1
|
Acar M, Tatini D, Romani V, Ninham BW, Rossi F, Lo Nostro P. Curious effects of overlooked aspects on urease activity. Colloids Surf B Biointerfaces 2024; 247:114422. [PMID: 39673898 DOI: 10.1016/j.colsurfb.2024.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Intermolecular forces determine complex chemical structures of exquisite intricacy, like proteins. However even the most advanced theories we have so far rely on too drastic approximations to explain them. Some crucial aspects that dictate structure, specific ion and solvent effects are not accommodated. Further the very significant effects of dissolved atmospheric gas are completely ignored and unexplored. Here we examine the effects of cations, dissolved gasses, and heavy water on the pH clock reactions of urease. This enzyme catalyzes the hydrolysis of urea to ammonium and bicarbonate in unbuffered aqueous solutions. In so doing it increases the pH. Circular dichroism and fluorescence experiments are used to assess conformational effects. The results highlight the subtle interplay of different factors that participate in determining the urease activity. The experimental data are correlated with specific ion physicochemical parameters and conformational data. They are explored in the context of specific ion and solvent interactions and hydration.
Collapse
Affiliation(s)
- Mert Acar
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Firenze 50019, Italy
| | - Duccio Tatini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Valentina Romani
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Firenze 50019, Italy
| | - Barry W Ninham
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Federico Rossi
- Department of Earth, Environmental and Physical Sciences-DEEP Sciences, University of Siena, Siena 53100, Italy
| | - Pierandrea Lo Nostro
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Firenze 50019, Italy.
| |
Collapse
|
2
|
Ninham BW, Battye MJ, Bolotskova PN, Gerasimov RY, Kozlov VA, Bunkin NF. Nafion: New and Old Insights into Structure and Function. Polymers (Basel) 2023; 15:2214. [PMID: 37177360 PMCID: PMC10181149 DOI: 10.3390/polym15092214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The work reports a number of results on the dynamics of swelling and inferred nanostructure of the ion-exchange polymer membrane Nafion in different aqueous solutions. The techniques used were photoluminescent and Fourier transform IR (FTIR) spectroscopy. The centers of photoluminescence were identified as the sulfonic groups localized at the ends of the perfluorovinyl ether (Teflon) groups that form the backbone of Nafion. Changes in deuterium content of water induced unexpected results revealed in the process of polymer swelling. In these experiments, deionized (DI) water (deuterium content 157 ppm) and deuterium depleted water (DDW) with deuterium content 3 PPM, were investigated. The strong hydration of sulfonic groups involves a competition between ortho- and para-magnetic forms of a water molecule. Deuterium, as it seems, adsorbs competitively on the sulfonic groups and thus can change the geometry of the sulfate bonds. With photoluminescent spectroscopy experiments, this is reflected in the unwinding of the polymer fibers into the bulk of the adjoining water on swelling. The unwound fibers do not tear off from the polymer substrate. They form a vastly extended "brush" type structure normal to the membrane surface. This may have implications for specificity of ion transport in biology, where the ubiquitous glycocalyx of cells and tissues invariably involves highly sulfated polymers such asheparan and chondroitin sulfate.
