1
|
Swami R, Vij S, Sharma S. Unlocking the power of sugar: carbohydrate ligands as key players in nanotherapeutic-assisted targeted cancer therapy. Nanomedicine (Lond) 2024; 19:431-453. [PMID: 38288611 DOI: 10.2217/nnm-2023-0276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Cancer cells need as much as 40-times more sugar than their normal cell counterparts. This sugar demand is attained by the excessive expression of inimitable transporters on the surface of cancer cells, driven by their voracious appetite for carbohydrates. Nanotechnological advances drive research utilizing ligand-directed therapeutics and diverse carbohydrate analogs. The precise delivery of these therapeutic cargos not only mitigates toxicity associated with chemotherapy but also reduces the grim toll of mortality and morbidity among patients. This in-depth review explores the potential of these ligands in advanced cancer treatment using nanoparticles. It offers a broader perspective beyond the usual ways we deliver drugs, potentially changing the way we fight cancer.
Collapse
Affiliation(s)
- Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sahil Vij
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar University, Mullana, Haryana, 133203, India
| | - Shubham Sharma
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar University, Mullana, Haryana, 133203, India
| |
Collapse
|
2
|
Baysal Ö, Genç D, Silme RS, Kırboğa KK, Çoban D, Ghafoor NA, Tekin L, Bulut O. Targeting Breast Cancer with N-Acetyl-D-Glucosamine: Integrating Machine Learning and Cellular Assays for Promising Results. Anticancer Agents Med Chem 2024; 24:334-347. [PMID: 38305389 DOI: 10.2174/0118715206270568231129054853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Breast cancer is a common cancer with high mortality rates. Early diagnosis is crucial for reducing the prognosis and mortality rates. Therefore, the development of alternative treatment options is necessary. OBJECTIVE This study aimed to investigate the inhibitory effect of N-acetyl-D-glucosamine (D-GlcNAc) on breast cancer using a machine learning method. The findings were further confirmed through assays on breast cancer cell lines. METHODS MCF-7 and 4T1 cell lines (ATCC) were cultured in the presence and absence of varying concentrations of D-GlcNAc (0.5 mM, 1 mM, 2 mM, and 4 mM) for 72 hours. A xenograft mouse model for breast cancer was established by injecting 4T1 cells into mammary glands. D-GlcNAc (2 mM) was administered intraperitoneally to mice daily for 28 days, and histopathological effects were evaluated at pre-tumoral and post-tumoral stages. RESULTS Treatment with 2 mM and 4 mM D-GlcNAc significantly decreased cell proliferation rates in MCF-7 and 4T1 cell lines and increased Fas expression. The number of apoptotic cells was significantly higher than untreated cell cultures (p < 0.01 - p < 0.0001). D-GlcNAc administration also considerably reduced tumour size, mitosis, and angiogenesis in the post-treatment group compared to the control breast cancer group (p < 0.01 - p < 0.0001). Additionally, molecular docking/dynamic analysis revealed a high binding affinity of D-GlcNAc to the marker protein HER2, which is involved in tumour progression and cell signalling. CONCLUSION Our study demonstrated the positive effect of D-GlcNAc administration on breast cancer cells, leading to increased apoptosis and Fas expression in the malignant phenotype. The binding affinity of D-GlcNAc to HER2 suggests a potential mechanism of action. These findings contribute to understanding D-GlcNAc as a potential anti-tumour agent for breast cancer treatment.
Collapse
Affiliation(s)
- Ömür Baysal
- Department of Molecular Biology and Genetics, Faculty of Science, Molecular Microbiology Unit, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Deniz Genç
- Faculty of Health Sciences, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Ragıp Soner Silme
- Center for Research and Practice in Biotechnology and Genetic Engineering, Istanbul University, Istanbul, Türkiye
| | - Kevser Kübra Kırboğa
- Department of Bioengineering, Bilecik Seyh Edebali University, 11230, Bilecik, Türkiye
| | - Dilek Çoban
- Department of Molecular Biology and Genetics, Faculty of Science, Molecular Microbiology Unit, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Naeem Abdul Ghafoor
- Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Leyla Tekin
- Department of Pathology, Faculty of Medicine, Muğla Sıtkı Koçman University, Kötekli-Muğla, Türkiye
| | - Osman Bulut
- Milas Faculty of Veterinary Medicine, Muğla Sıtkı Koçman University, Milas, Muğla, Türkiye
| |
Collapse
|
3
|
Zhang P, Ye G, Xie G, Lv J, Zeng X, Jiang W. Research progress of nanomaterial drug delivery in tumor targeted therapy. Front Bioeng Biotechnol 2023; 11:1240529. [PMID: 37555076 PMCID: PMC10405625 DOI: 10.3389/fbioe.2023.1240529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
Cancer is one of the most lethal diseases in human society, and its incidence is gradually increasing. However, the current tumor treatment often meets the problem of poor efficacy and big side effects. The unique physical and chemical properties of nanomaterials can target the delivery of drugs to tumors, which can improve the therapeutic effect while reducing the damage of drugs to normal cells. This makes nanomaterials become a hot topic in the field of biomedicine. This review summarizes the recent progress of nanomaterials in tumor targeted therapy.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, China
| | - Guihua Ye
- Shanghai Ninth People’s Hospital Hainan Branch, Hainan Western Central Hospital, Danzhou, China
| | - Guofeng Xie
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jie Lv
- School of Computer Science and Engineering, Yulin Normal University, Yulin, China
| | - Xianhai Zeng
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, China
| | - Wei Jiang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Narwade M, Shaikh A, Gajbhiye KR, Kesharwani P, Gajbhiye V. Advanced cancer targeting using aptamer functionalized nanocarriers for site-specific cargo delivery. Biomater Res 2023; 27:42. [PMID: 37149607 PMCID: PMC10164340 DOI: 10.1186/s40824-023-00365-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/20/2023] [Indexed: 05/08/2023] Open
Abstract
The non-specificity of standard anticancer therapies has profound detrimental consequences in clinical treatment. Therapeutic specificity can be precisely achieved using cutting-edge ligands. Small synthetic oligonucleotide-ligands chosen through Systematic evolution of ligands by exponential enrichment (SELEX) would be an unceasing innovation in using nucleic acids as aptamers, frequently referred to as "chemical antibodies." Aptamers act as externally controlled switching materials that can attach to various substrates, for example, membrane proteins or nucleic acid structures. Aptamers pose excellent specificity and affinity for target molecules and can be used as medicines to suppress tumor cell growth directly. The creation of aptamer-conjugated nanoconstructs has recently opened up innovative options in cancer therapy that are more effective and target tumor cells with minor toxicity to healthy tissues. This review focuses on a comprehensive description of the most capable classes of aptamer-tethered nanocarriers for precise recognition of cancer cells with significant development in proficiency, selectivity, and targetability for cancer therapy. Existing theranostic applications with the problems and future directions are also highlighted.
