1
|
Zhang Z, Shang W, Lin L. Hydroxyapatite Chitosan Gradient Pore Scaffold Activates Oxidative Phosphorylation Pathway to Induce Bone Formation. FRONT BIOSCI-LANDMRK 2025; 30:26299. [PMID: 39862088 DOI: 10.31083/fbl26299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND In this study, we prepared a porous gradient scaffold with hydroxyapatite microtubules (HAMT) and chitosan (CHS) and investigated osteogenesis induced by these scaffolds. METHODS The arrangement of wax balls in the mold can control the size and distribution of the pores of the scaffold, and form an interconnected gradient pore structure. The scaffolds were systematically evaluated in vitro and in vivo for biocompatibility, biological activity, and regulatory mechanisms. RESULTS The porosity of the four scaffolds was more than 80%. The 50% and 70% HAMT-CHS scaffolds formed an excellent gradient pore structure, with interconnected pores. Furthermore, the 70% HAMT-CHS scaffold showed better anti-compressive deformation ability. In vitro experiments indicated that the scaffolds had good biocompatibility, promoted the expression of osteogenesis-related genes and proteins, and activated the oxidative phosphorylation pathway to promote bone regeneration. Eight weeks after implanting the HAMT-CHS scaffold in rat skull defects, new bone formation was observed in vivo by micro-computed tomographic (CT) staining. The obtained data were statistically analyzed, and the p-value < 0.05 was statistically significant. CONCLUSION HAMT-CHS scaffolds can accelerate osteogenesis in bone defects, potentially through the activation of the oxidative phosphorylation pathway. These results highlight the potential therapeutic application of HAMT-CHS scaffolds.
Collapse
Affiliation(s)
- Zeliang Zhang
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, 350001 Fuzhou, Fujian, China
| | - Wei Shang
- Department of Stomatology, The Affiliated Heping Hospital of Changzhi Medical College, 046000 Changzhi, Shanxi, China
| | - Lisong Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory of Stomatology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, 350005 Fuzhou, Fujian, China
| |
Collapse
|
2
|
Zhang Y, Zhu Y, Habibovic P, Wang H. Advanced Synthetic Scaffolds Based on 1D Inorganic Micro-/Nanomaterials for Bone Regeneration. Adv Healthc Mater 2024; 13:e2302664. [PMID: 37902817 DOI: 10.1002/adhm.202302664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/25/2023] [Indexed: 10/31/2023]
Abstract
Inorganic nanoparticulate biomaterials, such as calcium phosphate and bioglass particles, with chemical compositions similar to that of the inorganic component of natural bone, and hence having excellent biocompatibility and bioactivity, are widely used for the fabrication of synthetic bone graft substitutes. Growing evidence suggests that structurally anisotropic, or 1D inorganic micro-/nanobiomaterials are superior to inorganic nanoparticulate biomaterials in the context of mechanical reinforcement and construction of self-supporting 3D network structures. Therefore, in the past decades, efforts have been devoted to developing advanced synthetic scaffolds for bone regeneration using 1D micro-/nanobiomaterials as building blocks. These scaffolds feature extraordinary physical and biological properties, such as enhanced mechanical properties, super elasticity, multiscale hierarchical architecture, extracellular matrix-like fibrous microstructure, and desirable biocompatibility and bioactivity, etc. In this review, an overview of recent progress in the development of advanced scaffolds for bone regeneration is provided based on 1D inorganic micro-/nanobiomaterials with a focus on their structural design, mechanical properties, and bioactivity. The promising perspectives for future research directions are also highlighted.