Collapse
Affiliation(s)
- Barry W. Ninham
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2600, Australia
| | | | - Polina N. Bolotskova
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, Moscow 105005, Russia
| | - Rostislav Yu. Gerasimov
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, Moscow 105005, Russia
| | - Valery A. Kozlov
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, Moscow 105005, Russia
| | - Nikolai F. Bunkin
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, Moscow 105005, Russia
| |
Collapse
|
3
|
Ninham B, Reines B, Battye M, Thomas P. Pulmonary surfactant and COVID-19: A new synthesis. QRB DISCOVERY 2022; 3:e6. [PMID: 37564950 PMCID: PMC10411325 DOI: 10.1017/qrd.2022.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022] Open
Abstract
Chapter 1 COVID-19 pathogenesis poses paradoxes difficult to explain with traditional physiology. For instance, since type II pneumocytes are considered the primary cellular target of SARS-CoV-2; as these produce pulmonary surfactant (PS), the possibility that insufficient PS plays a role in COVID-19 pathogenesis has been raised. However, the opposite of predicted high alveolar surface tension is found in many early COVID-19 patients: paradoxically normal lung volumes and high compliance occur, with profound hypoxemia. That 'COVID anomaly' was quickly rationalised by invoking traditional vascular mechanisms-mainly because of surprisingly preserved alveolar surface in early hypoxemic cases. However, that quick rejection of alveolar damage only occurred because the actual mechanism of gas exchange has long been presumed to be non-problematic, due to diffusion through the alveolar surface. On the contrary, we provide physical chemical evidence that gas exchange occurs by an process of expansion and contraction of the three-dimensional structures of PS and its associated proteins. This view explains anomalous observations from the level of cryo-TEM to whole individuals. It encompasses results from premature infants to the deepest diving seals. Once understood, the COVID anomaly dissolves and is straightforwardly explained as covert viral damage to the 3D structure of PS, with direct treatment implications. As a natural experiment, the SARS-CoV-2 virus itself has helped us to simplify and clarify not only the nature of dyspnea and its relationship to pulmonary compliance, but also the fine detail of the PS including such features as water channels which had heretofore been entirely unexpected. Chapter 2 For a long time, physical, colloid and surface chemistry have not intersected with physiology and cell biology as much as we might have hoped. The reasons are starting to become clear. The discipline of physical chemistry suffered from serious unrecognised omissions that rendered it ineffective. These foundational defects included omission of specific ion molecular forces and hydration effects. The discipline lacked a predictive theory of self-assembly of lipids and proteins. Worse, theory omitted any role for dissolved gases, O2, N2, CO2, and their existence as stable nanobubbles above physiological salt concentration. Recent developments have gone some way to explaining the foam-like lung surfactant structures and function. It delivers O2/N2 as nanobubbles, and efflux of CO2, and H2O nanobubbles at the alveolar surface. Knowledge of pulmonary surfactant structure allows an explanation of the mechanism of corona virus entry, and differences in infectivity of different variants. CO2 nanobubbles, resulting from metabolism passing through the molecular frit provided by the glycocalyx of venous tissue, forms the previously unexplained foam which is the endothelial surface layer. CO2 nanobubbles turn out to be lethal to viruses, providing a plausible explanation for the origin of 'Long COVID'. Circulating nanobubbles, stable above physiological 0.17 M salt drive various enzyme-like activities and chemical reactions. Awareness of the microstructure of Pulmonary Surfactant and that nanobubbles of (O2/N2) and CO2 are integral to respiratory and circulatory physiology provides new insights to the COVID-19 and other pathogen activity.
Collapse
Affiliation(s)
- Barry Ninham
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
- School of Science, University of New South Wales, Northcott Drive, Campbell, Canberra, ACT2612, Australia
| | - Brandon Reines
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 5607 Baum Blvd, Pittsburgh, PA15206, USA
| | | | - Paul Thomas
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
| |
Collapse
|
4
|
Alfredsson V, Lo Nostro P, Ninham B, Nylander T. Morphologies and Structure of Brain Lipid Membrane Dispersions. Front Cell Dev Biol 2021; 9:675140. [PMID: 34195192 PMCID: PMC8236638 DOI: 10.3389/fcell.2021.675140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
This study aims to explore the variety of previously unknown morphologies that brain lipids form in aqueous solutions. We study how these structures are dependent on cholesterol content, salt solution composition, and temperature. For this purpose, dispersions of porcine sphingomyelin with varying amounts of cholesterol as well as dispersions of porcine brain lipid extracts were investigated. We used cryo-TEM to investigate the dispersions at high-salt solution content together with small-angle (SAXD) and wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) for dispersions in the corresponding salt solution at high lipid content. Sphingomyelin forms multilamellar vesicles in large excess of aqueous salt solution. These vesicles appear as double rippled bilayers in the images and as split Bragg peaks in SAXD together with a very distinct lamellar phase pattern. These features disappear with increasing temperature, and addition of cholesterol as the WAXD data shows that the peak corresponding to the chain crystallinity disappears. The dispersions of sphingomyelin at high cholesterol content form large vesicular type of structures with smooth bilayers. The repeat distance of the lamellar phase depends on temperature, salt solution composition, and slightly with cholesterol content. The brain lipid extracts form large multilamellar vesicles often attached to assemblies of higher electron density. We think that this is probably an example of supra self-assembly with a multiple-layered vesicle surrounding an interior cubic microphase. This is challenging to resolve. DSC shows the presence of different kinds of water bound to the lipid aggregates as a function of the lipid content. Comparison with the effect of lithium, sodium, and calcium salts on the structural parameters of the sphingomyelin and the morphologies of brain lipid extract morphologies demonstrate that lithium has remarkable effects also at low content.