Collapse
Affiliation(s)
- Mahavir Narwade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India
| | - Aazam Shaikh
- Nanobioscience Group, Agharkar Research Institute, Pune, 411004, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, 411 007, India
| | - Kavita R Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune, 411004, India.
- Savitribai Phule Pune University, Ganeshkhind, Pune, 411 007, India.
| |
Collapse
|
5
|
Jagdale S, Narwade M, Sheikh A, Md S, Salve R, Gajbhiye V, Kesharwani P, Gajbhiye KR. GLUT1 transporter-facilitated solid lipid nanoparticles loaded with anti-cancer therapeutics for ovarian cancer targeting. Int J Pharm 2023; 637:122894. [PMID: 36990168 DOI: 10.1016/j.ijpharm.2023.122894] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/03/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
The therapeutics available for cancer treatment have the major hurdle of site-specific delivery of anti-cancer drugs to the tumor site and non-target specific side effects. The standard therapy for ovarian cancer still poses numerous pitfalls due to the irrational use of drugs affecting healthy cells. As an appealing approach, nanomedicine could revamp the therapeutic profile of anti-cancer agents. Owing to the low manufacturing cost, increased biocompatibility, and modifiable surface properties, lipid-based nanocarriers, particularly solid lipid nanoparticles (SLN), have remarkable drug delivery properties in cancer treatment. Given the extra-ordinary benefits, we developed anti-neoplastic (paclitaxel) drug-loaded SLN (PTX-SLN) and functionalized with N-acetyl-d-glucosamine (GLcNAc) (GLcNAc-PTX-SLN) to reduce the rate of proliferation, growth, and metastasis of ovarian cancer cells over-expressing GLUT1 transporters. The particles presented considerable size and distribution while demonstrating haemocompatibility. Using GLcNAc modified form of SLNs, confocal microscopy, MTT assay, and flow cytometry study demonstrated higher cellular uptake and significant cytotoxic effect. Also, molecular docking results established excellent binding affinity between GLcNAc and GLUT1, complimenting the feasibility of the therapeutic approach in targeted cancer therapy. Following the compendium of target-specific drug delivery by SLN, our results demonstrated a significant response for ovarian cancer therapy.
Collapse
Affiliation(s)
- Saili Jagdale
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India
| | - Mahavir Narwade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rajesh Salve
- Nanobioscience Group, Agharkar Research Institute, Pune, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 602105, India.
| | - Kavita R Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India.
| |
Collapse
|
6
|
Han S, Chi Y, Yang Z, Ma J, Wang L. Tumor Microenvironment Regulation and Cancer Targeting Therapy Based on Nanoparticles. J Funct Biomater 2023; 14:136. [PMID: 36976060 PMCID: PMC10053410 DOI: 10.3390/jfb14030136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Although we have made remarkable achievements in cancer awareness and medical technology, there are still tremendous increases in cancer incidence and mortality. However, most anti-tumor strategies, including immunotherapy, show low efficiency in clinical application. More and more evidence suggest that this low efficacy may be closely related to the immunosuppression of the tumor microenvironment (TME). The TME plays a significant role in tumorigenesis, development, and metastasis. Therefore, it is necessary to regulate the TME during antitumor therapy. Several strategies are developing to regulate the TME as inhibiting tumor angiogenesis, reversing tumor associated macrophage (TAM) phenotype, removing T cell immunosuppression, and so on. Among them, nanotechnology shows great potential for delivering regulators into TME, which further enhance the antitumor therapy efficacy. Properly designed nanomaterials can carry regulators and/or therapeutic agents to eligible locations or cells to trigger specific immune response and further kill tumor cells. Specifically, the designed nanoparticles could not only directly reverse the primary TME immunosuppression, but also induce effective systemic immune response, which would prevent niche formation before metastasis and inhibit tumor recurrence. In this review, we summarized the development of nanoparticles (NPs) for anti-cancer therapy, TME regulation, and tumor metastasis inhibition. We also discussed the prospect and potential of nanocarriers for cancer therapy.
Collapse
Affiliation(s)
- Shulan Han
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yongjie Chi
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhu Yang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Ma
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lianyan Wang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Gao K, Qin Y, Liu S, Wang L, Xing R, Yu H, Chen X, Li P. A review of the preparation, derivatization and functions of glucosamine and N-acetyl-glucosamine from chitin. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
8
|
Aptamer Tethered Bio-Responsive Mesoporous Silica Nanoparticles for Efficient Targeted Delivery of Paclitaxel to Treat Ovarian Cancer Cells. J Pharm Sci 2023; 112:1450-1459. [PMID: 36669561 DOI: 10.1016/j.xphs.2023.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Ovarian cancer is the leading cause of cancer deaths in female patients. The current therapeutics in ovarian cancer are limited and inefficient in curing the disease. To tackle this, we have synthesized tetrasulfide derivative of silica doped, biodegradable, glutathione-responsive targeted mesoporous silica nanoparticles modified with heterobifunctional polyethylene glycol as a linker and mucin-1 aptamer for triggered paclitaxel delivery to the ovarian cancer cells. Degradable mesoporous silica nanoparticles were synthesized by a modified sol-gel method with tetraethyl orthosilicate and Bis (triethoxysilylpropyl) tetrasulfide. The degradable mesoporous silica nanoparticles were characterized by dynamic light scattering, Fourier-transform infrared spectroscopy, Scanning electron microscopy and Transmission electron microscopy. The degradable mesoporous silica nanoparticles had good paclitaxel encapsulation efficiency and glutathione-responsive paclitaxel release ability. The glutathione utilization assay and visual destruction observed within 10 days in transmission electron microscopy images confirmed the degradation of the mesoporous silica nanoparticles in the tumor cell environment. The targeted degradable mesoporous silica nanoparticles were efficiently taken up by ovarian cancer cell lines OVACAR-3 and PA-1. The cytotoxicity of bare mesoporous silica nanoparticles evaluated on NIH-3T3 cell line showed good biocompatibility (>90% cell viability). Significant toxicity on OVACAR-3 (IC50 25.66 nM) and PA-1 (IC50 42.93 nM) cell lines was observed when treated with paclitaxel-loaded targeted degradable mesoporous silica nanoparticles. Results of this study demonstrated that mucin-1 targeted, glutathione-responsive mesoporous silica nanoparticles loaded with paclitaxel had a significant antitumor effect on ovarian cancer cells. All these findings demonstrated that developed nano-formulation could be suitable for ovarian cancer treatment.