Collapse
Affiliation(s)
- Yonggang Zhang
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yingjie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Pamela Habibovic
- Maastricht University, Minderbroedersberg 4-6, Maastricht, 6211 LK ER, The Netherlands
| | - Huanan Wang
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
3
|
Liu G, Li B, Li J, Dong J, Baulin VE, Feng Y, Jia D, Petrov YV, Tsivadze AY, Zhou Y. Photothermal Carbon Dots Chelated Hydroxyapatite Filler: High Photothermal Conversion Efficiency and Enhancing Adhesion of Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55335-55345. [PMID: 37994814 DOI: 10.1021/acsami.3c11957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The synthesis of photothermal carbon/hydroxyapatite composites poses challenges due to the binding modes and relatively low photothermal conversion efficiency. To address these challenges, the calcium ions chelated by photothermal carbon dots (PTC-CDs) served as the calcium source for the synthesis of photothermal carbon dots chelated hydroxyapatite (PTC-HA) filler via the coprecipitation method. The coordination constant K and chelation sites of PTC-HA were 7.20 × 102 and 1.61, respectively. Compared to PTC-CDs, the coordination constant K and chelation sites of PTC-HA decreased by 88 and 35% due to chelating to hydroxyapatite, respectively. PTC-HA possesses fluorescence and photothermal performance with a 62.4% photothermal conversion efficiency. The incorporation of PTC-HA filler significantly enhances as high as 76% the adhesion performance of the adhesive hydrogel. PTC-HA with high photothermal conversion efficiency and enhancing adhesion performance holds promise for applications in high photothermal conversion efficiency, offering tissue adhesive properties and fluorescence capabilities to the hydrogel.
Collapse
Affiliation(s)
- Guanxiong Liu
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Baoqiang Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg 199034, Russia
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Jie Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jiaxin Dong
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Vladimir E Baulin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Yujie Feng
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
| | - Dechang Jia
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Yuri V Petrov
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg 199034, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Yu Zhou
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, PR China
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, P.R. China
| |
Collapse
|
4
|
Jiang X, Liu X, Cai J, Wei S, Wang Y, Duan Z, Zhou Z, Sun R, Qu X, Tang Y. Fabrication and properties of multi-functional polydopamine coated Cu/F-codoped hydroxyapatite hollow microspheres as drug carriers. Colloids Surf B Biointerfaces 2023; 222:113097. [PMID: 36549247 DOI: 10.1016/j.colsurfb.2022.113097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/11/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Due to its excellent bone conductivity and drug adsorption as well as pH-responsive drug release property, hydroxyapatite (HAp) is widely used as a drug carrier in bone repair field. Here, we report for the first time a novel multi-functional polydopamine (PDA) coated Cu/F-codoped HAp (Cu/F-HAp-PDA) hollow microspheres. Both Cu2+ and F- were successfully doped into the lattice of HAp and uniformly distributed in the shell of hollow microspheres through a one-step hydrothermal synthesis. Then PDA was coated homogeneously on the outer layer of Cu/F-HAp hollow microspheres. Both Cu/F-HAp and Cu/F-HAp-PDA samples displayed high drug loading efficiency and pH responsive drug release behavior. Moreover, the obtained Cu/F-HAp-PDA hollow microspheres exhibited excellent photothermal conversion efficiency and photothermal stability. The molecular dynamics simulations showed that PDA and HAp can form mutual binding mainly through Ca-O bonding, while doxorubicin (DOX) is mainly bound to PDA molecules through hydrogen bonding and π-π stacking interaction.
