1
|
Bhat AR, Patel R. Exploring the binding mechanism and esterase-like activity of human serum albumin with levofloxacin and its choline based conjugates: A biophysical approach. Int J Biol Macromol 2024; 274:133011. [PMID: 38852730 DOI: 10.1016/j.ijbiomac.2024.133011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Human serum albumin (HSA) effectively binds to compounds having different molecular weight and thus facilitates their distribution in the living organisms. Thus, the binding interactions between a potential antibacterial drug (levofloxacin) and synthesized choline based levofloxacinate conjugates with HSA have been explored. The binding efficacy and mechanism were explored by utilizing different spectroscopic techniques; UV-Visible, steady state fluorescence, time resolved fluorescence and esterase-like activity. The interactions between the ligands and protein were electrostatic as well as hydrophobic in nature. The influence of different ligands having different alkyl chain shows quenching of the fluorescence emission of HSA. The spontaneous binding/quenching of HSA with ligands was static in nature, validated by steady state and time resolved fluorescence spectroscopy. Also, the impact of these ligands on the conformation of the native HSA structure was evaluated by using circular dichroism spectroscopy. In combination to the structural change study, the native protein functionality was observed (in terms of 'esterase-like activity') which has been found to be on lower side due to ligand binding. Further, we have performed the reverse study to check the impact of HSA on the fluorescent fluoroquinolone drug. The current study may prove helpful in elucidating the chemico-biological interactions which may prove useful in the pharmaceuticals, pharmacology, and different biochemistry fields.
Collapse
Affiliation(s)
- Ab Raouf Bhat
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
2
|
Yu C, Shang P, Guo Y, Zhang Z. In Situ Heterodyne-Detected Second-Harmonic Generation Study of the Influence of Cholesterol on Dye Molecule Adsorption on Lipid Membrane. J Phys Chem B 2024; 128:1892-1899. [PMID: 38354410 DOI: 10.1021/acs.jpcb.3c07130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Cholesterol plays an essential role in regulating the functionality of biomembranes. This study employed in situ second-harmonic generation (SHG) to investigate the adsorption behavior of the dye molecule 4-(4-(diethylamino)styryl)-N-methyl-pyridinium iodide (D289) on a biomimic membrane composed of 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG) and cholesterol. The time-dependent polarization SHG intensity exhibited an initial rapid increase, followed by a subsequent decline. The initial increased SHG intensity is responsible for the electrostatic interaction-driven adsorption of D289 onto the membrane, while the decrease in the SHG signal results from the broadening of the orientation distribution within the membrane. Heterodyne-detected SHG (HD-SHG) measurements demonstrated that the adsorption of dye molecules influenced the phase of the induced electric field. The interfacial potential Φ(0) as a function of time was measured, and we found that even after reaching a stable Stern layer state, the diffusion layer continued to exhibit a dynamic change. This study offers a comprehensive understanding of the influence of cholesterol on adsorption, reorientation dynamics, and dynamic changes in the reorientation of water in the diffusion layer.
Collapse
Affiliation(s)
- Changhui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Peng Shang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Xu Y, Parra-Ortiz E, Wan F, Cañadas O, Garcia-Alvarez B, Thakur A, Franzyk H, Pérez-Gil J, Malmsten M, Foged C. Insights into the mechanisms of interaction between inhalable lipid-polymer hybrid nanoparticles and pulmonary surfactant. J Colloid Interface Sci 2023; 633:511-525. [PMID: 36463820 DOI: 10.1016/j.jcis.2022.11.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/15/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Pulmonary delivery of small interfering RNA (siRNA) using nanoparticle-based delivery systems is promising for local treatment of respiratory diseases. We designed dry powder inhaler formulations of siRNA-loaded lipid-polymer hybrid nanoparticles (LPNs) with aerosolization properties optimized for inhalation therapy. Interactions between LPNs and pulmonary surfactant (PS) determine the fate of inhaled LPNs, but interaction mechanisms are unknown. Here we used surface-sensitive techniques to study how physicochemical properties and pathological microenvironments influence interactions between siRNA-loaded LPNs and supported PS layers. PS was deposited on SiO2 surfaces as single bilayer or multilayers and characterized using quartz crystal microbalance with dissipation monitoring and Fourier-transform infrared spectroscopy with attenuated total reflection. Immobilization of PS as multilayers, resembling the structural PS organization in the alveolar subphase, effectively reduced the relative importance of interactions between PS and the underlying surface. However, the binding affinity between PS and LPNs was identical in the two models. The physicochemical LPN properties influenced the translocation pathways and retention time of LPNs. Membrane fluidity and electrostatic interactions were decisive for the interaction strength between LPNs and PS. Experimental conditions reflecting pathological microenvironments promoted LPN deposition. Hence, these results shed new light on design criteria for LPN transport through the air-blood barrier.