Collapse
|
9
|
Rani R, Malik P, Dhania S, Mukherjee TK. Recent Advances in Mesoporous Silica Nanoparticle-Mediated Drug Delivery for Breast Cancer Treatment. Pharmaceutics 2023; 15:227. [PMID: 36678856 PMCID: PMC9860911 DOI: 10.3390/pharmaceutics15010227] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Breast cancer (BC) currently occupies the second rank in cancer-related global female deaths. Although consistent awareness and improved diagnosis have reduced mortality in recent years, late diagnosis and resistant response still limit the therapeutic efficacy of chemotherapeutic drugs (CDs), leading to relapse with consequent invasion and metastasis. Treatment with CDs is indeed well-versed but it is badly curtailed with accompanying side effects and inadequacies of site-specific drug delivery. As a result, drug carriers ensuring stealth delivery and sustained drug release with improved pharmacokinetics and biodistribution are urgently needed. Core-shell mesoporous silica nanoparticles (MSNPs) have recently been a cornerstone in this context, attributed to their high surface area, low density, robust functionalization, high drug loading capacity, size-shape-controlled functioning, and homogeneous shell architecture, enabling stealth drug delivery. Recent interest in using MSNPs as drug delivery vehicles has been due to their functionalization and size-shape-driven versatilities. With such insights, this article focuses on the preparation methods and drug delivery mechanisms of MSNPs, before discussing their emerging utility in BC treatment. The information compiled herein could consolidate the database for using inorganic nanoparticles (NPs) as BC drug delivery vehicles in terms of design, application and resolving post-therapy complications.
Collapse
Affiliation(s)
- Ruma Rani
- ICAR-National Research Centre on Equines, Hisar 125001, Haryana, India
| | - Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Sunena Dhania
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Tapan Kumar Mukherjee
- Institute of Biotechnology (AIB), Amity University, Noida 201313, Uttar Pradesh, India
| |
Collapse
|
10
|
Eliminating host-guest incompatibility via enzyme mining enables the high-temperature production of N-acetylglucosamine. iScience 2022; 26:105774. [PMID: 36636338 PMCID: PMC9829697 DOI: 10.1016/j.isci.2022.105774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/09/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The host-guest incompatibility between a production host and non-native enzymes has posed an arduous challenge for synthetic biology, particularly between mesophile-derived enzymes and a thermophilic chassis. In the present study, we develop a thermophilic enzyme mining strategy comprising an automated co-evolution-based screening pipeline (http://cem.sjtu.edu.cn), computation-based enzyme characterization, and gene synthesis-based function validation. Using glucosamine-6-phosphate acetyltransferase (GNA1) as an example, we successfully mined four novel GNA1s with excellent thermostabilities and catalytic performances. Calculation and analysis based on AlphaFold2-generated structures were also conducted to uncover the mechanism underlying their excellent properties. Finally, our mined GNA1s were used to enable the high-temperature N-acetylglucosamine (GlcNAc) production with high titers of up to 119.3 g/L, with the aid of systems metabolic engineering and temperature programming. This study demonstrates the effectiveness of the enzyme mining strategy, highlighting the application prospects of mining new enzymes from massive databases and providing an effective solution for tackling host-guest incompatibility.
Collapse
|
11
|
Shah S, Famta P, Bagasariya D, Charankumar K, Sikder A, Kashikar R, Kotha AK, Chougule MB, Khatri DK, Asthana A, Raghuvanshi RS, Singh SB, Srivastava S. Tuning Mesoporous Silica Nanoparticles in Novel Avenues of Cancer Therapy. Mol Pharm 2022; 19:4428-4452. [PMID: 36109099 DOI: 10.1021/acs.molpharmaceut.2c00374] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The global menace of cancer has led to an increased death toll in recent years. The constant evolution of cancer therapeutics with novel delivery systems has paved the way for translation of innovative therapeutics from bench to bedside. This review explains the significance of mesoporous silica nanoparticles (MSNs) as delivery vehicles with particular emphasis on cancer therapy, including novel opportunities for biomimetic therapeutics and vaccine delivery. Parameters governing MSN synthesis, therapeutic agent loading characteristics, along with tuning of MSN toward cancer cell specificity have been explained. The advent of MSN in nanotheranostics and its potential in forming nanocomposites for imaging purposes have been illustrated. Additionally, various hurdles encountered during the bench to bedside translation have been explained along with potential avenues to circumvent them. This also opens up new horizons in drug delivery, which could be useful to researchers in the years to come.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Deepkumar Bagasariya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Kondasingh Charankumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Anupama Sikder
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Rama Kashikar
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, Georgia 30341, United States
| | - Arun K Kotha
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, Georgia 30341, United States
| | - Mahavir Bhupal Chougule
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, Georgia 30341, United States
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Raj Nagar, Ghaziabad 201002, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| |
Collapse
|
12
|
De Francesco EM, Cirillo F, Vella V, Belfiore A, Maggiolini M, Lappano R. Triple-negative breast cancer drug resistance, durable efficacy, and cure: How advanced biological insights and emerging drug modalities could transform progress. Expert Opin Ther Targets 2022; 26:513-535. [PMID: 35761781 DOI: 10.1080/14728222.2022.2094762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by the lack of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2) and often associated with poor survival outcomes. The backbone of current treatments for TNBC relies on chemotherapy; however, resistance to cytotoxic agents is a commonly encountered hurdle to overcome. AREAS COVERED : Current understanding on the mechanisms involved in TNBC chemoresistance is evaluated and novel potential actionable targets and recently explored modalities for carrying and delivering chemotherapeutics are highlighted. EXPERT OPINION : A comprehensive identification of both genomic and functional TNBC signatures is required for a more definite categorization of the patients in order to prevent insensitivity to chemotherapy and therefore realize the full potential of precision-medicine approaches. In this scenario, cell-line-derived xenografts (CDX), patient-derived xenografts (PDX), patient-derived orthotopic xenografts (PDOX) and patient-derived organoids (PDO) are indispensable experimental models for evaluating the efficacy of drug candidates and predicting the therapeutic response. The combination of increasingly sensitive "omics" technologies, computational algorithms and innovative drug modalities may accelerate the successful translation of novel candidate TNBC targets from basic research to clinical settings, thus contributing to reach optimal clinical output, with lower side effects and reduced resistance.
Collapse
Affiliation(s)
- Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
13
|
Heidari R, Khosravian P, Mirzaei SA, Elahian F. siRNA delivery using intelligent chitosan-capped mesoporous silica nanoparticles for overcoming multidrug resistance in malignant carcinoma cells. Sci Rep 2021; 11:20531. [PMID: 34654836 PMCID: PMC8519957 DOI: 10.1038/s41598-021-00085-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Although siRNA is a promising technology for cancer gene therapy, effective cytoplasmic delivery has remained a significant challenge. In this paper, a potent siRNA transfer system with active targeting moieties toward cancer cells and a high loading capacity is introduced to inhibit drug resistance. Mesoporous silica nanoparticles are of great potential for developing targeted gene delivery. Amino-modified MSNs (NH2-MSNs) were synthesized using a modified sol–gel method and characterized by FTIR, BET, TEM, SEM, X-ray diffraction, DLS, and 1H-NMR. MDR1-siRNA was loaded within NH2-MSNs, and the resulting negative surface was capped by functionalized chitosan as a protective layer. Targeting moieties such as TAT and folate were anchored to chitosan via PEG-spacers. The loading capacity of siRNA and the protective effect of chitosan for siRNA were determined by gel retardation assay. MTT assay, flow cytometry, real-time PCR, and western blot were performed to study the cytotoxicity, cellular uptake assay, targeting evaluation, and MDR1 knockdown efficiency. The synthesized NH2-MSNs had a particle size of ≈ 100 nm and pore size of ≈ 5 nm. siRNA was loaded into NH2-MSNs with a high loading capacity of 20% w/w. Chitosan coating on the surface of siRNA-NH2-MSNs significantly improved the siRNA protection against enzyme activity compared to naked siRNA-NH2-MSNs. MSNs and modified MSNs did not exhibit significant cytotoxicity at therapeutic concentrations in the EPG85.257-RDB and HeLa-RDB lines. The folate-conjugated nanoparticles showed a cellular uptake of around two times higher in folate receptor-rich HeLa-RDB than EPG85.257-RDB cells. The chitosan-coated siRNA-NH2-MSNs produced decreased MDR1 transcript and protein levels in HeLa-RDB by 0.20 and 0.48-fold, respectively. The results demonstrated that functionalized chitosan-coated siRNA-MSNs could be a promising carrier for targeted cancer therapy. Folate-targeted nanoparticles were specifically harvested by folate receptor-rich HeLa-RDB and produced a chemosensitized phenotype of the multidrug-resistant cancer cells.