Collapse
Affiliation(s)
- Xiaodan Jiang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaowei Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiayi Cai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shibo Wei
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yanan Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhuqing Duan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zeao Zhou
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ruixue Sun
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Xiaofei Qu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yuanzheng Tang
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| |
Collapse
|
5
|
Zhang Y, Li J, Habibovic P. Magnetically responsive nanofibrous ceramic scaffolds for on-demand motion and drug delivery. Bioact Mater 2022; 15:372-381. [PMID: 35386339 PMCID: PMC8958423 DOI: 10.1016/j.bioactmat.2022.02.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/04/2022] [Accepted: 02/25/2022] [Indexed: 12/17/2022] Open
Abstract
Smart biomaterials, featuring not only bioactivity, but also dynamic responsiveness to external stimuli, are desired for biomedical applications, such as regenerative medicine, and hold great potential to expand the boundaries of the modern clinical practice. Herein, a magnetically responsive three-dimensional scaffold with sandwich structure is developed by using hydroxyapatite (HA) nanowires and ferrosoferric oxide (Fe3O4) nanoparticles as building blocks. The magnetic HA/Fe3O4 scaffold is fully inorganic in nature, but shows polymeric hydrogel-like characteristics including a 3D fibrous network that is highly porous (>99.7% free volume), deformable (50% deformation) and elastic, and tunable stiffness. The magnetic HA/Fe3O4 scaffold has been shown to execute multimodal motion upon exposure to an external magnetic field including shape transformation, rolling and somersault. In addition, we have demonstrated that the magnetic scaffold can serve as a smart carrier for remotely controlled, on-demand delivery of compounds including an organic dye and a protein. Finally, the magnetic scaffold has exhibited good biocompatibility, supporting the attachment and proliferation of human mesenchymal stromal cells, thereby showing great potential as smart biomaterials for a variety of biomedical applications.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Jiaping Li
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
- Department of Complex Tissue Regeneration, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| |
Collapse
|
6
|
Polydopamine constructed interfacial molecular bridge in nano-hydroxylapatite/polycaprolactone composite scaffold. Colloids Surf B Biointerfaces 2022; 217:112668. [PMID: 35810612 DOI: 10.1016/j.colsurfb.2022.112668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 11/21/2022]
Abstract
Nano-hydroxylapatite (nano-HAP)/polycaprolactone (PCL) composite scaffold is proved to possess great potential for bone tissue engineering application since the biocompatibility of PCL and the osteoinduction ability of nano-HAP. However, the interfacial bonding between nano-HAP and PCL is weak by reason of the difference in thermodynamic properties. Herein, nano-HAP was modified by polydopamine (PDA) and then added to the PCL matrix to enhance their interface bonding in bone scaffold manufactured by selective laser sintering (SLS). The results indicated that PDA acted as an interfacial molecular bridge between PCL and nano-HAP. On one hand, the amino groups of PDA formed hydrogen bonding with the hydroxyl groups of nano-HAP, and on the other hand, the catechol groups of PDA formed hydrogen bonding with the ester groups of PCL. Compared with the HAP/PCL scaffolds, the tensile and compressive strength of the P-HAP/PCL scaffolds loading 12 wt% P-HAP were increased by 10% and 16%, respectively. Meanwhile, the scaffold possessed great bioactivity and cytocompatibility that could accelerate the formation of apatite layers and promote the cell adhesion, proliferation and differentiation.
Collapse
|
7
|
A mussel glue-inspired monomer-etchant cocktail for improving dentine bonding. J Dent 2021; 116:103888. [PMID: 34762990 DOI: 10.1016/j.jdent.2021.103888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES The humid oral environment adversely affects the interaction between a functionalised primer and dentine collagen after acid-etching. Robust adhesion of marine mussels to their wet substrates instigates the quest for a strategy that improves the longevity of resin-dentine bonds. In the present study, an etching strategy based on the incorporation of biomimetic dopamine methacrylamide (DMA) as a functionalised primer into phosphoric acid etchant was developed. The mechanism and effect of this DMA-containing acid-etching strategy on bond durability were examined. METHODS Etchants with different concentrations of DMA (1, 3 or 5 mM) were formulated and tested for their demineralisation efficacy. The interaction between DMA and dentine collagen, the effect of DMA on collagen stability and the collagenase inhibition capacity of the DMA-containing etchants were evaluated. The effectiveness of this new etching strategy on resin-dentine bond durability was investigated. RESULTS All etchants were capable of demineralising dentine and exposing the collagen matrix. The latter strongly integrated with DMA via covalent bond, hydrogen bond and Van der Waals' forces. These interactions significantly improve collagen stability and inhibited collagenase activity. Application of the etchant containing 5 mM DMA achieved the most durable bonding interface. CONCLUSION Dopamine methacrylamide interacts with dentine collagen in a humid environment and improves collagen stability. The monomer effectively inactivates collagenase activity. Acid-etching with 5 mM DMA-containing phosphoric acid has the potential to prolong the longevity of bonded dental restorations without compromising clinical operation time. CLINICAL SIGNIFICANCE The use of 5 mM dopamine methacrylamide-containing phosphoric acid for etching dentine does not require an additional clinical step and has potential to improve the adhesive performance of bonded dental restorations.