Collapse
Affiliation(s)
- You Xu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Elisa Parra-Ortiz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Feng Wan
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Olga Cañadas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain
| | - Begoña Garcia-Alvarez
- Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain; Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen Ø, Denmark
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain
| | - Martin Malmsten
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; Department of Physical Chemistry 1, University of Lund, SE-22100 Lund, Sweden
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
4
|
Islam MZ, Hossain SI, Deplazes E, Luo Z, Saha SC. The concentration-dependent effect of hydrocortisone on the structure of model lung surfactant monolayer by using an in silico approach. RSC Adv 2022; 12:33313-33328. [PMID: 36506480 PMCID: PMC9680622 DOI: 10.1039/d2ra05268g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Understanding the adsorption mechanism of corticosteroids in the lung surfactant requires the knowledge of corticosteroid molecular interactions with lung surfactant monolayer (LSM). We employed coarse-grained molecular dynamics simulation to explore the action of hydrocortisone on an LSM comprised of a phospholipid, cholesterol and surfactant protein. The structural and dynamical morphology of the lung surfactant monolayer at different surface tensions were investigated to assess the monolayer compressibility. The simulations were also conducted at the two extreme ends of breathing cycles: exhalation (0 mN m-1 surface tension) and inhalation (20 mN m-1 surface tension). The impact of surface tension and hydrocortisone concentration on the monolayer compressibility and stability are significant, resulting the monolayer expansion at higher surface tension. However, at low surface tension, the highly compressed monolayer induces monolayer instability in the presence of the drug due to the accumulation of surfactant protein and drug. The constant area per lipid simulation results demonstrate that the surface pressure-area isotherms show a decrease in area-per-lipid with increased drug concentration. The drug-induced expansion causes considerable instability in the monolayer after a specific drug concentration is attained at inhalation breathing condition, whereas, for exhalation breathing, the monolayer gets more compressed, causing the LSM to collapse. The monolayer collapse occurs for inhalation due to the higher drug concentration, whereas for exhalation due to the accumulation of surfactant proteins and drugs. The findings from this study will aid in enhancing the knowledge of molecular interactions of corticosteroid drugs with lung surfactants to treat respiratory diseases.
Collapse
Affiliation(s)
- Mohammad Zohurul Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney 15 Broadway Ultimo 2007 NSW Australia
| | - Sheikh I Hossain
- School of Life Sciences, University of Technology Sydney 15 Broadway Ultimo 2007 NSW Australia
| | - E Deplazes
- School of Life Sciences, University of Technology Sydney 15 Broadway Ultimo 2007 NSW Australia
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney 15 Broadway Ultimo 2007 NSW Australia
| | - Zhen Luo
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney 15 Broadway Ultimo 2007 NSW Australia
| | - Suvash C Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney 15 Broadway Ultimo 2007 NSW Australia
| |
Collapse
|
5
|
Islam MZ, Hossain SI, Deplazes E, Saha SC. Concentration-dependent cortisone adsorption and interaction with model lung surfactant monolayer. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2113397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Mohammad Zohurul Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, Australia
| | - Sheikh I. Hossain
- School of Life Sciences, University of Technology Sydney, Ultimo, Australia
| | - Evelyne Deplazes
- School of Life Sciences, University of Technology Sydney, Ultimo, Australia
| | - Suvash C. Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
6
|
Lung surfactant negatively affects the photodynamic inactivation of bacteria-in vitro and molecular dynamic simulation analyses. Proc Natl Acad Sci U S A 2022; 119:e2123564119. [PMID: 35696565 PMCID: PMC9231493 DOI: 10.1073/pnas.2123564119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the context of the rapid increase of antibiotic-resistant infections, in particular of pneumonia, antimicrobial photodynamic therapy (aPDT), the microbiological application of photodynamic therapy (PDT), comes in as a promising treatment alternative since the induced damage and resultant death are not dependent on a specific biomolecule or cellular pathway. The applicability of aPDT using the photosensitizer indocyanine green with infrared light has been successfully demonstrated for different bacterial agents in vitro, and the combination of pulmonary delivery using nebulization and external light activation has been shown to be feasible. However, there has been little progress in obtaining sufficient in vivo efficacy results. This study reports the lung surfactant as a significant suppressor of aPDT in the lungs. In vitro, the