Collapse
Affiliation(s)
- Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Pegah Khosravian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran. .,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
14
|
Jadon RS, Sharma G, Garg NK, Tandel N, Gajbhiye KR, Salve R, Gajbhiye V, Sharma U, Katare OP, Sharma M, Tyagi RK. Efficient in vitro and in vivo docetaxel delivery mediated by pH-sensitive LPHNPs for effective breast cancer therapy. Colloids Surf B Biointerfaces 2021; 203:111760. [PMID: 33872827 DOI: 10.1016/j.colsurfb.2021.111760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The present study was designed to develop pH-sensitive lipid polymer hybrid nanoparticles (pHS-LPHNPs) for specific cytosolic-delivery of docetaxel (DTX). The pHS-LPHNPs-DTX formulation was prepared by self-assembled nano-precipitation technique and characterized for zeta potential, particle size, entrapment efficiency, polydispersity index (PDI), and in vitro drug release. In vitro cytotoxicity of pHS-LPHNPs-DTX was assessed on breast cancer cells (MDA-MB-231 and MCF-7) and compared with DTX-loaded conventional LPHNPs and bare DTX. In vitro cellular uptake in MDA-MB-231 cell lines showed better uptake of pHS-LPHNPs. Further, a significant reduction in the IC50 of pHS-LPHNPs-DTX against both breast cancer cells was observed. Flow cytometry results showed greater apoptosis in case of pHS-LPHNPs-DTX treated MDA-MB-231 cells. Breast cancer was experimentally induced in BALB/c female mice, and the in vivo efficacy of the developed pHS-LPHNPs formulation was assessed with respect to the pharmacokinetics, biodistribution in the vital organs (liver, kidney, heart, lungs, and spleen), percentage tumor burden, and survival of breast cancer-bearing animals. In vivo studies showed improved pharmacokinetic and target-specificity with minimum DTX circulation in the deep-seated organs in the case of pHS-LPHNPs-DTX compared to the LPHNPs-DTX and free DTX. Mice treated with pHS-LPHNPs-DTX exhibited a significantly lesser tumor burden than other treatment groups. Also, reduced distribution of DTX in the serum was evident for pHS-LPHNPs-DTX treated mice compared to the LPHNPs-DTX and free DTX. In essence, pHS-LPHNPs mediated delivery of DTX presents a viable platform for developing therapeutic-interventions against breast-cancer.
Collapse
Affiliation(s)
- Rajesh Singh Jadon
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, MP, 474002, India; Divine International Group of Institutions, Gwalior, MP, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre for Advanced Studies, Panjab University, CH, 160014, India
| | - Neeraj K Garg
- University Institute of Pharmaceutical Sciences, UGC Centre for Advanced Studies, Panjab University, CH, 160014, India
| | - Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, GJ, 382481, India
| | - Kavita R Gajbhiye
- Poona College of Pharmacy, Bharati Vidyapeeth, Pune, MH, 411038, India
| | - Rajesh Salve
- Nanobioscience, Agharkar Research Institute, Pune, MH, 411004, India
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune, MH, 411004, India
| | - Ujjawal Sharma
- Department of Community Medicine & School of Public Health, PGIMER Chandigarh, India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, UGC Centre for Advanced Studies, Panjab University, CH, 160014, India
| | - Manoj Sharma
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, MP, 474002, India.
| | - Rajeev K Tyagi
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Centre (VUMC), 2215 Garland Avenue, 1075 Lab Suite MRB IV, Nashville, TN, 37232, USA; Biomedical Parasitology and Nano-immunology Lab, CSIR Institute of Microbial Technology (IMTECH), CH, India.
| |
Collapse
|
15
|
Tonbul H, Sahin A, Tavukcuoglu E, Ultav G, Akbas S, Aktas Y, Esendaglı G, Capan Y. Folic acid decoration of mesoporous silica nanoparticles to increase cellular uptake and cytotoxic activity of doxorubicin in human breast cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Salve R, Kumar P, Ngamcherdtrakul W, Gajbhiye V, Yantasee W. Stimuli-responsive mesoporous silica nanoparticles: A custom-tailored next generation approach in cargo delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112084. [PMID: 33947574 DOI: 10.1016/j.msec.2021.112084] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/28/2022]
Abstract
The pre-mature release of therapeutic cargos in the bloodstream or off-target sites is a major hurdle in drug delivery. However, stimuli-specific drug release responses are capable of providing greater control over the cargo release. Herein, various types of nanocarriers have been employed for such applications. Among various types of nanoparticles, mesoporous silica nanoparticles (MSNPs) have several attractive characteristics, such as high loading capacity, biocompatibility, small size, porous structure, high surface area, tunable pore size and ease of functionalization of the external and internal surfaces, which facilitates the entrapment and development of stimuli-dependent release of drugs. MSNPs could be modified with such stimuli-responsive entities like nucleic acid, peptides, polymers, organic molecules, etc., to prevent pre-mature cargo release, improving the therapeutic outcome. This controlled drug release system could be modulated to function upon extracellular or intracellular specific stimuli, including pH, enzyme, glucose, glutathione, light, temperature, etc., and thus provide minimal side effects at non-target sites. This system has great potential applications for the targeted delivery of therapeutics to treat clinically challenging diseases like cancer. This review summarizes the synthesis and design of stimuli-responsive release strategies of MSNP-based drug delivery systems along with investigations in biomedical applications.