Collapse
|
8
|
Huang J, Xia X, Dou Y, Gao J, Yuan C, Li J, Wang J, Li Y. Morphology regulation of Sr-substituted hydroxyapatite by l-glutamic acid in a solvent- and initial temperature-dependent manner. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Wan Z, Zhang P, Lv L, Zhou Y. NIR light-assisted phototherapies for bone-related diseases and bone tissue regeneration: A systematic review. Theranostics 2020; 10:11837-11861. [PMID: 33052249 PMCID: PMC7546009 DOI: 10.7150/thno.49784] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, the rapid development of biomaterials has induced great interest in the precisely targeted treatment of bone-related diseases, including bone cancers, infections, and inflammation. Realizing noninvasive therapeutic effects, as well as improving bone tissue regeneration, is essential for the success of bone‑related disease therapies. In recent years, researchers have focused on the development of stimuli-responsive strategies to treat bone-related diseases and to realize bone regeneration. Among the various external stimuli for targeted therapy, near infrared (NIR) light has attracted considerable interests due to its high tissue penetration capacity, minimal damage toward normal tissues, and easy remote control properties. The main objective of this systematic review was to reveal the current applications of NIR light-assisted phototherapy for bone-related disease treatment and bone tissue regeneration. Database collection was completed by June 1, 2020, and a total of 81 relevant studies were finally included. We outlined the various therapeutic applications of photothermal, photodynamic and photobiomodulation effects under NIR light irradiation for bone‑related disease treatment and bone regeneration, based on the retrieved literatures. In addition, the advantages and promising applications of NIR light-responsive drug delivery systems for spatiotemporal-controlled therapy were summarized. These findings have revealed that NIR light-assisted phototherapy plays an important role in bone-related disease treatment and bone tissue regeneration, with significant promise for further biomedical and clinical applications.
Collapse
|
10
|
Dashtimoghadam E, Fahimipour F, Tongas N, Tayebi L. Microfluidic fabrication of microcarriers with sequential delivery of VEGF and BMP-2 for bone regeneration. Sci Rep 2020; 10:11764. [PMID: 32678204 PMCID: PMC7366644 DOI: 10.1038/s41598-020-68221-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Wound instability and poor functional vascularization in bone tissue engineering lead to lack of tissue integration and ultimate failure of engineered grafts. In order to harness the regenerative potential of growth factors and stimulate bone healing, present study aims to design multifunctional cell therapy microcarriers with the capability of sequential delivery of essential growth factors, bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF). An on-chip double emulsion method was implemented to generate monodisperse VEGF encapsulated microcarriers. Bio-inspired poly(3,4-dihydroxyphenethylamine) (PDA) was then functionalized to the microcarriers surface for BMP-2 conjugation. The microcarriers were seeded with mesenchymal stem cells (MSCs) using a dynamic culture technique for cells expansion. Finally, the microcarriers were incorporated into an injectable alginate-RGD hydrogel laden with endothelial cells (ECs) for further analysis. The DNA and calcium content, as well as ALP activity of the construct were analyzed. The confocal fluorescent microscopy was employed to monitor the MSCs and tunneling structure of ECs. Eventually, the capability of developed microcarriers for bone tissue formation was examined in vivo. Microfluidic platform generated monodisperse VEGF-loaded PLGA microcarriers with size-dependent release patterns. Microcarriers generated with the on-chip technique showed more sustained VEGF release profiles compared to the conventional bulk mixing method. The PDA functionalization of microcarriers surface not only provided immobilization of BMP-2 with prolonged bioavailability, but also enhanced the attachment and proliferation of MSCs. Dynamic culturing of microcarriers showcased their great potential to boost MSCs population required for stem cell therapy of bone defects. ALP activity and calcium content analysis of MSCs-laden microcarriers loaded into injectable hydrogels revealed their capability of tunneling formation, vascular cell growth and osteogenic differentiation. The in vivo histology and real-time polymerase chain reaction analysis revealed that transplantation of MSC-laden microcarriers supports ectopic bone formation in the rat model. The presented approach to design bioactive microcarriers offer sustained sequential delivery of bone ECM chemical cues and offer an ideal stabilized 3D microenvironment for patient-specific cell therapy applications. The proposed methodology is readily expandable to integrate other cells and cytokines in a tuned spatiotemporal manner for personalized regenerative medicine.