clinical surfactant Survanta® reduced the aPDT effect of indocyanine green, Photodithazine®, bacteriochlorin-trizma, and protoporphyrin IX against Streptococcus pneumoniae. The absorbance and fluorescence spectra, as well as the photobleaching profile, suggested that the decrease in efficacy is not a result of singlet oxygen quenching, while a molecular dynamics simulation showed an affinity for the polar head groups of the surfactant phospholipids that likely impacts uptake of the photosensitizers by the bacteria. Methylene blue is the exception, likely because its high water solubility confers a higher mobility when interacting with the surfactant layer. We propose that the interaction between lung surfactant and photosensitizer must be taken into account when developing pulmonary aPDT protocols.
Collapse
|
7
|
Islam MZ, Krajewska M, Hossain SI, Prochaska K, Anwar A, Deplazes E, Saha SC. Concentration-Dependent Effect of the Steroid Drug Prednisolone on a Lung Surfactant Monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4188-4199. [PMID: 35344368 DOI: 10.1021/acs.langmuir.1c02817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The lung surfactant monolayer (LSM) is the main barrier for particles entering the lung, including steroid drugs used to treat lung diseases. The present study combines Langmuir experiments and coarse-grained (CG) molecular dynamics simulations to investigate the concentration-dependent effect of steroid drug prednisolone on the structure and morphology of a model LSM. The surface pressure-area isotherms for the Langmuir monolayers reveal a concentration-dependent decrease in area per lipid (APL). Results from simulations at a fixed surface tension, representing inhalation and exhalation conditions, suggest that at high drug concentrations, prednisolone induces a collapse of the LSM, which is likely caused by the inability of the drug to diffuse into the bilayer. Overall, the monolayer is most susceptible to drug-induced collapse at surface tensions representing exhalation conditions. The presence of cholesterol also exacerbates the instability. The findings of this investigation might be helpful for better understanding the interaction between steroid drug prednisolone and lung surfactants in relation to off-target effects.
Collapse
Affiliation(s)
- Mohammad Zohurul Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Martyna Krajewska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Sheikh I Hossain
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Krystyna Prochaska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Azraf Anwar
- Independent Researcher, Dhaka 1000, Bangladesh
| | - Evelyne Deplazes
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Suvash C Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|
8
|
Sofińska K, Lupa D, Chachaj-Brekiesz A, Czaja M, Kobierski J, Seweryn S, Skirlińska-Nosek K, Szymonski M, Wilkosz N, Wnętrzak A, Lipiec E. Revealing local molecular distribution, orientation, phase separation, and formation of domains in artificial lipid layers: Towards comprehensive characterization of biological membranes. Adv Colloid Interface Sci 2022; 301:102614. [PMID: 35190313 DOI: 10.1016/j.cis.2022.102614] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
Lipids, together with molecules such as DNA and proteins, are one of the most relevant systems responsible for the existence of life. Selected lipids are able to assembly into various organized structures, such as lipid membranes. The unique properties of lipid membranes determine their complex functions, not only to separate biological environments, but also to participate in regulatory functions, absorption of nutrients, cell-cell communication, endocytosis, cell signaling, and many others. Despite numerous scientific efforts, still little is known about the reason underlying the variability within lipid membranes, and its biochemical significance. In this review, we discuss the structural complexity of lipid membranes, as well as the importance to simplify studied systems in order to understand phenomena occurring in natural, complex membranes. Such systems require a model interface to be analyzed. Therefore, here we focused on analytical studies of artificial systems at various interfaces. The molecular structure of lipid membranes, specifically the nanometric thickens of molecular bilayer, limits in a major extent the choice of highly sensitive methods suitable to study such structures. Therefore, we focused on methods that combine high sensitivity, and/or chemical selectivity, and/or nanometric spatial resolution, such as atomic force microscopy, nanospectroscopy (tip-enhanced Raman spectroscopy, infrared nanospectroscopy), phase modulation infrared reflection-absorption spectroscopy, sum-frequency generation spectroscopy. We summarized experimental and theoretical approaches providing information about molecular structure and composition, lipid spatial distribution (phase separation), organization (domain shape, molecular orientation) of lipid membranes, and real-time visualization of the influence of various molecules (proteins, drugs) on their integrity. An integral part of this review discusses the latest achievements in the field of lipid layer-based biosensors.