Collapse
Affiliation(s)
- Viveka Alfredsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Pierandrea Lo Nostro
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Italy
| | - Barry Ninham
- Department of Applied Mathematics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT, Australia
| | - Tommy Nylander
- Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden.,NanoLund, Lund University, Lund, Sweden.,Lund Institute of Advanced Neutron and X-ray Science, Lund, Sweden
| |
Collapse
|
5
|
Zhuo R, Rong P, Wang J, Parvin R, Deng Y. The Potential Role of Bioactive Plasmalogens in Lung Surfactant. Front Cell Dev Biol 2021; 9:618102. [PMID: 33681198 PMCID: PMC7928286 DOI: 10.3389/fcell.2021.618102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/08/2021] [Indexed: 01/24/2023] Open
Abstract
Neonatal respiratory distress syndrome (NRDS) is a type of newborn disorder caused by the deficiency or late appearance of lung surfactant, a mixture of lipids and proteins. Studies have shown that lung surfactant replacement therapy could effectively reduce the morbidity and mortality of NRDS, and the therapeutic effect of animal-derived surfactant preparation, although with its limitations, performs much better than that of protein-free synthetic ones. Plasmalogens are a type of ether phospholipids present in multiple human tissues, including lung and lung surfactant. Plasmalogens are known to promote and stabilize non-lamellar hexagonal phase structure in addition to their significant antioxidant property. Nevertheless, they are nearly ignored and underappreciated in the lung surfactant-related research. This report will focus on plasmalogens, a minor yet potentially vital component of lung surfactant, and also discuss their biophysical properties and functions as anti-oxidation, structural modification, and surface tension reduction at the alveolar surface. At the end, we boldly propose a novel synthetic protein-free lung surfactant preparation with plasmalogen modification as an alternative strategy for surfactant replacement therapy.
Collapse
Affiliation(s)
- Ruijiang Zhuo
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Pu Rong
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Jieli Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Rokshana Parvin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yuru Deng
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
6
|
Tatini D, Raudino M, Ambrosi M, Carretti E, Davidovich I, Talmon Y, Ninham BW, Lo Nostro P. Physicochemical characterization of green sodium oleate-based formulations. Part 1. Structure and rheology. J Colloid Interface Sci 2021; 590:238-248. [PMID: 33548607 DOI: 10.1016/j.jcis.2021.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS The structure, rheology and other physicochemical properties of dilute aqueous dispersions of sodium oleate (NaOL) are well known. This paper is the first report in which a moderately concentrated (13% w/w) dispersion of NaOL in water is investigated. In fact, at this concentration the phase and rheology behavior of the surfactant remarkably deviates from those of its dilute solutions in water and a significant effect is imparted by the addition of potassium chloride. EXPERIMENTAL The structural, thermal and rheological properties of a 13% w/w dispersion of NaOL in water were investigated by cryo-TEM, rheology, and DSC experiments with and without the addition of potassium chloride. The system is comprised of elongated wormlike micelles that turn into a gel-like more disordered viscous material upon addition of small amounts of KCl (4% w/w). FINDINGS This paper illustrates the multifaceted behavior of sodium oleate dispersions at intermediate concentrations that depends on the presence of other cosolutes (such as KCl). The results show that viscoelastic aqueous dispersions of NaOL are excellent candidates for the preparation of stimuli-responsive green materials to be used in a number of different applications. We also discuss the genesis of wormlike micelles (WLMs) in terms of the general theory of self-assembly.