Collapse
Affiliation(s)
- Rajesh Salve
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411004, India
| | - Pramod Kumar
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411004, India
| | | | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411004, India.
| | - Wassana Yantasee
- PDX Pharmaceuticals, Inc., Portland, OR 97239, USA; Biomedical Engineering, OHSU School of Medicine, Portland, OR 97239, USA.
| |
Collapse
|
17
|
Bera H, Abbasi YF, Gajbhiye V, Ping LL, Salve R, Kumar P, Kesavan S, Shaikh SA. Chemosensitivity assessments of curdlan-doped smart nanocomposites containing erlotinib HCl. Int J Biol Macromol 2021; 181:169-179. [PMID: 33775757 DOI: 10.1016/j.ijbiomac.2021.03.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022]
Abstract
Curdlan (CN)-doped montmorillonite/poly(N-isopropylacrylamide-co-N,N'-methylene-bis-acrylamide) [CN/MT/P(NIPA-co-MBA)] smart nanocomposites (NCs) were developed for efficient erlotinib HCl (ERL) delivery to lung cancer cells. The placebo NCs demonstrated excellent biodegradability, pH/thermo-responsive swelling profiles and declined molar mass (M¯c) between the crosslinks with increasing temperature. The XRD, FTIR, DSC, TGA, and SEM analyses revealed the architectural chemistry of these NC scaffolds. The NCs loaded with ERL (F-1-F-3) displayed acceptable diameter (734-1120 nm) and zeta potential (+1.16 to -11.17 mV), outstanding drug entrapping capability (DEE, 78-99%) and sustained biphasic ERL elution patterns (Q8h, 53-91%). The ERL release kinetics of the optimal matrices (F-3) obeyed Higuchi model and their transport occurred through anomalous diffusion. The mucin adsorption behaviour of these matrices followed Freudlich isotherms. As compared to pure ERL, the formulation (F-3) displayed an improved anti-proliferative potential and induced apoptosis more effectively on A549 cells. Thus, the CN-doped smart NCs could be utilized as promising drug-cargoes for lung cancer therapy.
Collapse
Affiliation(s)
- Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110013, Liaoning, China (current affiliation); Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah, Malaysia.
| | - Yasir Faraz Abbasi
- Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah, Malaysia; Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan (current affiliation)
| | | | - Law Lee Ping
- Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah, Malaysia
| | - Rajesh Salve
- Agharkar Research Institute, Pune 411004, Maharashtra, India
| | - Pramod Kumar
- Agharkar Research Institute, Pune 411004, Maharashtra, India
| | - Sevaraj Kesavan
- Faculty of Applied Sciences, AIMST University, Semeling, 08100 Bedong, Kedah, Malaysia
| | - Sohrab A Shaikh
- Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah, Malaysia
| |
Collapse
|
18
|
Ghanbari N, Salehi Z, Khodadadi AA, Shokrgozar MA, Saboury AA. Glucosamine-conjugated graphene quantum dots as versatile and pH-sensitive nanocarriers for enhanced delivery of curcumin targeting to breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111809. [DOI: 10.1016/j.msec.2020.111809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022]
|
19
|
Choudhury H, Pandey M, Wen LP, Cien LK, Xin H, Yee ANJ, Lee NJ, Gorain B, Amin MCIM, Pichika MR. Folic Acid Conjugated Nanocarriers for Efficient Targetability and Promising Anticancer Efficacy for Treatment of Breast Cancer: A Review of Recent Updates. Curr Pharm Des 2020; 26:5365-5379. [DOI: 10.2174/1381612826666200721000958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
Breast cancer (BC) is the commonest cause of cancer deaths among Women. It is known to be
caused due to mutations in certain receptors, viz. estrogens or progesterones. The most frequently used conventional
treatment strategies against BC include chemotherapy, radiation therapy, and partial or entire mastectomy,
however, these strategies are often associated with multiple adverse effects, thus reducing patient compliance.
Advancement of nanotechnology in the medical application has been made to enhance the therapeutic
effectiveness with a significant reduction in the unintended side-effects associated with incorporated anticancer
drugs against cancer. The surface engineering technology of the nanocarriers is more pronounced in delivering
the therapeutics specifically to target cells. Consequently, folic acid, a small molecular ligand for the folate receptor
overexpressed cells, has shown immense response in treating BC cells. Folic acid conjugated nanocarriers
have shown remarkable efficiency in targeting overexpressed folate receptors on the surface of BC cells.
Binding of these target-specific folate-conjugated nanocarriers substantially improves the internalization of chemotherapeutics
in BC cells, without much exposing the other parts of the body. Simultaneously, these folate--
conjugated nanocarriers provide imaging for regular monitoring of targeted drug delivery systems and their responses
to an anticancer therapy. Therefore, this review demonstrates the potential of folate-conjugated nanotherapeutics
for the treatment and theranostic approaches against BC along with the significant challenges to anticancer
therapy, and the prospective insights into the clinical importance and effectiveness of folate conjugate
nanocarriers.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lee Pei Wen
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Ling Kah Cien
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Ho Xin
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Alvina Ng Jia Yee
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Ng Joo Lee
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Mishra A, Pandey VK, Shankar BS, Melo JS. Spray drying as an efficient route for synthesis of silica nanoparticles-sodium alginate biohybrid drug carrier of doxorubicin. Colloids Surf B Biointerfaces 2020; 197:111445. [PMID: 33166931 DOI: 10.1016/j.colsurfb.2020.111445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/23/2020] [Accepted: 10/23/2020] [Indexed: 01/22/2023]
Abstract
Biohybrids (a combination of biological material and inorganic nanoparticles) offer a number of advantages like improved functionality over conventional materials.Thus, to understand the practical application of biohybrids as drug carriers, a biohybrid drug carrier of colloidal silica nanoparticles (NP)-sodium alginate loaded with doxorubicin (Dox-biohybrid) was synthesized by evaporation induced self-assembly (EISA) using spray drying technique. Further, the morphology, size and interactions between various components of the biohybrid were studied through SEM, DLS and FTIR techniques. The drug loading efficiency, release profile, cellular uptake and cytotoxicity of Dox-biohybrid was investigated and compared with free Dox. The drug loading efficiencies of Dox-biohybrid, Dox-silica NP and Dox-sodium alginate were 93.7 %, 96.4 % and 88.3 % respectively. In vitro release study showed a slow release of entrapped Dox from Dox-biohybrid as compared to other carriers. This release was also pH-responsive with significantly higher cumulative drug release at pH 5.5 (cancer microenvironment) in comparison to pH 7.4 (physiological conditions). The empty biohybrid carrier did not show cytotoxicity to normal mouse lymphocytes upto a concentration of 25 μg/mL which was used further. The uptake of Dox from Dox-biohybrid by A549 cells was more than 2fold as compared to uptake from free Dox. in vitro viability assay revealed that treatment of lung carcinoma A549 cells with Dox-biohybrid resulted in 50 % loss of cell viability at 500 nM, compared to only 12 % loss with free Dox. Thus, we report the synthesis of a novel biohybrid drug delivery system by means of spray drying process that has promising applications in cancer treatment.
