1
|
Li X, Zhu L, Che Z, Liu T, Yang C, Huang L. Progress of research on the surface functionalization of tantalum and porous tantalum in bone tissue engineering. Biomed Mater 2024; 19:042009. [PMID: 38838694 DOI: 10.1088/1748-605x/ad5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Tantalum and porous tantalum are ideal materials for making orthopedic implants due to their stable chemical properties and excellent biocompatibility. However, their utilization is still affected by loosening, infection, and peripheral inflammatory reactions, which sometimes ultimately lead to implant removal. An ideal bone implant should have exceptional biological activity, which can improve the surrounding biological microenvironment to enhance bone repair. Recent advances in surface functionalization have produced various strategies for developing compatibility between either of the two materials and their respective microenvironments. This review provides a systematic overview of state-of-the-art strategies for conferring biological functions to tantalum and porous tantalum implants. Furthermore, the review describes methods for preparing active surfaces and different bioactive substances that are used, summarizing their functions. Finally, this review discusses current challenges in the development of optimal bone implant materials.
Collapse
Affiliation(s)
- Xudong Li
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Liwei Zhu
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Zhenjia Che
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Tengyue Liu
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chengzhe Yang
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Lanfeng Huang
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
2
|
Yu H, Xu M, Duan Q, Li Y, Liu Y, Song L, Cheng L, Ying J, Zhao D. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications. Biomed Mater 2024; 19:042002. [PMID: 38697199 DOI: 10.1088/1748-605x/ad46d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
Porous tantalum scaffolds offer a high degree of biocompatibility and have a low friction coefficient. In addition, their biomimetic porous structure and mechanical properties, which closely resemble human bone tissue, make them a popular area of research in the field of bone defect repair. With the rapid advancement of additive manufacturing, 3D-printed porous tantalum scaffolds have increasingly emerged in recent years, offering exceptional design flexibility, as well as facilitating the fabrication of intricate geometries and complex pore structures that similar to human anatomy. This review provides a comprehensive description of the techniques, procedures, and specific parameters involved in the 3D printing of porous tantalum scaffolds. Concurrently, the review provides a summary of the mechanical properties, osteogenesis and antibacterial properties of porous tantalum scaffolds. The use of surface modification techniques and the drug carriers can enhance the characteristics of porous tantalum scaffolds. Accordingly, the review discusses the application of these porous tantalum materials in clinical settings. Multiple studies have demonstrated that 3D-printed porous tantalum scaffolds exhibit exceptional corrosion resistance, biocompatibility, and osteogenic properties. As a result, they are considered highly suitable biomaterials for repairing bone defects. Despite the rapid development of 3D-printed porous tantalum scaffolds, they still encounter challenges and issues when used as bone defect implants in clinical applications. Ultimately, a concise overview of the primary challenges faced by 3D-printed porous tantalum scaffolds is offered, and corresponding insights to promote further exploration and advancement in this domain are presented.
Collapse
Affiliation(s)
- Haiyu Yu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Minghao Xu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Qida Duan
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Yada Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Yuchen Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Liqun Song
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Liangliang Cheng
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Jiawei Ying
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang St, Dalian, Liaoning 116001, People's Republic of China
| |
Collapse
|
3
|
Wang X, Liu W, Yu X, Wang B, Xu Y, Yan X, Zhang X. Advances in surface modification of tantalum and porous tantalum for rapid osseointegration: A thematic review. Front Bioeng Biotechnol 2022; 10:983695. [PMID: 36177183 PMCID: PMC9513364 DOI: 10.3389/fbioe.2022.983695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
After bone defects reach a certain size, the body can no longer repair them. Tantalum, including its porous form, has attracted increasing attention due to good bioactivity, biocompatibility, and biomechanical properties. After a metal material is implanted into the body as a medical intervention, a series of interactions occurs between the material’s surface and the microenvironment. The interaction between cells and the surface of the implant mainly depends on the surface morphology and chemical composition of the implant’s surface. In this context, appropriate modification of the surface of tantalum can guide the biological behavior of cells, promote the potential of materials, and facilitate bone integration. Substantial progress has been made in tantalum surface modification technologies, especially nano-modification technology. This paper systematically reviews the progress in research on tantalum surface modification for the first time, including physicochemical properties, biological performance, and surface modification technologies of tantalum and porous tantalum.
