Grafted with Dense Polymer Brushes Display Adsorption of Serum Protein Investigated by Isothermal Titration Calorimetry. J Phys Chem B 2018; 122:5820-5834. [PMID: 29726682 PMCID: PMC5994724 DOI: 10.1021/acs.jpcb.8b02338] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/24/2018] [Indexed: 01/10/2023]
Abstract
Core-shell nanoparticles receive much attention for their current and potential applications in life sciences. Commonly, a dense shell of hydrated polymer, a polymer brush, is grafted to improve colloidal stability of functional nanoparticles and to prevent protein adsorption, aggregation, cell recognition, and uptake. Until recently, it was widely assumed that a polymer brush shell indeed prevents strong association of proteins and that this leads to their superior "stealth" properties in vitro and in vivo. We show using T-dependent isothermal titration calorimetry on well-characterized monodisperse superparamagnetic iron oxide nanoparticles with controlled dense stealth polymer brush shells that "stealth" core-shell nanoparticles display significant attractive exothermic and enthalpic interactions with serum proteins, despite having excellent colloidal stability and negligible nonspecific cell uptake. This observation is at room temperature shown to depend only weakly on variation of iron oxide core diameter and type of grafted stealth polymer: poly(ethylene glycol), poly(ethyl oxazoline), poly(isopropyl oxazoline), and poly( N-isopropyl acrylamide). Polymer brush shells with a critical solution temperature close to body temperature showed a strong temperature dependence in their interactions with proteins with a significant increase in protein binding energy with increased temperature. The stoichiometry of interaction is estimated to be near 1:1 for PEGylated nanoparticles and up to 10:1 for larger thermoresponsive nanoparticles, whereas the average free energy of interaction is enthalpically driven and comparable to a weak hydrogen bond.
Collapse
Affiliation(s)
- Noga Gal
- Institute for Biologically Inspired
Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11-II, A-1190 Vienna, Austria
| | - Martina Schroffenegger
- Institute for Biologically Inspired
Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11-II, A-1190 Vienna, Austria
| | - Erik Reimhult
- Institute for Biologically Inspired
Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11-II, A-1190 Vienna, Austria
| |
Collapse
|
13
|
Wang Y, Versluis F, Oldenhof S, Lakshminarayanan V, Zhang K, Wang Y, Wang J, Eelkema R, Guo X, van Esch JH. Directed Nanoscale Self-Assembly of Low Molecular Weight Hydrogelators Using Catalytic Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707408. [PMID: 29611239 DOI: 10.1002/adma.201707408] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/16/2018] [Indexed: 06/08/2023]
Abstract
The work presented here shows that the growth of supramolecular hydrogel fibers can be spatially directed at the nanoscale by catalytic negatively charged nanoparticles (NCNPs). The NCNPs with surfaces grafted with negatively charged polymer chains create a local proton gradient that facilitates an acid-catalyzed formation of hydrogelators in the vicinity of NCNPs, ultimately leading to the selective formation of gel fibers around NCNPs. The presence of NCNPs has a dominant effect on the properties of the resulting gels, including gelation time, mechanical properties, and network morphology. Interestingly, local fiber formation can selectively entrap and precipitate out NCNPs from a mixture of different nanoparticles. These findings show a new possibility to use directed molecular self-assembly to selectively trap target nano-objects, which may find applications in therapy, such as virus infection prevention, or engineering applications, like water treatment and nanoparticle separation.
Collapse
Affiliation(s)
- Yiming Wang
- Advanced Soft Matter Group, Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Frank Versluis
- Advanced Soft Matter Group, Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Sander Oldenhof
- Advanced Soft Matter Group, Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Vasudevan Lakshminarayanan
- Advanced Soft Matter Group, Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Kai Zhang
- Advanced Soft Matter Group, Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Yunwei Wang
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Jie Wang
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Rienk Eelkema
- Advanced Soft Matter Group, Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Xuhong Guo
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, P. R. China
| | - Jan H van Esch
- Advanced Soft Matter Group, Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| |
Collapse
|