Collapse
Affiliation(s)
- Archana Mishra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India.
| | - Vipul K Pandey
- Radiation Biology and Health Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India.
| | - Bhavani S Shankar
- Radiation Biology and Health Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India.
| | - Jose S Melo
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
21
|
Fotooh Abadi L, Kumar P, Gajbhiye V, Paknikar KM, Kulkarni S. Non-nuke HIV-1 inhibitor shuttled by mesoporous silica nanoparticles effectively slows down HIV-1 replication in infected human cells. Colloids Surf B Biointerfaces 2020; 194:111227. [DOI: 10.1016/j.colsurfb.2020.111227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
|
22
|
Wei QY, Xu YM, Lau ATY. Recent Progress of Nanocarrier-Based Therapy for Solid Malignancies. Cancers (Basel) 2020; 12:E2783. [PMID: 32998391 PMCID: PMC7600685 DOI: 10.3390/cancers12102783] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023] Open
Abstract
Conventional chemotherapy is still an important option of cancer treatment, but it has poor cell selectivity, severe side effects, and drug resistance. Utilizing nanoparticles (NPs) to improve the therapeutic effect of chemotherapeutic drugs has been highlighted in recent years. Nanotechnology dramatically changed the face of oncology by high loading capacity, less toxicity, targeted delivery of drugs, increased uptake to target sites, and optimized pharmacokinetic patterns of traditional drugs. At present, research is being envisaged in the field of novel nano-pharmaceutical design, such as liposome, polymer NPs, bio-NPs, and inorganic NPs, so as to make chemotherapy effective and long-lasting. Till now, a number of studies have been conducted using a wide range of nanocarriers for the treatment of solid tumors including lung, breast, pancreas, brain, and liver. To provide a reference for the further application of chemodrug-loaded nanoformulations, this review gives an overview of the recent development of nanocarriers, and the updated status of their use in the treatment of several solid tumors.
Collapse
Affiliation(s)
| | | | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China; (Q.-Y.W.); (Y.-M.X.)
| |
Collapse
|
23
|
Carboxymethyl fenugreek galactomannan-g-poly(N-isopropylacrylamide-co-N,N′-methylene-bis-acrylamide)-clay based pH/temperature-responsive nanocomposites as drug-carriers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110628. [DOI: 10.1016/j.msec.2020.110628] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/22/2019] [Accepted: 01/02/2020] [Indexed: 11/18/2022]
|
24
|
Tagde P, Kulkarni GT, Mishra DK, Kesharwani P. Recent advances in folic acid engineered nanocarriers for treatment of breast cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101613] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Baskararaj S, Panneerselvam T, Govindaraj S, Arunachalam S, Parasuraman P, Pandian SRK, Sankaranarayanan M, Mohan UP, Palanisamy P, Ravishankar V, Kunjiappan S. Formulation and characterization of folate receptor-targeted PEGylated liposome encapsulating bioactive compounds from Kappaphycus alvarezii for cancer therapy. 3 Biotech 2020; 10:136. [PMID: 32158632 DOI: 10.1007/s13205-020-2132-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/11/2020] [Indexed: 12/29/2022] Open
Abstract
This study aimed to formulate and characterize the folate receptor-targeted PEGylated liposome encapsulating bioactive compounds from Kappaphycus alvarezii to enhance the anticancer activity. Twenty valued bioactive compounds (3-hydroxy benzoicacid, gallicacid, chlorogenicacid, cinnamicacid, artemiseole, hydrazine carbothioamide, etc.,) are confirmed from methanol extract of K. alvarezii using analytical techniques like HPLC and GC-MS. The delivery of bioactive compounds of K. alvarezii via naturally overexpressed folate receptor (FR) to FR-positive breast cancer cells was studied. FR targeted PEGylated liposome was constructed by modified thin-film hydration technique using FA-PEG-DSPE/cholesterol/DSPC (5:40:55) and bioactive compounds of K. alvarezii was encapsulated. Their morphology, size, shape, physiological stability and drug release kinetics were studied. The study reports of K. alvarezii extract-encapsulated PEGylated liposome showed spherical shaped particles with amorphous in nature. The mean diameter of K. alvarezii extract-encapsulated PEGylated and FA-conjugated PEGylated liposomes was found to be 110 ± 6 nm and 140 ± 5 nm, respectively. Based on the stability studies, it could be confirmed that FA-conjugated PEGylated liposome was highly stable in various physiological buffer medium. FA-conjugated PEGylated liposome can steadily release the bioactive compounds of K. alvarezii extract in acidic medium (pH 5.4). MTT assay demonstrated the concentration-dependent cytotoxicity against MCF-7 cells after 24 h with IC50 of 81 µg/mL. Also, PEGylated liposome enhanced the delivery of K. alvarezii extract in MCF-7 cells. After treatment, typical apoptotic morphology of condensed nuclei and distorted membrane bodies was picturized. Additionally, PEGylated liposome targets the mitochondria of MCF-7 cells and significantly increased the level of ROS and contributes to the damage of mitochondrial transmembrane potential. Hence, PEGylated liposome could positively deliver the bioactive compounds of K. alvarezii extract into FR-positive breast cancer cells (MCF-7) and exhibit great potential in anticancer therapy.
Collapse
|
26
|
Song Y, Zhou B, Du X, Wang Y, Zhang J, Ai Y, Xia Z, Zhao G. Folic acid (FA)-conjugated mesoporous silica nanoparticles combined with MRP-1 siRNA improves the suppressive effects of myricetin on non-small cell lung cancer (NSCLC). Biomed Pharmacother 2020; 125:109561. [PMID: 32106385 DOI: 10.1016/j.biopha.2019.109561] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 01/05/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common diagnosed cancer disease worldwide and its management remains a challenge. Synergistic cancer therapeutic strategy is interesting for multiple advantages, such as excellent targeting accuracy, low side effects, and promoted therapeutic efficiency. In the present study, myricetin (Myr)-loaded mesoporous silica nanoparticles (MSN) combined with multidrug resistance protein (MRP-1) siRNA was prepared. The surface of the synthesized nanoparticles was modified with folic acid (FA) to promote the therapeutic efficiency of Myr for the treatment of NSCLC. The collected particles were nano-sized and showed a sustained release of Myr in the physiological conditions. FA-conjugated nanoformulations displayed a significant uptake in lung cancer cells compared with that of the non-targeted nanoparticles. The in vitro drug release results suggested a sustained release in FA-conjugated MSN with Myr and MRP-1 nanoparticles compared to the free Myr and MSN combined with MRP-1/Myr. Treatments with FA-conjugated MSN combined with Myr and MRP-1 markedly reduced the cell viability of lung cancer cell lines, including A549 and NCI-H1299, which was accompanied with the decreased number of colony formation. In addition, FA-conjugated MSN loaded with Myr and MRP-1 significantly induced apoptosis in lung cancer cells, along with up-regulated expression levels of cleaved Caspase-3 and PARP. In vivo fluorescence results demonstrated that FA-conjugated MSN with Myr and MRP-1 nanoparticles could specifically accumulate at tumor sites. Compared with free Myr and MSN combined with MRP-1/Myr nanoparticles, FA-conjugated MSN loaded with Myr and MRP-1 nanoparticles could more effectively suppress tumor growth with little side effects. Overall, FA-conjugated nanoparticulate system could provide a novel and effective platform for the treatment of NSCLC.