Collapse
Affiliation(s)
- Xi Wang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wentao Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Xinding Yu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yan Xu
- The Comprehensive Department of Shenyang Stomatological Hospital, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Xu Yan, ; Xinwen Zhang,
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Xu Yan, ; Xinwen Zhang,
| |
Collapse
|
4
|
Functionally Graded Al 2O 3-CTZ Ceramics Fabricated by Spark Plasma Sintering. MATERIALS 2022; 15:ma15051860. [PMID: 35269091 PMCID: PMC8912109 DOI: 10.3390/ma15051860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023]
Abstract
We studied the fabrication of functionally graded Al2O3–CeO2-stabilized-ZrO2 (CTZ) ceramics by spark plasma sintering. The ceramic composite exhibits a gradual change in terms of composition and porosity in the axial direction. The composition gradient was created by layering starting powders with different Al2O3 to CTZ ratios, whereas the porosity gradient was established with a large temperature difference, which was induced by an asymmetric graphite tool configuration during sintering. SEM investigations confirmed the development of a porosity gradient from the top toward the bottom side of the Al2O3–CTZ ceramic and the relative pore volume distributed in a wide range from 0.02 to 100 µm for the samples sintered in asymmetric configuration (ASY), while for the reference samples (STD), the size of pores was limited in the nanometer scale. The microhardness test exhibited a gradual change along the axis of the ASY samples, reaching 10 GPa difference between the two opposite sides of the Al2O3–CTZ ceramics without any sign of delamination or cracks between the layers. The flexural strength of the samples for both series showed an increasing tendency with higher sintering temperatures. However, the ASY samples achieved higher strength due to their lower total porosity and the newly formed elongated CeAl11O18 particles.
Collapse
|
5
|
Omidian S, Haghbin Nazarpak M, Bagher Z, Moztarzadeh F. The effect of vanadium ferrite doping on the bioactivity of mesoporous bioactive glass-ceramics. RSC Adv 2022; 12:25639-25653. [PMID: 36199336 PMCID: PMC9455771 DOI: 10.1039/d2ra04786a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Bioactive glasses are highly reactive surface materials synthesized by melting or sol–gel techniques. In this study, mesoporous bioactive glass-ceramics doped with different amounts of vanadium and iron ((60−(x + y)) SiO2–36CaO–4P2O5–xV2O5–yFe2O3, x and y between 0, 5 and, 10 mole%) were synthesized using a sol–gel method. Then, their effects on particle morphology and the biomineralization process were examined in simulated body fluid (SBF). N2 adsorption isotherm analysis proved that the samples have a mesoporous structure. In addition, the Fourier-transform infrared spectroscopy (FTIR) spectra of the samples after soaking in SBF for various periods (7, 14, and 21 days) confirmed the presence of new chemical bonds related to the apatite phase, which is in accordance with scanning electron microscopy (SEM) observations. X-ray diffraction (XRD) patterns of the samples after SBF soaking showed that lower amounts of vanadium and iron were associated with the formation of a stable and more crystalline phase of hydroxyapatite. The MTT results showed that the cell viability of mesoporous bioactive glass containing 5% V2O5 remains more than 90% over 7 days, which indicates the biocompatibility of the samples. To conclude, further studies on these formulations are going to be carried out in future investigations for chemohyperthermia application. Bioactive glasses are highly reactive surface materials synthesized by melting or sol–gel techniques.![]()
Collapse
Affiliation(s)
- Sajjad Omidian
- Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Masoumeh Haghbin Nazarpak
- New Technologies Research Center (NTRC), Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fathollah Moztarzadeh
- Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
6
|