Collapse
Affiliation(s)
- Duccio Tatini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| | - Martina Raudino
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| | - Moira Ambrosi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| | - Emiliano Carretti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| | - Irina Davidovich
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Barry W Ninham
- Department of Applied Mathematics, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia
| | - Pierandrea Lo Nostro
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy.
| |
Collapse
|
7
|
Budroni MA, Rossi F, Marchettini N, Wodlei F, Lo Nostro P, Rustici M. Hofmeister Effect in Self-Organized Chemical Systems. J Phys Chem B 2020; 124:9658-9667. [PMID: 32989990 DOI: 10.1021/acs.jpcb.0c06956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We studied the effect of spectator ions in the prototype of far-from-equilibrium self-organized chemical systems, the Belousov-Zhabotinsky (BZ) reaction. In particular, we investigated the specific ion effect of alkali metal cations, connoted for their kosmotropic and chaotropic properties. By means of combined experimental and numerical approaches, we could show a neat and robust evidence for the Hofmeister effect in this system. Spectator cations induce a marked increment of the induction period that preludes regular oscillations and decrease the oscillation amplitude following the sequence Li+ < Na+ ≪ K+ ∼ Cs+. These ions affect the system kinetics by interfering in the interaction between the oxidized form of the catalyst and the organic substrate, responsible for resetting the BZ system to pre-autocatalytic (reduced) conditions. The specific ion effect on these key reactive steps is systematically characterized and correlated with different parameters which describe the interaction of the cations with the solvent.
Collapse
Affiliation(s)
- Marcello A Budroni
- Department of Chemistry and Pharmacy, University of Sassari, Sassari (SS) 07100, Italy
| | - Federico Rossi
- Department of Earth, Environmental and Physical Sciences-DEEP Sciences, University of Siena, Siena (SI) 53100, Italy
| | - Nadia Marchettini
- Department of Earth, Environmental and Physical Sciences-DEEP Sciences, University of Siena, Siena (SI) 53100, Italy
| | - Florian Wodlei
- Department of Chemistry and Pharmacy, University of Sassari, Sassari (SS) 07100, Italy
| | - Pierandrea Lo Nostro
- Department of Chemistry, University of Florence, Sesto Fiorentino (FI) 50019, Italy
| | - Mauro Rustici
- Department of Chemistry and Pharmacy, University of Sassari, Sassari (SS) 07100, Italy
| |
Collapse
|
8
|
Reines BP, Ninham BW. Pulmonary intravascular coagulopathy in COVID-19 pneumonia. LANCET RHEUMATOLOGY 2020; 2:e458-e459. [PMID: 32835253 PMCID: PMC7324095 DOI: 10.1016/s2665-9913(20)30181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brandon P Reines
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15206, USA.,Department of Applied Mathematics, Research School of Physics, Australian National University, Canberra, ACT, Australia
| | - Barry W Ninham
- Department of Applied Mathematics, Research School of Physics, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
9
|
Deplazes E, Tafalla BD, Cranfield CG, Garcia A. Role of Ion-Phospholipid Interactions in Zwitterionic Phospholipid Bilayer Ion Permeation. J Phys Chem Lett 2020; 11:6353-6358. [PMID: 32687371 DOI: 10.1021/acs.jpclett.0c01479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the central role of Na+ and K+ in physiological processes, it is still unclear whether they interact or alter the physical properties of simple zwitterionic phospholipid bilayers at physiologically relevant concentrations. Here we report a difference in membrane permeability between Na+ and K+, as measured with electrical impedance spectroscopy and tethered bilayer lipid membranes. We reveal that the differences in membrane permeability originate from distinct ion coordination by carbonyl oxygens at the phospholipid-water interface, altering the propensity for bilayer pore formation. Molecular dynamics simulations showed differences in the coordination of Na+ and K+ at the phospholipid-water interface of zwitterionic phospholipid bilayers. The ability of Na+ to conscript more phospholipids with a greater number of coordinating interactions causes a higher localized energy barrier for pore formation. These results provide evidence that ion-specific interactions at the phospholipid-water interface can modulate the physical properties of zwitterionic phospholipid bilayers.