Collapse
|
9
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
10
|
Novel cytotoxic amphiphilic nitro-compounds derived from a synthetic route for paraconic acids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
11
|
Pioselli B, Salomone F, Mazzola G, Amidani D, Sgarbi E, Amadei F, Murgia X, Catinella S, Villetti G, De Luca D, Carnielli V, Civelli M. Pulmonary surfactant: a unique biomaterial with life-saving therapeutic applications. Curr Med Chem 2021; 29:526-590. [PMID: 34525915 DOI: 10.2174/0929867328666210825110421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Pulmonary surfactant is a complex lipoprotein mixture secreted into the alveolar lumen by type 2 pneumocytes, which is composed by tens of different lipids (approximately 90% of its entire mass) and surfactant proteins (approximately 10% of the mass). It is crucially involved in maintaining lung homeostasis by reducing the values of alveolar liquid surface tension close to zero at end-expiration, thereby avoiding the alveolar collapse, and assembling a chemical and physical barrier against inhaled pathogens. A deficient amount of surfactant or its functional inactivation is directly linked to a wide range of lung pathologies, including the neonatal respiratory distress syndrome. This paper reviews the main biophysical concepts of surfactant activity and its inactivation mechanisms, and describes the past, present and future roles of surfactant replacement therapy, focusing on the exogenous surfactant preparations marketed worldwide and new formulations under development. The closing section describes the pulmonary surfactant in the context of drug delivery. Thanks to its peculiar composition, biocompatibility, and alveolar spreading capability, the surfactant may work not only as a shuttle to the branched anatomy of the lung for other drugs but also as a modulator for their release, opening to innovative therapeutic avenues for the treatment of several respiratory diseases.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Sgarbi
- Preclinical R&D, Chiesi Farmaceutici, Parma. Italy
| | | | - Xabi Murgia
- Department of Biotechnology, GAIKER Technology Centre, Zamudio. Spain
| | | | | | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Antoine Béclère Medical Center, APHP, South Paris University Hospitals, Paris, France; Physiopathology and Therapeutic Innovation Unit-U999, South Paris-Saclay University, Paris. France
| | - Virgilio Carnielli
- Division of Neonatology, G Salesi Women and Children's Hospital, Polytechnical University of Marche, Ancona. Italy
| | | |
Collapse
|
12
|
Vignoli Muniz GS, Souza MC, Duarte EL, Lamy MT. Comparing the interaction of the antibiotic levofloxacin with zwitterionic and anionic membranes: Calorimetry, fluorescence, and spin label studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183622. [PMID: 33865809 DOI: 10.1016/j.bbamem.2021.183622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
The present work compares the interaction of the antibiotic levofloxacin (LVX) with zwitterionic and anionic liposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG), respectively. By using differential scanning calorimetry (DSC), and with spin labels incorporated into liposomes at two different depths of the bilayers, we investigated the changes induced on the membrane by increasing concentrations of LVX. Further information was obtained using intrinsic LVX fluorescence. Under the conditions used here, all techniques evinced that LVX has little affinity for DPPC zwitterionic membrane. Opposite to that, LVX exhibits a considerable affinity for anionic bilayers, with membrane partition constants Kp = (3.3 ± 0.5) × 102 and (4.5 ± 0.3) × 102, for gel and fluid DPPG membranes, respectively. On binding to DPPG, LVX seems to give rise to the coexistence of LVX -rich and -poor domains on DPPG membranes, as detected by DSC. At the highest LVX concentration used (20 mol%), DSC trace shows an increase in the cooperativity of DPPG gel-fluid transition, also detected by spin labels as an increase in the bilayer packing. Moreover, LVX does not induce pore formation in either DPPG or POPG vesicles. Considering the possible relevance of LVX-membrane interaction for the biological and toxicological action of the antibiotic, the findings discussed here certainly contribute to a better understanding of its action, and the planning of new drugs.