Miao Q, Jiang N, Yang Q, Hussein IM, Luo Z, Wang L, Yang S. Multi-stage controllable degradation of strontium-doped calcium sulfate hemihydrate-tricalcium phosphate microsphere composite as a substitute for osteoporotic bone defect repairing: degradation behavior and bone response. Biomed Mater 2021; 17. [PMID: 34905745 DOI: 10.1088/1748-605x/ac4323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
Various requirements for the repair of complex bone defects have motivated to development of scaffolds with adjustable degradation rates and biological functions. Tricalcium phosphate (TCP) and calcium sulfate are the most commonly used bone repair materials in the clinic, how to better combine TCP and calcium sulfate and play their greatest advantages in the repair of osteoporotic bone defect is the focus of our research. In this study, a series of scaffolds with multistage-controlled degradation properties composed of strontium-doped calcium sulfate (SrCSH) and strontium-doped tricalcium phosphate (Sr-TCP) microspheres scaffolds were prepared, and their osteogenic activity,in vivodegradation and bone regeneration ability in tibia of osteoporotic rats were evaluated.In vitrostudies revealed that different components of SrCSH/Sr-TCP scaffolds significantly promoted the proliferation and differentiation of MC3T3-E1 cells, which showed a good osteogenic induction activity.In vivodegradation results showed that the degradation time of composite scaffolds could be controlled in a large range (6-12 months) by controlling the porosity and phase composition of Sr-TCP microspheres. The results of osteoporotic femoral defect repair showed that when the degradation rate of scaffold matched with the growth rate of new bone, the parameters such as bone mineral density, bone volume/total volume ratio, trabecular thickness, angiogenesis marker platelet endothelial cell adhesion molecule-1 and new bone formation marker osteocalcin expression were higher, which promoted the rapid repair of osteoporotic bone defects. On the contrary, the slow degradation rate of scaffolds hindered the growth of new bone to a certain extent. This study elucidates the importance of the degradation rate of scaffolds for the repair of osteoporotic bone defects, and the design considerations can be extended to other bone repair materials, which is expected to provide new ideas for the development of tissue engineering materials in the future.
Collapse
Affiliation(s)
- Qiuju Miao
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Nan Jiang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qinmeng Yang
- Department of Foot and Ankle Surgery, Guangzhou Orthopaedic Hospital, Guangzhou, People's Republic of China
| | - Ismail Mohamed Hussein
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhen Luo
- Pingshan District people's Hospital of Shenzhen, Shenzhen, People's Republic of China
| | - Lei Wang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shenyu Yang
- Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 510632, People's Republic of China
| |
Collapse
|
7
|
Abstract
Diseases or complications that are caused by bone tissue damage affect millions of patients every year. Orthopedic and dental implants have become important treatment options for replacing and repairing missing or damaged parts of bones and teeth. In order to use a material in the manufacture of implants, the material must meet several requirements, such as mechanical stability, elasticity, biocompatibility, hydrophilicity, corrosion resistance, and non-toxicity. In the 1970s, a biocompatible glassy material called bioactive glass was discovered. At a later time, several glass materials with similar properties were developed. This material has a big potential to be used in formulating medical devices, but its fragility is an important disadvantage. The use of bioactive glasses in the form of coatings on metal substrates allows the combination of the mechanical hardness of the metal and the biocompatibility of the bioactive glass. In this review, an extensive study of the literature was conducted regarding the preparation methods of bioactive glass and the different techniques of coating on various substrates, such as stainless steel, titanium, and their alloys. Furthermore, the main doping agents that can be used to impart special properties to the bioactive glass coatings are described.
