1
|
Canpolat G. Molecularly imprinted polymer-based microspheres for selective extraction of hemoglobin from blood serum. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
2
|
Preparation of Immobilised 17β-Estradiol-Imprinted Nanoparticles onto Bacterial Cellulose Nanofibres to Use for the Removal of 17β-Estradiol from Wastewater. Polymers (Basel) 2023; 15:polym15051201. [PMID: 36904442 PMCID: PMC10007569 DOI: 10.3390/polym15051201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Estradiol, a phenolic steroid oestrogen, is one of the endocrine-disrupting chemicals (EDCs) found in natural and tap waters. The detection and removal of EDCs is attracting attention daily as they negatively affect animals' and humans' endocrine functions and physiological conditions. Therefore, developing a fast and practical method for the selective removal of EDCs from waters is essential. In this study, we prepared 17β-estradiol (E2)-imprinted HEMA-based nanoparticles onto bacterial cellulose nanofibres (E2-NP/BC-NFs) to use for the removal of E2 from wastewater. FT-IR and NMR confirmed the structure of the functional monomer. The composite system was characterised by BET, SEM, µCT, contact angle, and swelling tests. Additionally, the non-imprinted bacterial cellulose nanofibres (NIP/BC-NFs) were prepared to compare the results of E2-NP/BC-NFs. Adsorption of E2 from aqueous solutions was performed in batch mode and investigated via several parameters for optimisation conditions. The effect of pH studies was examined in the 4.0-8.0 range using acetate and phosphate buffers and a concentration of E2 of 0.5 mg/mL. The maximum E2 adsorption amount was 254 µg/g phosphate buffer at 45 °C. The experimental data show that the Langmuir is a relevant isotherm model for E2 adsorption. Additionally, the relevant kinetic model was the pseudo-second-order kinetic model. It was observed that the adsorption process reached equilibrium in less than 20 min. The E2 adsorption decreased with the increase in salt at varying salt concentrations. The selectivity studies were performed using cholesterol and stigmasterol as competing steroids. The results show that E2 is 46.0 times more selective than cholesterol and 21.0 times more selective than stigmasterol. According to the results, the relative selectivity coefficients for E2/cholesterol and E2/stigmasterol were 8.38 and 86.6 times greater for E2-NP/BC-NFs than for E2-NP/BC-NFs, respectively. The synthesised composite systems were repeated ten times to assess the reusability of E2-NP/BC-NFs.
Collapse
|
3
|
Erol K, Bülter MB, Köse DA, Can HK. Water-soluble polymeric particle embedded cryogels: Synthesis, characterisation and adsorption of haemoglobin. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2020-0285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Making cryogels, which are among today’s accepted adsorbents, more functional with different methods, has been one of the subjects spent overtime. In this study, water-soluble poly(maleic anhydride-alt-acrylic acid) polymer embedded in poly(2-hydroxyethyl methacrylate) cryogels. Copper ions were then immobilised to this structure, and this polymer was used for adsorption of haemoglobin from aqueous systems. Adsorption interaction was carried out on an electrostatic basis, and approximately 448.62 mg haemoglobin/g polymer adsorption capacity value was obtained. It was found that the same material has managed to maintain its adsorption ability by 90.3% even after the use of it five times in the adsorption/desorption cycle. The adsorption interaction was determined to be appropriate for the Langmuir model by isotherm studies. The change in Gibbs free energy value was calculated as −2.168 kJ/mol.