Collapse
Affiliation(s)
| | - Farahnaz Fahimipour
- Marquette University School of Dentistry, Milwaukee, WI, USA
- Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nikita Tongas
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA.
| |
Collapse
|
11
|
Wan T, Jiao Z, Guo M, Wang Z, Wan Y, Lin K, Liu Q, Zhang P. Gaseous sulfur trioxide induced controllable sulfonation promoting biomineralization and osseointegration of polyetheretherketone implants. Bioact Mater 2020; 5:1004-1017. [PMID: 32671294 PMCID: PMC7339002 DOI: 10.1016/j.bioactmat.2020.06.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 10/25/2022] Open
Abstract
Fabricating a desired porous structure on the surface of biomedical polyetheretherketone (PEEK) implants for enhancing biological functions is crucial and difficult due to its inherent chemical inertness. In this study, a porous surface of PEEK implants was fabricated by controllable sulfonation using gaseous sulfur trioxide (SO3) for different time (5, 15, 30, 60 and 90 min). Micro-topological structure was generated on the surface of sulfonated PEEK implants preserving original mechanical properties. The protein absorption capacity and apatite forming ability was thus improved by the morphological and elemental change with higher degree of sulfonation. In combination of the appropriate micromorphology and bioactive sulfonate components, the cell adhesion, migration, proliferation and extracellular matrix secretion were obviously enhanced by the SPEEK-15 samples which were sulfonated for 15 min. Finding from this study revealed that controllable sulfonation by gaseous SO3 would be an extraordinarily strategy for improving osseointegration of PEEK implants by adjusting the microstructure and chemical composition while maintaining excellent mechanical properties.
Collapse
Affiliation(s)
- Teng Wan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun, 130041, PR China
| | - Zixue Jiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- Corresponding author.
| | - Yizao Wan
- Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, PR China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Qinyi Liu
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun, 130041, PR China
- Corresponding author.
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
- Corresponding author. Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.
| |
Collapse
|
12
|
Zhao S, Bai Z, Wang B, Tian T, Hu Z. Innovative benign-to-design functionalized adsorbents from biomass for rapid azo-dyes separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Hu S, Wu J, Cui Z, Si J, Wang Q, Peng X. Study on the mechanical and thermal properties of polylactic acid/hydroxyapatite@polydopamine composite nanofibers for tissue engineering. J Appl Polym Sci 2020. [DOI: 10.1002/app.49077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shengyu Hu
- School of Materials Science and EngineeringFujian University of Technology Fujian China
- Key Laboratory of Polymer Materials and Products of Universities in FujianFujian University of Technology Fujian China
| | - Jiahui Wu
- School of Materials Science and EngineeringFujian University of Technology Fujian China
- Key Laboratory of Polymer Materials and Products of Universities in FujianFujian University of Technology Fujian China
| | - Zhixiang Cui
- School of Materials Science and EngineeringFujian University of Technology Fujian China
- Key Laboratory of Polymer Materials and Products of Universities in FujianFujian University of Technology Fujian China
| | - Junhui Si
- School of Materials Science and EngineeringFujian University of Technology Fujian China
- Key Laboratory of Polymer Materials and Products of Universities in FujianFujian University of Technology Fujian China
| | - Qianting Wang
- School of Materials Science and EngineeringFujian University of Technology Fujian China
- Key Laboratory of Polymer Materials and Products of Universities in FujianFujian University of Technology Fujian China
| | - Xiangfang Peng
- School of Materials Science and EngineeringFujian University of Technology Fujian China
- Key Laboratory of Polymer Materials and Products of Universities in FujianFujian University of Technology Fujian China
| |
Collapse