Collapse
|
8
|
D'Agostino A, Tana F, Ettorre A, Pavarini M, Serafini A, Cochis A, Scalia AC, Rimondini L, De Giglio E, Cometa S, Chiesa R, De Nardo L. Mesoporous zirconia surfaces with anti-biofilm properties for dental implants. Biomed Mater 2021; 16. [PMID: 33857927 DOI: 10.1088/1748-605x/abf88d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/15/2021] [Indexed: 01/30/2023]
Abstract
Cytocompatible bioactive surface treatments conferring antibacterial properties to osseointegrated dental implants are highly requested to prevent bacteria-related peri-implantitis. Here we focus on a newly designed family of mesoporous coatings based on zirconia (ZrO2) microstructure doped with gallium (Ga), exploiting its antibacterial and pro-osseo-integrative properties. The ZrO2films were obtained via sol-gel synthesis route using Pluronic F127 as templating agent, while Ga doping was gained by introducing gallium nitrate hydrate. Chemical characterization by means of x-ray photoelectron spectroscopy and glow discharge optical emission spectroscopy confirmed the effective incorporation of Ga. Then, coatings morphological and structural analysis were carried out by transmission electron microscopy and selected area electron diffraction unveiling an effective stabilization of both the mesoporous structure and the tetragonal ZrO2phase. Specimens' cytocompatibility was confirmed towards gingival fibroblast and osteoblasts progenitors cultivated directly onto the coatings showing comparable metabolic activity and morphology in respect to controls cultivated on polystyrene. The presence of Ga significantly reduced the metabolic activity of the adhered oral pathogensPorphyromonas gingivalisandAggregatibacter actinomycetemcomitansin comparison to untreated bulk zirconia (p< 0.05); on the opposite, Ga ions did not significantly reduce the metabolism of the oral commensalStreptococcus salivarius(p> 0.05) thus suggesting for a selective anti-pathogens activity. Finally, the coatings' ability to preserve cells from bacterial infection was proved in a co-culture method where cells and bacteria were cultivated in the same environment: the presence of Ga determined a significant reduction of the bacteria viability while allowing at the same time for cells proliferation. In conclusion, the here developed coatings not only demonstrated to satisfy the requested antibacterial and cytocompatibility properties, but also being promising candidates for the improvement of implantable devices in the field of implant dentistry.
Collapse
Affiliation(s)
- Agnese D'Agostino
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Francesca Tana
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy.,National Interuniversity Consortium of Materials Science and Technology (INSTM), Local Unit Politecnico di Milano, Florence, Italy
| | - Alessandro Ettorre
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Matteo Pavarini
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Andrea Serafini
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Local Unit Politecnico di Milano, Florence, Italy
| | - Andrea Cochis
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases CAAD, Università del Piemonte Orientale UPO, Novara, Italy
| | - Alessandro Calogero Scalia
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases CAAD, Università del Piemonte Orientale UPO, Novara, Italy
| | - Lia Rimondini
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases CAAD, Università del Piemonte Orientale UPO, Novara, Italy
| | - Elvira De Giglio
- Department of Chemistry, Università di Bari Aldo Moro, Bari, Italy
| | | | - Roberto Chiesa
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy.,National Interuniversity Consortium of Materials Science and Technology (INSTM), Local Unit Politecnico di Milano, Florence, Italy
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy.,National Interuniversity Consortium of Materials Science and Technology (INSTM), Local Unit Politecnico di Milano, Florence, Italy
| |
Collapse
|
9
|
Bioactive Glass as a Nanoporous Drug Delivery System for Teicoplanin. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bioactive glass (BG) was made by the sol–gel method and doped with boron (B) to increase its bioactivity. Microstructures of BG and B-doped BG were observed by scanning electron microscopy, and phase identification was performed using an X-ray diffraction diffractometer. The ion concentrations released after soaking in simulated body fluid (SBF) for 1, 4, and 7 days were measured by inductively coupled plasma mass spectrometry, and the pH value of the SBF was measured after soaking samples to determine the variation in the environment. Brunauer–Emmett–Teller (BET) analysis was performed to further verify the characteristics of mesoporous structures. High performance liquid chromatography was used to evaluate the drug delivery ability of teicoplanin. Results demonstrated that B-doped BG performed significantly better than BG in parameters assessed by the BET analysis. B-doped BG has nanopores and more rough structures, which is advantageous for drug delivery as there are more porous structures available for drug adsorption. Moreover, B-doped BG was shown to be effective for keeping pH values stable and releasing B ions during soaking in SBF. The cumulative release of teicoplanin from BG and B-doped BG reached 20.09% and 3.17% on the first day, respectively. The drug release gradually slowed, reaching 29.43% and 4.83% after 7 days, respectively. The results demonstrate that the proposed bioactive glass has potential as a drug delivery system.