Collapse
Affiliation(s)
- Kadir Erol
- Department of Medical Services and Techniques , Vocational School of Health Services, Hitit University , Çorum 19030 , Turkey
| | - Melda Bolat Bülter
- Department of Property Protection and Security , Vocational School of Technical Sciences, Hitit University , Çorum 19900 , Turkey
| | - Dursun Ali Köse
- Department of Chemistry , Faculty of Arts and Sciences, Hitit University , Çorum 19040 , Turkey
| | - Hatice Kaplan Can
- Department of Chemistry , Faculty of Science, Hacettepe University , Ankara 06800 , Turkey
| |
Collapse
|
4
|
Armutcu C, Özgür E, Çorman ME, Uzun L. Interface imprinted polymers with well-oriented recognition sites for selective purification of hemoglobin. Colloids Surf B Biointerfaces 2021; 197:111435. [DOI: 10.1016/j.colsurfb.2020.111435] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
|
5
|
Barhoum A, Jeevanandam J, Rastogi A, Samyn P, Boluk Y, Dufresne A, Danquah MK, Bechelany M. Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. NANOSCALE 2020; 12:22845-22890. [PMID: 33185217 DOI: 10.1039/d0nr04795c] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A huge variety of plants are harvested worldwide and their different constituents can be converted into a broad range of bionanomaterials. In parallel, much research effort in materials science and engineering is focused on the formation of nanoparticles and nanostructured materials originating from agricultural residues. Cellulose (40-50%), hemicellulose (20-40%), and lignin (20-30%) represent major plant ingredients and many techniques have been described that separate the main plant components for the synthesis of nanocelluloses, nano-hemicelluloses, and nanolignins with divergent and controllable properties. The minor components, such as essential oils, could also be used to produce non-toxic metal and metal oxide nanoparticles with high bioavailability, biocompatibility, and/or bioactivity. This review describes the chemical structure, the physical and chemical properties of plant cell constituents, different techniques for the synthesis of nanocelluloses, nanohemicelluloses, and nanolignins from various lignocellulose sources and agricultural residues, and the extraction of volatile oils from plants as well as their use in metal and metal oxide nanoparticle production and emulsion preparation. Furthermore, details about the formation of activated carbon nanomaterials by thermal treatment of lignocellulose materials, a few examples of mineral extraction from agriculture waste for nanoparticle fabrication, and the emerging applications of plant-based nanomaterials in different fields, such as biotechnology and medicine, environment protection, environmental remediation, or energy production and storage, are also included. This review also briefly discusses the recent developments and challenges of obtaining nanomaterials from plant residues, and the issues surrounding toxicity and regulation.
Collapse
Affiliation(s)
- Ahmed Barhoum
- Chemistry Department, Faculty of Science, Helwan University, 11795 Cairo, Egypt.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Derazshamshir A, Göktürk I, Tamahkar E, Yılmaz F, Sağlam N, Denizli A. Phenol removal from wastewater by surface imprinted bacterial cellulose nanofibres. ENVIRONMENTAL TECHNOLOGY 2020; 41:3134-3145. [PMID: 30919740 DOI: 10.1080/09593330.2019.1600043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this study, we have reported a novel wastewater treatment technique by phenol imprinted bacterial cellulose (BC-MIP) nanofibres with high specificity and adsorption capacity. N-methacryloyl-(L) phenylalanine methyl ester (MAPA) functional monomer was used to create specific binding sites for the template molecule phenol via electrostatic and hydrophobic interactions. BC-MIP nanofibres were synthesized by surface imprinting approach in the presence of different amounts of total monomer (% weight), monomer/template ratio and polymerization time. Then, the nanofibres were characterized by FTIR-ATR, surface area analysis (BET), elemental analysis, scanning electron microscopy (SEM) and contact angle measurements. Adsorption studies were performed with respect to pH, temperature and ionic strength, and the adsorption capacity was calculated by using the spectrophotometer. In order to desorb the adsorbed phenol from BC-MIP nanofibres, 0.1 M NaCl solution was used. Besides, BC-MIP nanofibres were applied to real wastewater samples from Ergene basin in Turkey. The suitable equilibrium isotherm was determined as Langmuir isotherm. To evaluate the selectivity of the BC-MIP nanofibres, similar molecules were utilized as competitor molecules, which were 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol. Electrostatic interactions were found to contribute to the generation of specific recognition binding sites. The results have shown that imprinting of phenol was achieved successfully with high adsorption capacity. The phenol removal efficiency was reported up to 97%. BC-MIP nanofibres were used 10 times with a negligible decrease in adsorption capacity.