|
14
|
A mussel-inspired carboxymethyl cellulose hydrogel with enhanced adhesiveness through enzymatic crosslinking. Colloids Surf B Biointerfaces 2019; 179:462-469. [DOI: 10.1016/j.colsurfb.2019.03.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/02/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022]
|
15
|
Chen L, Shao L, Wang F, Huang Y, Gao F. Enhancement in sustained release of antimicrobial peptide and BMP-2 from degradable three dimensional-printed PLGA scaffold for bone regeneration. RSC Adv 2019; 9:10494-10507. [PMID: 35515290 PMCID: PMC9062520 DOI: 10.1039/c8ra08788a] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/26/2019] [Indexed: 11/24/2022] Open
Abstract
One of the goals of bone tissue engineering is to create scaffolds with well-defined, inter-connected pores, excellent biocompatibility and osteoinductive ability. Three-dimensional (3D)-printed polymer scaffold coated with bioactive peptide are an effective approach to fabricating ideal bone tissue engineering scaffolds for bone defect repair. However, the current strategy of adding bioactive peptides generally cause degradation to the polymer materials or damage the bioactivity of the biomolecules. Thus, in this study, we used a biomimetic process via poly(dopamine) coating to prepare functional 3D PLGA porous scaffolds with immobilized BMP-2 and ponericin G1 that efficiently regulate the osteogenic differentiation of preosteoblasts (MC3T3-E1) and simultaneously inhibit of pathogenic microbes, thereby enhancing biological activity. In this study, we analysed a 3D PLGA porous scaffold by scanning electron microscopy, water contact angle measurements, and materials testing. Subsequently, we examined the adsorption, release and in vitro antimicrobial activity of the 3D PLGA. Surface characterization showed that poly(dopamine) surface modification could more efficiently mediate the immobilization of BMP-2 and ponericin G1 onto the scaffold surfaces than physical adsorption, and that ponericin G1-immobilized 3D PLGA scaffolds were able to maintain long-term antibacterial activity. We evaluated the influence on cell adhesion, proliferation and differentiation by culturing MC3T3-E1 cells on different modified 3D PLGA scaffolds in vitro. The biological results indicate that MC3T3-E1 cell attachment and proliferation on BMP-2/ponericin G1-immobilized 3D PLGA scaffolds were much higher than those on other groups. Calcium deposition, and gene expression results showed that the osteogenic differentiation of cells was effectively improved by loading the 3D PLGA scaffold with BMP-2 and ponericin G1. In summary, our findings indicated that the polydopamine-assisted surface modification method can be a useful tool for grafting biomolecules onto biodegradable implants, and the dual release of BMP-2 and ponericin G1 can enhance the osteointegration of bone implants and simultaneously inhibit of pathogenic microbes. Therefore, we conclude that the BMP-2/ponericin G1-loaded PLGA 3D scaffolds are versatile and biocompatible scaffolds for bone tissue engineering. One of the goals of bone tissue engineering is to create scaffolds with well-defined, inter-connected pores, excellent biocompatibility and osteoinductive ability.![]()
Collapse
Affiliation(s)
- Lei Chen
- Department of Joints and Sports Medicine
- The First Hospital of Jilin University
- Changchun
- PR China
| | - Liping Shao
- Department of Joints and Sports Medicine
- The First Hospital of Jilin University
- Changchun
- PR China
| | - Fengping Wang
- Department of Joints and Sports Medicine
- The First Hospital of Jilin University
- Changchun
- PR China
| | - Yifan Huang
- Department of Joints Surgery
- The First Hospital of Jilin University
- Changchun
- PR China
| | - Fenghui Gao
- Department of Orthopedic
- The First Hospital of Jilin University
- Changchun
- PR China
| |
Collapse
|
16
|
He Y, Zhang Y, Shen X, Tao B, Liu J, Yuan Z, Cai K. The fabrication and in vitro properties of antibacterial polydopamine-LL-37-POPC coatings on micro-arc oxidized titanium. Colloids Surf B Biointerfaces 2018; 170:54-63. [DOI: 10.1016/j.colsurfb.2018.05.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/19/2018] [Accepted: 05/31/2018] [Indexed: 12/30/2022]
|