Collapse
|
10
|
Taale M, Krüger D, Ossei-Wusu E, Schütt F, Rehman MAU, Mishra YK, Marx J, Stock N, Fiedler B, Boccaccini AR, Willumeit-Römer R, Adelung R, Selhuber-Unkel C. Systematically Designed Periodic Electrophoretic Deposition for Decorating 3D Carbon-Based Scaffolds with Bioactive Nanoparticles. ACS Biomater Sci Eng 2019; 5:4393-4404. [PMID: 33438405 DOI: 10.1021/acsbiomaterials.9b00102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The coating of porous scaffolds with nanoparticles is crucial in many applications, for example to generate scaffolds for catalysis or to make scaffolds bioactive. A standard and well-established method for coating surfaces with charged nanoparticles is electrophoresis, but when used on porous scaffolds, this method often leads to a blockage of the pores so that only the outermost layers of the scaffolds are coated. In this study, the electrophoretic coating process is monitored in situ and the kinetics of nanoparticle deposition are investigated. This concept can be extended to design a periodic electrophoretic deposition (PEPD) strategy, thus avoiding the typical blockage of surface pores. In the present work we demonstrate successful and homogeneous electrophoretic deposition of hydroxyapatite nanoparticles (HAn, diameter ≤200 nm) on a fibrous graphitic 3D structure (ultralightweight aerographite) using the PEPD strategy. The microfilaments of the resulting scaffold are covered with HAn both internally and on the surface. Furthermore, protein adsorption assays and cell proliferation assays were carried out and revealed that the HAn-decorated aerographite scaffolds are biocompatible. The HAn decoration of the scaffolds also significantly increases the alkaline phosphatase activity of osteoblast cells, showing that the scaffolds are able to promote their osteoblastic activity.
Collapse
Affiliation(s)
- Mohammadreza Taale
- Biocompatible Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Diana Krüger
- Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Division Metallic Biomaterials, Max-Planck-Str. 1, D-21502 Geesthacht, Germany
| | - Emmanuel Ossei-Wusu
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Fabian Schütt
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Muhammad Atiq Ur Rehman
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany.,Department of Materials Science and Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Yogendra Kumar Mishra
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Janik Marx
- Institute of Polymer and Composites, Hamburg University of Technology, Denickestr. 15, D-21073 Hamburg, Germany
| | - Norbert Stock
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth Straße 2, D-24118 Kiel, Germany
| | - Bodo Fiedler
- Institute of Polymer and Composites, Hamburg University of Technology, Denickestr. 15, D-21073 Hamburg, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | - Regine Willumeit-Römer
- Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Division Metallic Biomaterials, Max-Planck-Str. 1, D-21502 Geesthacht, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Christine Selhuber-Unkel
- Biocompatible Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| |
Collapse
|
11
|
An R, Fan PP, Zhou MJ, Wang Y, Goel S, Zhou XF, Li W, Wang JT. Nanolamellar Tantalum Interfaces in the Osteoblast Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2480-2489. [PMID: 30673289 DOI: 10.1021/acs.langmuir.8b02796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The design of topographically patterned surfaces is considered to be a preferable approach for influencing cellular behavior in a controllable manner, in particular to improve the osteogenic ability of bone regeneration. In this study, we fabricated nanolamellar tantalum (Ta) surfaces with lamellar wall thicknesses of 40 and 70 nm. The cells attached to nanolamellar Ta surfaces exhibited higher protein adsorption and expression of β1 integrin, as compared to the nonstructured bulk Ta, which facilitated the initial cell attachment and spreading. We thus, as expected, observed significantly enhanced osteoblast adhesion, growth, and alkaline phosphatase activity on nanolamellar Ta surfaces. However, the beneficial effects of nanolamellar structures on osteogenesis became weaker as the lamellar wall thickness increased. The interaction between cells and Ta surfaces was examined through adhesion forces using atomic force microscopy. Our findings indicated that the Ta surface with a lamellar wall thickness of 40 nm exhibited the strongest stimulatory effect. The observed strongest adhesion force between the cell-attached tip and the Ta surface with a 40 nm thick lamellar wall encouraged the much stronger binding of cells with the surface and thus well-attached, -stretched, and -grown cells. We attributed this to the increase in the available contact area of cells with the thinner nanolamellar Ta surface. The increased contact area allowed the enhancement of the cell surface interaction strength and, thus, improved osteoblast adhesion. This study suggests that the thin nanolamellar topography shows immense potential in improving the clinical performance of dental and orthopedic implants.