Collapse
Affiliation(s)
| | - Ilgım Göktürk
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Emel Tamahkar
- Department of Chemical Engineering, Hitit University, Çorum, Turkey
| | - Fatma Yılmaz
- Vocational School of Gerede Department of Chemistry Technology, Bolu, Turkey
| | - Necdet Sağlam
- Division of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Torgbo S, Sukyai P. Biodegradation and thermal stability of bacterial cellulose as biomaterial: The relevance in biomedical applications. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109232] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Andaç M, Tamahkar E, Denizli A. Molecularly imprinted smart cryogels for selective nickel recognition in aqueous solutions. J Appl Polym Sci 2020. [DOI: 10.1002/app.49746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Müge Andaç
- Department of Environmental Engineering Hacettepe University, Beytepe Ankara Turkey
| | - Emel Tamahkar
- Department of Chemical Engineering Hitit University Çorum Turkey
| | - Adil Denizli
- Department of Chemistry Hacettepe University Ankara Turkey
| |
Collapse
|
9
|
Jalilzadeh M, Çimen D, Denizli A. Adenosine-imprinted magnetic core-shell polyvinylbutyral microbeads for quantification of adenosine in plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1147:122149. [PMID: 32416596 DOI: 10.1016/j.jchromb.2020.122149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 11/19/2022]
Abstract
Adenosine is an important molecule in the human body because it participates various biochemical processes, signalling in the physiological processes, and neurological disorders. In the current study, the surface imprinting method was used to prepare adenosine-imprinted magnetic core-shell polyvinylbutyral microbeads. These microbeads were utilized for quantification of adenosine in aqueous solution and control plasma in the range of 1-200 µM. The limit of detection was found to be 1.9 nM, which is quite sensitive compared with to some earlier studies. Fourier transform infrared spectroscopy, scanning electron microscopy, and a Zetasizer (particle size analyzer) were used for characterization of the prepared imprinted microbeads. To determine the efficiency of this method, selectivity experiments were conducted with adenosine-imprinted and non-imprinted magnetic core-shell polyvinylbutyral microbeads and with the competitive nucleosides cytidine, uridine, guanosine, and thymidine. Thermodynamic and kinetic studies were performed to assess adsorption of adenosine onto the adenosine-imprinted magnetic core-shell polyvinylbutyral microbeads from adenosine solution. The efficiency was linked to the specific surface reactivity, polarity and porosity of the imprinted microbeads.
Collapse
Affiliation(s)
| | - Duygu Çimen
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
10
|
Bakhshpour M, Göktürk I, Bereli N, Denizli A. Molecularly imprinted cryogel cartridges for the selective recognition of tyrosine. Biotechnol Prog 2020; 36:e3006. [PMID: 32329233 DOI: 10.1002/btpr.3006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 11/09/2022]
Abstract
Molecularly imprinted polymers are used for creating a specific cavity and selective recognition sites for the structure of a target molecule in a polymeric structure. In this study, specific molecularly imprinted cryogel cartridges were synthesized using two distinct functional monomers to compare imprinting efficiency for the selective recognition of Tyrosine (Tyr). Tyr-imprinted cryogel cartridge (MIP1) was prepared using metal-chelate coordination for the imprinting process by free-radical bulk polymerization under frozen conditions, and Tyr-imprinted cryogel cartridge (MIP2) was prepared in the same way using hydrophobic effects for imprinting. After the characterization of the cryogel cartridges was carried out, the optimum adsorption conditions of both were determined according to the different parameters such as flow rate (0.5-2.5 ml/min), pH of the medium (4.0-8.0), initial Tyr concentration (0.1-3.0 mg/ml), and temperature (4-45°C). Selectivity experiments of Tyr-imprinted and non-imprinted cryogel cartridges were carried out by using phenylalanine, tryptophan, and cysteine. Besides, the eluted Tyr from MIP1 and MIP2 cryogel cartridge were applied to FPLC system. Also, the reusability experiments of Tyr-imprinted cryogel cartridges was observed no significant decrease in the adsorption capacity.
Collapse
Affiliation(s)
| | - Ilgım Göktürk
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Nilay Bereli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
Lou L, Subbiah S, Smith E, Kendall RJ, Ramkumar SS. Functional PVA/VB2/TiO2 Nanofiber Webs for Controlled Drug Delivery. ACS APPLIED BIO MATERIALS 2019; 2:5916-5929. [DOI: 10.1021/acsabm.9b00726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Lihua Lou
- Nonwovens & Advanced Materials Laboratory, Texas Tech University, Lubbock, Texas 79409, United States
| | - Seenivasan Subbiah
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ernest Smith
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ronald J. Kendall
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas 79409, United States
| | - Seshadri S. Ramkumar
- Nonwovens & Advanced Materials Laboratory, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
12
|
Gür SD, Bakhshpour M, Denizli A. Selective detection of Escherichia coli caused UTIs with surface imprinted plasmonic nanoscale sensor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109869. [DOI: 10.1016/j.msec.2019.109869] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/21/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
|
13
|
Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:450-461. [DOI: 10.1080/09205063.2019.1580665] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Göktürk I, Tamahkar E, Yılmaz F, Denizli A. Protein depletion with bacterial cellulose nanofibers. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1099:1-9. [DOI: 10.1016/j.jchromb.2018.08.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/25/2018] [Accepted: 08/26/2018] [Indexed: 10/28/2022]
|
15
|
Shi W, Zhang SQ, Li KB, Jia WP, Han DM. Integration of mixed-mode chromatography and molecular imprinting technology for double recognition and selective separation of proteins. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.03.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Çimen D, Bereli N, Andaç M, Denizli A. Molecularly imprinted cryogel columns for Concanavalin A purification from jack bean extract. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201800039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Duygu Çimen
- Department of Chemistry; Biochemistry Division; Hacettepe University; Ankara Turkey
| | - Nilay Bereli
- Department of Chemistry; Biochemistry Division; Hacettepe University; Ankara Turkey
| | - Müge Andaç
- Department of Environmental Engineering; Hacettepe University; Ankara Turkey
| | - Adil Denizli
- Department of Chemistry; Biochemistry Division; Hacettepe University; Ankara Turkey
| |
Collapse
|
17
|
Bakhshpour M, Yavuz H, Denizli A. Controlled release of mitomycin C from PHEMAH-Cu(II) cryogel membranes. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:946-954. [PMID: 29457925 DOI: 10.1080/21691401.2018.1439840] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Molecular imprinting technique was used for the preparation of antibiotic and anti-neoplastic chemotherapy drug (mitomycin C) imprinted cryogel membranes (MMC-ICM). The membranes were synthezied by using metal ion coordination interactions with N-methacryloyl-(l)-histidine methyl ester (MAH) functional monomer and template molecules (i.e. MMC). The 2-hydroxyethyl methacrylate (HEMA) monomer and methylene bisacrylamide (MBAAm) crosslinker were used for the preparation of mitomycin C imprinted cryogel membranes by radical suspension polymerization technique. The imprinted cryogel membranes were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and swelling degree measurements. Cytotoxicity of MMC-ICMs was investigated using mouse fibroblast cell line L929. Time-dependent release of MMC was demonstrated within 150 h from cryogel membranes. Cryogels demonstrated very high MMC loading efficiency (70-80%) and sustained MMC release over hours.
Collapse
Affiliation(s)
| | - Handan Yavuz
- a Department of Chemistry , Hacettepe University , Ankara , Turkey
| | - Adil Denizli
- a Department of Chemistry , Hacettepe University , Ankara , Turkey
| |
Collapse
|
18
|
Zhang H, Wang W, Li M, Lu Z, Liu K, Wang Y, Wang D. Affinity functionalization of PVA-co-PE nanofibrous membrane with Ni(ii)-chelated ligand for bovine hemoglobin adsorption. NEW J CHEM 2018. [DOI: 10.1039/c8nj00064f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ni(ii)-Chelated PVA-co-PE nanofibrous membrane can be prepared easily and this study provides an exploratory research for the large-scale purification of BHb.
Collapse
Affiliation(s)
- Hao Zhang
- School of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430073
- China
| | - Wenwen Wang
- School of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430073
- China
- Hubei Key Laboratory of Advanced Textile Materials & Application
| | - Mufang Li
- School of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430073
- China
- Hubei Key Laboratory of Advanced Textile Materials & Application
| | - Zhentan Lu
- School of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430073
- China
- Hubei Key Laboratory of Advanced Textile Materials & Application
| | - Ke Liu
- School of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430073
- China
- Hubei Key Laboratory of Advanced Textile Materials & Application
| | - Yuedan Wang
- School of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430073
- China
- Hubei Key Laboratory of Advanced Textile Materials & Application
| | - Dong Wang
- School of Materials Science and Engineering
- Wuhan Textile University
- Wuhan 430073
- China
- Hubei Key Laboratory of Advanced Textile Materials & Application
| |
Collapse
|
19
|
Saylan Y, Tamahkar E, Denizli A. Recognition of lysozyme using surface imprinted bacterial cellulose nanofibers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1950-1965. [PMID: 28784017 DOI: 10.1080/09205063.2017.1364099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Here, we developed the lysozyme imprinted bacterial cellulose (Lyz-MIP/BC) nanofibers via the surface imprinting strategy that was designed to recognize lysozyme. This study includes the molecular imprinting method onto the surface of bacterial cellulose nanofibers in the presence of lysozyme by metal ion coordination, as well as further characterizations methods FTIR, SEM and contact angle measurements. The maximum lysozyme adsorption capacity of Lyz-MIP/BC nanofibers was found to be 71 mg/g. The Lyz-MIP/BC nanofibers showed high selectivity for lysozyme towards bovine serum albumin and cytochrome c. Overall, the Lyz-MIP/BC nanofibers hold great potential for lysozyme recognition due to the high binding capacity, significant selectivity and excellent reusability.
Collapse
Affiliation(s)
- Yeşeren Saylan
- a Department of Chemistry , Hacettepe University , Ankara , Turkey
| | - Emel Tamahkar
- b Department of Chemical Engineering , Hitit University , Çorum , Turkey
| | - Adil Denizli
- a Department of Chemistry , Hacettepe University , Ankara , Turkey
| |
Collapse
|