Collapse
Affiliation(s)
| | - Mariana C Souza
- Instituto de Física, Universidade de São Paulo, São Paulo, SP CEP 05508-090, Brazil
| | - Evandro L Duarte
- Instituto de Física, Universidade de São Paulo, São Paulo, SP CEP 05508-090, Brazil
| | - M Teresa Lamy
- Instituto de Física, Universidade de São Paulo, São Paulo, SP CEP 05508-090, Brazil.
| |
Collapse
|
13
|
In-vitro cytotoxicity, synergistic antibacterial activity and interaction studies of imidazolium-based ionic liquids with levofloxacin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
|
15
|
Souza LM, Souza FR, Reynaud F, Pimentel AS. Tuning the hydrophobicity of a coarse grained model of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine using the experimental octanol-water partition coefficient. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Tan S, Gao J, Li Q, Guo T, Dong X, Bai X, Yang J, Hao S, He F. Synergistic effect of chlorogenic acid and levofloxacin against Klebsiella pneumonia infection in vitro and in vivo. Sci Rep 2020; 10:20013. [PMID: 33203903 PMCID: PMC7672055 DOI: 10.1038/s41598-020-76895-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
The study aimed to investigate the antibacterial effect and potential mechanisms of chlorogenic acid (CA) in Klebsiella pneumonia (KPN) induced infection in vitro and in vivo. 62 KPN strains were collected from the First People’s Hospital of Yunnan Province. CA and CA combined Levofloxacin (LFX) were detected for KPN biofilm (BF) formation in vitro. The lung infection mice model were established by KPN. The effect of CA (500 mg/kg), LFX (50 mg/kg) and CA combined LFX (250 mg/kg + 25 mg/kg) were evaluated through the survival of mice, the changes of inflammation factors of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and IL-6 in serum, the histopathological analysis of lung and the protein expression of NLRP3 signaling pathway in vivo. A total of 62 KPNs were isolated and identified, of which 13 (21%) strains were BF positive. 8 (13%) strains were extended spectrum β-lactamase strains (ESBLs), and 20 (32%) strains are ESBLs biofilm positive. In vitro study, CA and LFX showed a synergistic effect on KPN biofilm formation. In vivo mice experiment, CA, especially CA + LFX treated group significantly decreased the serum levels of TNF-α, IL-1β and IL-6, improved the survival ratio and lung pathology changes, and also reduced the protein expression of ASC, caspase 1 p20, IL-1β and phosphor NF-κB p65. CA could effectively alleviate lung infection of KPN infected mice, and the antibacterial effection is strengthened by combined with LFX. The study provide a theroy basis for making rational and scientific antibacterial therapy strategy in clinic.
Collapse
Affiliation(s)
- Shirui Tan
- School of Agriculture, Chenggong Campus, Yunnan University, South Section, East Outer Ring Road, Chenggong District, Kunming, 650500, People's Republic of China.,Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, People's Republic of China
| | - Jing Gao
- School of Agriculture, Chenggong Campus, Yunnan University, South Section, East Outer Ring Road, Chenggong District, Kunming, 650500, People's Republic of China
| | - Qingrong Li
- The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, People's Republic of China
| | - Tieying Guo
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, 678600, People's Republic of China
| | - Xiangshu Dong
- School of Agriculture, Chenggong Campus, Yunnan University, South Section, East Outer Ring Road, Chenggong District, Kunming, 650500, People's Republic of China
| | - Xuehui Bai
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, 678600, People's Republic of China
| | - Jinghui Yang
- Department of Paediatrics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650032, People's Republic of China. .,Yunnan Clinical Medical Center for Hematological Diseases, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Kunming, 650032, People's Republic of China.