Collapse
Affiliation(s)
- Yinxue Song
- Department of Emergency, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Bin Zhou
- Department of Thoracic Surgery, Shanxian Central Hospital, Shanxian, Shandong, 274300, China
| | - Xiangyang Du
- Department of Respiration, Shandong Provincial Third Hospital, Jinan, Shandong, 250031, China.
| | - Yong Wang
- R&D Center of Zhengzhou Bio-Medicinal Institute, Zhengzhou, 450052, China.
| | - Jie Zhang
- R&D Center of Zhengzhou Bio-Medicinal Institute, Zhengzhou, 450052, China
| | - Yanqiu Ai
- R&D Center of Zhengzhou Bio-Medicinal Institute, Zhengzhou, 450052, China
| | - Zongjiang Xia
- Department of New Drugs Development, Shanghai Genecure Pharmaceutical Institute, Shanghai, 200040, China
| | - Gaofeng Zhao
- Department of New Drugs Development, Shanghai Genecure Pharmaceutical Institute, Shanghai, 200040, China
| |
Collapse
|
27
|
Liang Y, Zhang J, Tian B, Wu Z, Svirskis D, Han J. A NAG-Guided Nano-Delivery System for Redox- and pH-Triggered Intracellularly Sequential Drug Release in Cancer Cells. Int J Nanomedicine 2020; 15:841-855. [PMID: 32103941 PMCID: PMC7008180 DOI: 10.2147/ijn.s226249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Aim Sequential treatment with paclitaxel (PTXL) and gemcitabine (GEM) is considered clinically beneficial for non-small-cell lung cancer. This study aimed to investigate the effectiveness of a nano-system capable of sequential release of PTXL and GEM within cancer cells. Methods PTXL-ss-poly(6-O-methacryloyl-d-galactopyranose)-GEM (PTXL-ss-PMAGP-GEM) was designed by conjugating PMAGP with PTXL via disulfide bonds (-ss-), while GEM via succinic anhydride (PTXL:GEM=1:3). An amphiphilic block copolymer N-acetyl-d-glucosamine(NAG)-poly(styrene-alt-maleic anhydride)58-b-polystyrene130 acted as a targeting moiety and emulsifier in formation of nanostructures (NLCs). Results The PTXL-ss-PMAGP-GEM/NAG NLCs (119.6 nm) provided a sequential in vitro release of, first PTXL (redox-triggered), then GEM (pH-triggered). The redox- and pH-sensitive NLCs readily distributed homogenously in the cytoplasm. NAG augmented the uptake of NLCs by the cancer cells and tumor accumulation. PTXL-ss-PMAGP-GEM/NAG NLCs exhibited synergistic cytotoxicity in vitro and strongest antitumor effects in tumor-bearing mice compared to NLCs lacking pH/redox sensitivities or free drug combination. Conclusion This study demonstrated the abilities of PTXL-ss-PMAGP-GEM/NAG NLCs to achieve synergistic antitumor effect by targeted intracellularly sequential drug release.
Collapse
Affiliation(s)
- Yan Liang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, People's Republic of China
| | - Jing Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, People's Republic of China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, People's Republic of China
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Jingtian Han
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, People's Republic of China
| |
Collapse
|
28
|
Bera H, Abbasi YF, Lee Ping L, Marbaniang D, Mazumder B, Kumar P, Tambe P, Gajbhiye V, Cun D, Yang M. Erlotinib-loaded carboxymethyl temarind gum semi-interpenetrating nanocomposites. Carbohydr Polym 2019; 230:115664. [PMID: 31887927 DOI: 10.1016/j.carbpol.2019.115664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/16/2019] [Accepted: 11/22/2019] [Indexed: 01/03/2023]
Abstract
Erlotinib-loaded carboxymethyl temarind gum-g-poly(N-isopropylacrylamide)-montmorillonite based semi-IPN nanocomposites were synthesized and characterized for their in vitro performances for lung cancer therapy. The placebo matrices exhibited outstanding biodegradability and pH-dependent swelling profiles. The molar mass (M¯ c) between the crosslinks of these composites was declined with temperature. The solid state characterization confirmed the semi-IPN architecture of these scaffolds. The corresponding drug-loaded formulations displayed excellent drug-trapping capacity (DEE, 86-97 %) with acceptable zeta potential (-16 to -13 mV) and diameter (967-646 nm). These formulations conferred sustained drug elution profiles (Q8h, 77-99 %) with an initial burst release. The drug release profile of the optimized formulation (F-3) was best fitted in the first order kinetic model with Fickian diffusion driven mechanism. The mucin adsorption to F-3 followed Langmuir isotherms. The results of MTT assay, AO/EB staining and confocal analyses revealed that the ERL-loaded formulation suppressed A549 cell proliferation and induced apoptosis more effectively than pristine drug.
Collapse
Affiliation(s)
- Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110013, China; Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah, Malaysia.
| | - Yasir Faraz Abbasi
- Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah, Malaysia
| | - Law Lee Ping
- Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah, Malaysia
| | - Daphisha Marbaniang
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Pramod Kumar
- Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Prajakta Tambe
- Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | | | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110013, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110013, China; Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Tambe P, Kumar P, Paknikar KM, Gajbhiye V. Decapeptide functionalized targeted mesoporous silica nanoparticles with doxorubicin exhibit enhanced apoptotic effect in breast and prostate cancer cells. Int J Nanomedicine 2018; 13:7669-7680. [PMID: 30538451 PMCID: PMC6251469 DOI: 10.2147/ijn.s184634] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Considering the increase in cancer cases and number of deaths per year worldwide, development of potential therapeutics is imperative. Mesoporous silica nanoparticles (MSNPs) are among the potential nanocarriers having unique properties for drug delivery. Doxorubicin (DOX), being the most commonly used drug, can be efficiently delivered to gonadotropin-releasing hormone (GnRH)-overexpressing cancer cells using functionalized MSNPs. AIM We report the development of decapeptide-conjugated MSNPs loaded with DOX for the targeted drug delivery in breast and prostate cancer cells. MATERIALS AND METHODS MSNPs were synthesized and subsequently functionalized with an analog of GnRH by using a heterobifunctional polyethylene glycol as a linker. These targeted MSNPs were then characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. An anticancer drug DOX was loaded and then characterized for drug loading. DOX-loaded nanocarriers were then studied for their cellular uptake using confocal microscopy. The cytotoxicity of DOX-loaded targeted MSNPs and DOX-loaded bare MSNPs was studied by performing MTT assay on MCF-7 (breast cancer) and LNCaP (prostate cancer) cells. Further, acridine orange/ethidium bromide staining, as well as flow cytometry, was performed to confirm the apoptotic mode of cancer cell death. RESULTS MSNPs were conjugated with polyethylene glycol as well as an agonist of GnRH and subsequently loaded with DOX. These targeted and bare MSNPs showed excellent porous structure and loading of DOX. Further, higher uptake of DOX-loaded targeted MSNPs was observed as compared to DOX-loaded bare MSNPs in GnRH-overexpressing breast (MCF-7) and prostate (LNCaP) cancer cells. The targeted MSNPs also showed significantly higher (P<0.001) cytotoxicity than DOX-loaded bare MSNPs at different time points. After 48 hours of treatment, the IC50 value for DOX-loaded targeted MSNPs was found to be 0.44 and 0.43 µM in MCF-7 and LNCaP cells, respectively. Acridine orange/ethidium bromide staining and flow cytometry analysis further confirmed the pathway of cell death through apoptosis. CONCLUSION This study suggests GnRH analog-conjugated targeted MSNPs can be the suitable and promising approach for targeted drug delivery in all hormone-dependent cancer cells.