Collapse
Affiliation(s)
- Rong An
- Herbert Gleiter Institute of Nanoscience , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Peng Peng Fan
- Herbert Gleiter Institute of Nanoscience , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Ming Jun Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , P. R. China
| | - Yue Wang
- Herbert Gleiter Institute of Nanoscience , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
- Xiamen Golden Egret Special Alloy Company, Ltd. , Xiamen 361021 , P. R. China
| | - Sunkulp Goel
- Herbert Gleiter Institute of Nanoscience , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| | - Xue Feng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , P. R. China
| | - Wei Li
- European Bioenergy Research Institute, Aston Institute of Materials Research , Aston University , Birmingham B4 7ET , U.K
| | - Jing Tao Wang
- Herbert Gleiter Institute of Nanoscience , Nanjing University of Science and Technology , Nanjing 210094 , P. R. China
| |
Collapse
|
12
|
Taale M, Schütt F, Zheng K, Mishra YK, Boccaccini AR, Adelung R, Selhuber-Unkel C. Bioactive Carbon-Based Hybrid 3D Scaffolds for Osteoblast Growth. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43874-43886. [PMID: 30395704 PMCID: PMC6302313 DOI: 10.1021/acsami.8b13631] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/05/2018] [Indexed: 05/22/2023]
Abstract
Bone, nerve, and heart tissue engineering place high demands on the conductivity of three-dimensional (3D) scaffolds. Fibrous carbon-based scaffolds are excellent material candidates to fulfill these requirements. Here, we show that highly porous (up to 94%) hybrid 3D framework structures with hierarchical architecture, consisting of microfiber composites of self-entangled carbon nanotubes (CNTs) and bioactive nanoparticles are highly suitable for growing cells. The hybrid 3D structures are fabricated by infiltrating a combination of CNTs and bioactive materials into a porous (∼94%) zinc oxide (ZnO) sacrificial template, followed by the removal of the ZnO backbone via a H2 thermal reduction process. Simultaneously, the bioactive nanoparticles are sintered. In this way, conductive and mechanically stable 3D composites of free-standing CNT-based microfibers and bioactive nanoparticles are formed. The adopted strategy demonstrates great potential for implementing low-dimensional bioactive materials, such as hydroxyapatite (HA) and bioactive glass nanoparticles (BGN), into 3D carbon-based microfibrous networks. It is demonstrated that the incorporation of HA nanoparticles and BGN promotes the biomineralization ability and the protein adsorption capacity of the scaffolds significantly, as well as fibroblast and osteoblast adhesion. These results demonstrate that the developed carbon-based bioactive scaffolds are promising materials for bone tissue engineering and related applications.