| | - Shumei Hao
- School of Life Sciences, Yunnan Normal University, No.1, Yuhua Area, Chenggong District, Kunming, 650500, Yunnan, People's Republic of China.
| | - Feifei He
- School of Agriculture, Chenggong Campus, Yunnan University, South Section, East Outer Ring Road, Chenggong District, Kunming, 650500, People's Republic of China.
| |
Collapse
|
17
|
Madihalli C, Sudhakar H, Doble M. Production and investigation of the physico-chemical properties of MEL-A from glycerol and coconut water. World J Microbiol Biotechnol 2020; 36:88. [PMID: 32500290 DOI: 10.1007/s11274-020-02857-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/18/2020] [Indexed: 01/01/2023]
Abstract
This work reports the production of MEL-A using coconut water as the carbon source. Proximate analysis of coconut water indicated the presence of nutrients necessary for growth of the organism and production of desired metabolite. The amount of MEL produced using coconut water was 3.85 g/L (± 0.35) with 74% of it being MEL-A when compared to 2.58 g/L (± 0.15) with 60% being MEL-A using glycerol, a conventional carbon source. MEL-A from coconut water consisted of 38.1% long-chain saturated fatty acids (C16:0 and C18:0) whereas with glycerol it was 9.6%. The critical micellar concentration of the biosurfactant from coconut water was 2.32 ± 0.21 µM when compared to 4.41 ± 0.25 µM from glycerol. The stability of O/W emulsion was reduced by 50% and 90% after incubation for 8 h in the case of MEL-A from coconut water and glycerol respectively when compared to synthetic surfactant, Tween-20. MEL-A from both the sources exhibited free radical scavenging activity (DPPH assay) in a dose-dependent manner wherein MEL-A from coconut water showed two fold higher activity than the other. The interaction of coconut water MEL-A with DPPC for drug encapsulation applications was also studied. The DSC measurements showed the differences in the interaction of drugs with DPPC/MEL-A liposome. The differences were also observed in the solubility of drugs after encapsulation with DPPC/MEL-A liposome.
Collapse
Affiliation(s)
- Chandraprasad Madihalli
- Bioengineering and Drug Design Lab, Bhupat and Jyothi Mehta School of Bioscience, Department of Biotechnology, Indian Institute of Technology, Chennai, 600036, India.,Department of Biotechnology, BMS College of Engineering, Bengaluru, 560019, India
| | - Harshal Sudhakar
- Bioengineering and Drug Design Lab, Bhupat and Jyothi Mehta School of Bioscience, Department of Biotechnology, Indian Institute of Technology, Chennai, 600036, India
| | - Mukesh Doble
- Bioengineering and Drug Design Lab, Bhupat and Jyothi Mehta School of Bioscience, Department of Biotechnology, Indian Institute of Technology, Chennai, 600036, India.