Collapse
Affiliation(s)
- Evelyne Deplazes
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | | | - Charles G Cranfield
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Alvaro Garcia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
10
|
Tanini D, D'Esopo V, Tatini D, Ambrosi M, Lo Nostro P, Capperucci A. Selenated and Sulfurated Analogues of Triacyl Glycerols: Selective Synthesis and Structural Characterization. Chemistry 2020; 26:2719-2725. [DOI: 10.1002/chem.201904686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Damiano Tanini
- Department of Chemistry “Ugo Schiff”University of Florence Via Della Lastruccia 3–13 Sesto Fiorentino Firenze Italy
| | - Veronica D'Esopo
- Department of Chemistry “Ugo Schiff”University of Florence Via Della Lastruccia 3–13 Sesto Fiorentino Firenze Italy
| | - Duccio Tatini
- Department of Chemistry “Ugo Schiff”University of Florence Via Della Lastruccia 3–13 Sesto Fiorentino Firenze Italy
| | - Moira Ambrosi
- Department of Chemistry “Ugo Schiff”University of Florence Via Della Lastruccia 3–13 Sesto Fiorentino Firenze Italy
| | - Pierandrea Lo Nostro
- Department of Chemistry “Ugo Schiff”University of Florence Via Della Lastruccia 3–13 Sesto Fiorentino Firenze Italy
| | - Antonella Capperucci
- Department of Chemistry “Ugo Schiff”University of Florence Via Della Lastruccia 3–13 Sesto Fiorentino Firenze Italy
| |
Collapse
|
11
|
Perini I, Ambrosi M, Tanini D, Ninham BW, Capperucci A, Nostro PL. Ascorbyl‐6‐O‐oleate: A Bioconjugate Antioxidant Lipid. ChemistrySelect 2020. [DOI: 10.1002/slct.201903528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ilaria Perini
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia, 3 50019 Sesto Fiorentino Firenze Italy
| | - Moira Ambrosi
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia, 3 50019 Sesto Fiorentino Firenze Italy
| | - Damiano Tanini
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia, 3 50019 Sesto Fiorentino Firenze Italy
| | - Barry W. Ninham
- Department of Applied Mathematics, Research School of Physics Australian National University Canberra Australia 0200
| | - Antonella Capperucci
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia, 3 50019 Sesto Fiorentino Firenze Italy
| | - Pierandrea Lo Nostro
- Department of Chemistry “Ugo Schiff” University of Florence Via della Lastruccia, 3 50019 Sesto Fiorentino Firenze Italy
| |
Collapse
|
12
|
Lo Nostro P, Ninham BW. After DLVO: Hans Lyklema and the keepers of the faith. Adv Colloid Interface Sci 2020; 276:102082. [PMID: 31887575 DOI: 10.1016/j.cis.2019.102082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/30/2019] [Accepted: 12/01/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Pierandrea Lo Nostro
- Department of Chemistry "Ugo Schiff", University of Florence, Ferroni Foundation, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Barry W Ninham
- Department of Chemistry "Ugo Schiff", University of Florence, Ferroni Foundation, 50019 Sesto Fiorentino, Firenze, Italy; Department of Applied Mathematics, Research School of Physics, Australian National University, Canberra 0200, Australia
| |
Collapse
|
13
|
Structure and function of the endothelial surface layer: unraveling the nanoarchitecture of biological surfaces. Q Rev Biophys 2019; 52:e13. [PMID: 31771669 DOI: 10.1017/s0033583519000118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Among the unsolved mysteries of modern biology is the nature of a lining of blood vessels called the 'endothelial surface layer' or ESL. In venous micro-vessels, it is half a micron in thickness. The ESL is 10 times thicker than the endothelial glycocalyx (eGC) at its base, has been presumed to be comprised mainly of water, yet is rigid enough to exclude red blood cells. How is this possible? Developments in physical chemistry suggest that the venous ESL is actually comprised of nanobubbles of CO2, generated from tissue metabolism, in a foam nucleated in the eGC. For arteries, the ESL is dominated by nanobubbles of O2 and N2 from inspired air. The bubbles of the foam are separated and stabilized by thin layers of serum electrolyte and proteins, and a palisade of charged polymer strands of the eGC. The ESL seems to be a respiratory organ contiguous with the flowing blood, an extension of, and a 'lung' in miniature. This interpretation may have far-reaching consequences for physiology.