Collapse
Affiliation(s)
- Mohammadreza Taale
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Fabian Schütt
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Kai Zheng
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Yogendra Kumar Mishra
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Rainer Adelung
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Christine Selhuber-Unkel
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| |
Collapse
|
13
|
Liang B, Huang J, Xu J, Li X, Li J. Local delivery of a novel PTHrP via mesoporous bioactive glass scaffolds to improve bone regeneration in a rat posterolateral spinal fusion model. RSC Adv 2018; 8:12484-12493. [PMID: 35539368 PMCID: PMC9079365 DOI: 10.1039/c8ra00870a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/26/2018] [Indexed: 12/01/2022] Open
Abstract
With the development of tissue engineering, bone defects, such as fractured long bones or cavitary lesions, may be efficiently repaired and reconstructed using bone substitutes. However, high rates of fusion failure remain unavoidable in spinal fusion surgery owing to the lack of appropriate materials for bone regeneration under such challenging conditions. Parathyroid hormone (PTH), a major regulator of bone remodeling, exerts both anabolic and catabolic effects. In this study, we modified PTH(1-34) and designed and synthesized a novel PTH-related peptide, namely PTHrP-1. Further, we fabricated a local PTHrP delivery device from mesoporous bioactive glass (MBG) to address the need for a suitable material in spinal fusion surgery. Using MBG scaffolds as a control, the biological properties of PTHrP-MBG scaffolds were evaluated in terms of attachment, proliferation, and alkaline phosphatase activity, as well as osteogenic gene and angiogenic gene expression in co-cultured rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. Furthermore, PTHrP-1-MBG scaffolds were tested in a rat posterolateral spinal fusion model. Our data showed that PTHrP-1-MBG scaffolds possessed good ability to facilitate attachment and stimulation of rBMSC proliferation and differentiation. Importantly, the in vivo results revealed that the PTHrP-1-MBG scaffolds facilitated faster new bone formation and a higher rate and quality of spinal fusion. Therefore, the results suggest that devices consisting of the present novel PTHrP and MBG possess wider potential applications in bone regeneration and should serve as a promising bone substitute for spinal fusion.
Collapse
Affiliation(s)
- Bo Liang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital 600 Yishan Road Shanghai 200233 PR China
| | - Jinghuan Huang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital 600 Yishan Road Shanghai 200233 PR China
| | - Jianguang Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital 600 Yishan Road Shanghai 200233 PR China
| | - Xiaolin Li
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital 600 Yishan Road Shanghai 200233 PR China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University Wuhan 430071 PR China
| |
Collapse
|
14
|
Liu Z, Dong L, Wang L, Wang X, Cheng K, Luo Z, Weng W. Mediation of cellular osteogenic differentiation through daily stimulation time based on polypyrrole planar electrodes. Sci Rep 2017; 7:17926. [PMID: 29263335 PMCID: PMC5738366 DOI: 10.1038/s41598-017-17120-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022] Open
Abstract
In electrical stimulation (ES), daily stimulation time means the interacting duration with cells per day, and is a vital factor for mediating cellular function. In the present study, the effect of stimulation time on osteogenic differentiation of MC3T3-E1 cells was investigated under ES on polypyrrole (Ppy) planar interdigitated electrodes (IDE). The results demonstrated that only a suitable daily stimulation time supported to obviously upregulate the expression of ALP protein and osteogenesis-related genes (ALP, Col-I, Runx2 and OCN), while a short or long daily stimulation time showed no significant outcomes. These might be attributed to the mechanism that an ES induced transient change in intracellular calcium ion concentration, which was responsible for activating calcium ion signaling pathway to enhance cellular osteogenic differentiation. A shorter daily time could lead to insufficient duration for the transient change in intracellular calcium ion concentration, and a longer daily time could give rise to cellular fatigue with no transient change. This work therefore provides new insights into the fundamental understanding of cell responses to ES and will have an impact on further designing materials to mediate cell behaviors.
Collapse
Affiliation(s)
- Zongguang Liu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Lingqing Dong
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Liming Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Xiaozhao Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Zhongkuan Luo
- Zhejiang-California International NanoSystems Institute, Hangzhou, 310058, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|