| |
Collapse
|
18
|
Interaction of naringin and naringenin with DPPC monolayer at the air-water interface. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Permeation of beta-defensin-3 encapsulated with polyethylene glycol in lung surfactant models at air-water interface. Colloids Surf B Biointerfaces 2019; 182:110357. [DOI: 10.1016/j.colsurfb.2019.110357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 11/21/2022]
|
20
|
Ortiz-Collazos S, Picciani PH, Oliveira ON, Pimentel AS, Edler KJ. Influence of levofloxacin and clarithromycin on the structure of DPPC monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182994. [DOI: 10.1016/j.bbamem.2019.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
|
21
|
Hossain SI, Gandhi NS, Hughes ZE, Gu Y, Saha SC. Molecular insights on the interference of simplified lung surfactant models by gold nanoparticle pollutants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1458-1467. [DOI: 10.1016/j.bbamem.2019.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/03/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022]
|
22
|
Wang JM, Lian X, Yan B. Eu3+-Functionalized Covalent Organic Framework Hybrid Material as a Sensitive Turn-On Fluorescent Switch for Levofloxacin Monitoring in Serum and Urine. Inorg Chem 2019; 58:9956-9963. [DOI: 10.1021/acs.inorgchem.9b01106] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jin-Min Wang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiao Lian
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
23
|
Baer B, Souza LMP, Pimentel AS, Veldhuizen RA. New insights into exogenous surfactant as a carrier of pulmonary therapeutics. Biochem Pharmacol 2019; 164:64-73. [DOI: 10.1016/j.bcp.2019.03.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/26/2019] [Indexed: 01/03/2023]
|
24
|
Stimuli-responsive amphoteric ion exchange polymers bearing carboxylic and amine groups grafted to a cross-linkable silica network. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Da Silva MKL, Plana Simões R, Cesarino I. Evaluation of Reduced Graphene Oxide Modified with Antimony and Copper Nanoparticles for Levofloxacin Oxidation. ELECTROANAL 2018. [DOI: 10.1002/elan.201800265] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Rafael Plana Simões
- Sao Paulo State University (UNESP), School of Agriculture; Botucatu, SP Brazil
| | - Ivana Cesarino
- Sao Paulo State University (UNESP), School of Agriculture; Botucatu, SP Brazil
| |
Collapse
|
26
|
Penetration of antimicrobial peptides in a lung surfactant model. Colloids Surf B Biointerfaces 2018; 167:345-353. [PMID: 29689490 DOI: 10.1016/j.colsurfb.2018.04.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/30/2022]
Abstract
Molecular dynamics simulations were successfully performed to understand the absorption mechanism of antimicrobial peptides LL-37, CATH-2, and SMAP-29 in a lung surfactant model. The antimicrobial peptides quickly penetrate in the lung surfactant model in dozens or hundreds nanoseconds, but they electrostatically interact with the lipid polar heads during the simulation time of 2 μs. This electrostatic interaction should be the explanation for the inactivation of the antimicrobial peptides when co-administrated with lung surfactant. As they strongly interact with the lipid polar heads of the lung surfactant, there is no positive charge available on the antimicrobial peptide to attack the negatively charged bacteria membrane. In order to avoid the interaction of peptides with the lipid polar heads, sodium cholate was used to form nanoparticles which act as an absorption enhancer of all antimicrobial peptides used in this investigation. The nanoparticles of 150 molecules of sodium cholate with one peptide were inserted on the top of the lung surfactant model. The nanoparticles penetrated into the lung surfactant model, spreading the sodium cholate molecules around the lipid polar heads. The sodium cholate molecules seem to protect the peptides from the interaction with the lipid polar heads, leaving them free to be delivered to the water phase. The penetration of peptides alone or even the peptide nanoparticles with sodium cholate do not collapse the lung surfactant model, indicating to be a promisor drug delivery system to the lung. The implications of this finding are that antimicrobial peptides may only be co-administered with an absorption enhancer such as sodium cholate into lung surfactant in order to avoid inactivation of their antimicrobial activity.
Collapse
|
27
|
Allen DT, Damestani N, Saaka Y, Lawrence MJ, Lorenz CD. Interaction of testosterone-based compounds with dodecyl sulphate monolayers at the air–water interface. Phys Chem Chem Phys 2018. [DOI: 10.1039/c7cp07611h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The encapsulation of testosterone enanthate into a sodium dodecyl sulphate monolayer.
Collapse
Affiliation(s)
- Daniel T. Allen
- Biological Physics & Soft Matter Group
- Department of Physics
- King's College London
- London WC2R 2LS
- UK
| | - Nikou Damestani
- Biological Physics & Soft Matter Group
- Department of Physics
- King's College London
- London WC2R 2LS
- UK
| | - Yussif Saaka
- Pharmaceutical Biophysics Group
- Institute of Pharmaceutical Science
- King's College London
- London SE1 9NH
- UK
| | - M. Jayne Lawrence
- Division of Pharmacy and Optometry
- School of Health Sciences
- The University of Manchester
- Manchester M13 9PT
- UK
| | - Christian D. Lorenz
- Biological Physics & Soft Matter Group
- Department of Physics
- King's College London
- London WC2R 2LS
- UK
| |
Collapse
|