Collapse
|
14
|
Kékicheff P. The long-range attraction between hydrophobic macroscopic surfaces. Adv Colloid Interface Sci 2019; 270:191-215. [PMID: 31277036 DOI: 10.1016/j.cis.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
Direct measurements of the long-range strongly attractive force observed between macroscopic hydrophobic surfaces across aqueous solutions are reexamined in light of recent experiments and theoretical developments. The focus is on systems in the absence of submicroscopic bubbles (preexistent or induced) to avoid capillary bridging forces. Other possible interferences to the measurements are also eliminated. The force-distance profiles are obtained directly (no contributions from electrical double layer or hydrodynamics) between symmetric identical hydrophobic surfaces, overall charge-neutral, at the thermodynamic equilibrium and in a quenched state. Therefore in the well-defined geometry of crossed-cylinders, sphere-flat, or sphere-sphere, there is no additional interaction to be considered except the ever-present dispersion forces, negligible at large separations. For the three main categories of substrates rendered hydrophobic, namely surfaces obtained with surfactant monolayers physically adsorbed from solution to deposited ones, and substrates coated with a hydrophobizing agent bonded chemically onto the surface, the interaction energy scales as A exp (-2κD)/2κD at large separations, with measured decay lengths in accord with theoretical predictions, simply being half the Debye screening length, κ-1/2, at least in non vanishing electrolyte. Taken together with the prefactor A scaling as the ionic strength, the interaction energy is demonstrated to have an electrostatic origin in all the systems. Thanks to our recent SFAX coupling force measurements with x-ray solution scattering under controlled nano-confinement, the microstructuration of the adsorbed film emerges as an essential feature in the molecular mechanism for explaining the observed attraction of larger magnitude than dispersion forces. The adsorption of pairs of positive and negative ions on small islands along the interface, the fluctuation of the surface charge density around a zero mean-value with desorption into or adsorption from the electrolyte solution, the correlations in the local surface ion concentrations along the surfaces, the redistribution of counterions upon intersurface variation, all contribute and are tuned finely by the inhomogeneities and defects present in the hydrophobic layers. It appears that the magnitude of the interacting energy can be described by a single master curve encompassing all the systems.