Collapse
Affiliation(s)
- Prajakta Tambe
- Nanobioscience Group, Agharkar Research Institute, Pune, India, ,
- Savitribai Phule Pune University, Pune, India, ,
| | - Pramod Kumar
- Nanobioscience Group, Agharkar Research Institute, Pune, India, ,
- Savitribai Phule Pune University, Pune, India, ,
| | - Kishore M Paknikar
- Nanobioscience Group, Agharkar Research Institute, Pune, India, ,
- Savitribai Phule Pune University, Pune, India, ,
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune, India, ,
- Savitribai Phule Pune University, Pune, India, ,
| |
Collapse
|
30
|
Kumar P, Paknikar KM, Gajbhiye V. A robust pH-sensitive unimolecular dendritic nanocarrier that enables targeted anti-cancer drug delivery via GLUT transporters. Colloids Surf B Biointerfaces 2018; 171:437-444. [DOI: 10.1016/j.colsurfb.2018.07.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/17/2022]
|
31
|
Mesoporous silica nanoparticles as cutting-edge theranostics: Advancement from merely a carrier to tailor-made smart delivery platform. J Control Release 2018; 287:35-57. [PMID: 30125637 DOI: 10.1016/j.jconrel.2018.08.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022]
Abstract
Large surface area, uniform and tunable pore size, high pore volume and low mass density- such attractive features of Mesoporous silica nanoparticles (MSNPs) have compelled researchers to explore the biomedical potential of this nano-material. Recently gained interest in MSNPs have been due to their tremendous potential in cancer therapy and imaging. Last several years have witnessed a rapid development in engineering functionalized MSNPs with various types of functional groups integrated into the system for imaging and therapeutic applications. Although their potential for drug delivery application has been studied since the year 2000, still a major challenge is to improve drug loading capacity and in vivo targeting with minimal side-effects to major organs. In this review article, the recent development of MSNPs as a therapeutic and diagnostic platform has been detailed out with emphasis on drug and bio-macromolecule delivery/co-delivery, bio-imaging and detoxification.
Collapse
|
32
|
Gajbhiye KR, Gajbhiye V, Siddiqui IA, Gajbhiye JM. cRGD functionalised nanocarriers for targeted delivery of bioactives. J Drug Target 2018; 27:111-124. [PMID: 29737883 DOI: 10.1080/1061186x.2018.1473409] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The integrins αvβ3 play a very imperative role in angiogenesis and are overexpressed in endothelial cells of the tumour. Recent years have witnessed huge exploration in the field of αvβ3 integrin-mediated bioactive targeting for treatment of cancer. In these studies, the cRGD peptide has been employed extensively owing to their binding capacity to the αvβ3 integrin. Principally, RGD-based approaches comprise of antagonist molecules of the RGD sequence, drug-RGD conjugates, and most importantly tethering of the nanocarrier surface with the RGD peptide as targeting ligand. Targeting tumour vasculature or cells via cRGD conjugated nanocarriers have emerged as a promising technique for delivering chemotherapeutic drugs and imaging agents for cancer theranostics. In this review, primary emphasis has been given on the application of cRGD-anchored nanocarriers for targeted delivery of drugs, imaging agents, etc. for tumour therapy.
Collapse
Affiliation(s)
- K R Gajbhiye
- a Division of Organic Chemistry , CSIR-National Chemical Laboratory , Pune , India
| | - V Gajbhiye
- b Nanobioscience , Agharkar Research Institute , Pune , India
| | - Imtiaz A Siddiqui
- c Department of Dermatology , University of Wisconsin , Madison , WI , USA
| | - J M Gajbhiye
- a Division of Organic Chemistry , CSIR-National Chemical Laboratory , Pune , India
| |
Collapse
|
33
|
Alavi AS, Meshkini A. Fabrication of poly(ethylene glycol)-coated mesoporous nanocomposite ZnO@Fe2O3 for methotrexate delivery: An integrated nanoplatform for dual-mode cancer therapy. Eur J Pharm Sci 2018; 115:144-157. [DOI: 10.1016/j.ejps.2018.01.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 12/16/2022]
|
34
|
Ma W, Liu Y, Shin HD, Li J, Chen J, Du G, Liu L. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production. BIORESOURCE TECHNOLOGY 2018; 250:642-649. [PMID: 29220808 DOI: 10.1016/j.biortech.2017.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 05/09/2023]
Abstract
Bacillus subtilis is widely used as cell factories for the production of important industrial biochemicals. Although many studies have demonstrated the effects of organic acidic byproducts, such as acetate, on microbial fermentation, little is known about the effects of blocking the neutral byproduct overflow, such as acetoin, on bioproduction. In this study, we focused on the influences of modulating overflow metabolism on the production of N-acetyl-d-glucosamine (GlcNAc) in engineered B. subtilis. We found that acetoin overflow competes with GlcNAc production, and blocking acetoin overflow increased GlcNAc titer and yield by 1.38- and 1.39-fold, reaching 48.9 g/L and 0.32 g GlcNAc/g glucose, respectively. Further blocking acetate overflow inhibited cell growth and GlcNAc production may be induced by inhibiting glucose uptake. Taken together, our results show that blocking acetoin overflow is a promising strategy for enhancing GlcNAc production. The strategies developed in this work may be useful for engineering strains of B. subtilis for producing other important biochemicals.
Collapse
Affiliation(s)
- Wenlong Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
35
|
Abstract
Integration of nanotechnology and biomedicine has offered great opportunities for the development of nanoscaled therapeutic platforms. Amongst various nanocarriers, mesoporous silica nanoparticles (MSNs) is one of the most developed and promising inorganic materials-based drug delivery system for clinical translations due to their simple composition and nanoporous structure. MSNs possess unique structural features, for example, well-defined morphology, large surface areas, uniform size, controllable structure, flexible pore volume, tunable pore sizes, extraordinarily high loading efficiency, and excellent biocompatibility. Progress in structure control and functionalization may endow MSNs with functionalities that enable medical applications of these integrated nanoparticles such as molecularly targeted drug delivery, multicomponent synergistic therapy, in vivo imaging and therapeutic capability, on-demand/stimuli-responsive drug release, etc. In this chapter, the authors overview MSNs' characteristics and the scientific efforts developed till date involving drug delivery and biomedical applications.
Collapse
|
36
|
The Warburg effect and glucose-derived cancer theranostics. Drug Discov Today 2017; 22:1637-1653. [DOI: 10.1016/j.drudis.2017.08.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/16/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
|