Collapse
|
15
|
Yoon BK, Jackman JA, Valle-González ER, Cho NJ. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications. Int J Mol Sci 2018. [PMID: 29642500 DOI: 10.3390/ijms19041114.pmid:29642500;pmcid:pmc5979495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Antimicrobial lipids such as fatty acids and monoglycerides are promising antibacterial agents that destabilize bacterial cell membranes, causing a wide range of direct and indirect inhibitory effects. The goal of this review is to introduce the latest experimental approaches for characterizing how antimicrobial lipids destabilize phospholipid membranes within the broader scope of introducing current knowledge about the biological activities of antimicrobial lipids, testing strategies, and applications for treating bacterial infections. To this end, a general background on antimicrobial lipids, including structural classification, is provided along with a detailed description of their targeting spectrum and currently understood antibacterial mechanisms. Building on this knowledge, different experimental approaches to characterize antimicrobial lipids are presented, including cell-based biological and model membrane-based biophysical measurement techniques. Particular emphasis is placed on drawing out how biological and biophysical approaches complement one another and can yield mechanistic insights into how the physicochemical properties of antimicrobial lipids influence molecular self-assembly and concentration-dependent interactions with model phospholipid and bacterial cell membranes. Examples of possible therapeutic applications are briefly introduced to highlight the potential significance of antimicrobial lipids for human health and medicine, and to motivate the importance of employing orthogonal measurement strategies to characterize the activity profile of antimicrobial lipids.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Joshua A Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Elba R Valle-González
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| |
Collapse
|
16
|
Yoon BK, Jackman JA, Valle-González ER, Cho NJ. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications. Int J Mol Sci 2018; 19:E1114. [PMID: 29642500 PMCID: PMC5979495 DOI: 10.3390/ijms19041114] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial lipids such as fatty acids and monoglycerides are promising antibacterial agents that destabilize bacterial cell membranes, causing a wide range of direct and indirect inhibitory effects. The goal of this review is to introduce the latest experimental approaches for characterizing how antimicrobial lipids destabilize phospholipid membranes within the broader scope of introducing current knowledge about the biological activities of antimicrobial lipids, testing strategies, and applications for treating bacterial infections. To this end, a general background on antimicrobial lipids, including structural classification, is provided along with a detailed description of their targeting spectrum and currently understood antibacterial mechanisms. Building on this knowledge, different experimental approaches to characterize antimicrobial lipids are presented, including cell-based biological and model membrane-based biophysical measurement techniques. Particular emphasis is placed on drawing out how biological and biophysical approaches complement one another and can yield mechanistic insights into how the physicochemical properties of antimicrobial lipids influence molecular self-assembly and concentration-dependent interactions with model phospholipid and bacterial cell membranes. Examples of possible therapeutic applications are briefly introduced to highlight the potential significance of antimicrobial lipids for human health and medicine, and to motivate the importance of employing orthogonal measurement strategies to characterize the activity profile of antimicrobial lipids.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Joshua A Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Elba R Valle-González
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| |
Collapse
|
17
|
Bunkin NF, Kozlov VA, Shkirin AV, Ninham BW, Balashov AA, Gudkov SV. Dynamics of Nafion membrane swelling in H 2O/D 2O mixtures as studied using FTIR technique. J Chem Phys 2018; 148:124901. [PMID: 29604815 DOI: 10.1063/1.5022264] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Experiments with Fourier transform spectrometry of Nafion, a water-swollen polymeric membrane, are described. The transmittance spectra of liquid samples and Nafion, soaked in these samples, were studied, depending on the deuterium content in water in the spectral range 1.8-2.15 μm. The experiments were carried out using two protocols: in the first protocol we studied the dynamics of Nafion swelling in H2O + D2O mixtures for the deuterium concentrations 3 < C < 104 ppm, and in the second protocol we studied the dynamics of swelling in pure heavy water (C = 106 ppm). For liquid mixtures in the concentration range 3 < C < 104 ppm, the transmittance spectra are the same, but for Nafion soaked in these fluids, the corresponding spectra are different. It is shown that, in the range of deuterium contents C = 90-500 ppm, the behavior of transmittance of the polymer membrane is non-monotonic. In experiments using the second protocol, the dynamics of diffusion replacement of residual water, which is always present in the bulk of the polymer membrane inside closed cavities (i.e., without access to atmospheric air), were studied. The experimentally estimated diffusion coefficient for this process is ≈6·10-11 cm2/s.
Collapse
Affiliation(s)
- Nikolai F Bunkin
- Bauman Moscow State Technical University, Second Baumanskaya Str. 5, Moscow 105005, Russia
| | - Valeriy A Kozlov
- Bauman Moscow State Technical University, Second Baumanskaya Str. 5, Moscow 105005, Russia
| | - Alexey V Shkirin
- A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova Str. 38, Moscow 119991, Russia
| | - Barry W Ninham
- The Australian National University, Acton, ACT 2601, Australia
| | - Anatoliy A Balashov
- Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Butlerova Str., Moscow 15117342, Russia
| | - Sergey V Gudkov
- A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova Str. 38, Moscow 119991, Russia
| |
Collapse
|