1
|
Sun H, Li X, Liu Q, Sheng H, Zhu L. pH-responsive self-assembled nanoparticles for tumor-targeted drug delivery. J Drug Target 2024; 32:672-706. [PMID: 38682299 DOI: 10.1080/1061186x.2024.2349124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Recent advances in the field of drug delivery have opened new avenues for the development of novel nanodrug delivery systems (NDDS) in cancer therapy. Self-assembled nanoparticles (SANPs) based on tumour microenvironment have great advantages in improving antitumor effect, and pH-responsive SANPs prepared by the combination of pH-responsive nanomaterials and self-assembly technology can effectively improve the efficacy and reduce the systemic toxicity of antitumor drugs. In this review, we describe the characteristics of self-assembly and its driving force, the mechanism of pH-responsive NDDS, and the nanomaterials for pH-responsive SANPs type. A series of pH-responsive SANPs for tumour-targeted drug delivery are discussed, with an emphasis on the relation between structural features and theranostic performance.
Collapse
Affiliation(s)
- Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Liu Z, He Y, Zhang H, Ma X. Layer-by-layer self-assembly embedding of nattokinase in chitosan/γ-polyglutamic acid: Preparation, fibrinolytic activity, stability, and in vitro digestion study. Eur J Pharm Biopharm 2024; 199:114281. [PMID: 38599299 DOI: 10.1016/j.ejpb.2024.114281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/24/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Nattokinase (NK) is a thrombolytic enzyme extracted from natto, which can be used to prevent and treat blood clots. However, it is sensitive to the environment, especially the acidic environment of human stomach acid, and its effect of oral ingestion is minimal. This study aims to increase NK's oral and storage stability by embedding NK in microcapsules prepared with chitosan (CS) and γ-polyglutamic acid (γ-PGA). The paper prepared a double-layer NK oral delivery system by layer self-assembly and characterized its stability and in vitro simulated digestion. According to the research results, the bilayer putamen structure has a protective effect on NK, which not only maintains high activity in various environments (such as acid-base, high temperature) and long-term storage (60 days), but also effectively protects the loaded NK from being destroyed in gastric fluid and achieves its slow release. This work has proved the feasibility of the design of bilayer putamen structure in oral administration and has good fibrolytic activity. Therefore, the novel CS/γ-PGA microcapsules are expected to be used in nutraceutical delivery systems.
Collapse
Affiliation(s)
- Zhihan Liu
- Shanghai Institute of Technology, Shanghai 201418, China
| | - Yan He
- Shanghai Institute of Technology, Shanghai 201418, China
| | - Hua Zhang
- Shanghai Institute of Technology, Shanghai 201418, China
| | - Xia Ma
- Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
3
|
Liu Z, He Y, Ma X. Preparation, Characterization and Drug Delivery Research of γ-Polyglutamic Acid Nanoparticles: A Review. Curr Drug Deliv 2024; 21:795-806. [PMID: 36593700 DOI: 10.2174/1567201820666230102140450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 01/04/2023]
Abstract
γ-Polyglutamic acid is a kind of biomaterial and environmentally friendly polymer material with the characteristics of water solubility and good biocompatibility. It has a wide range of applications in medicine, food, cosmetics and other fields. This article reviews the preparation, characterization and medical applications of γ-polyglutamic acid nanoparticles. Nanoparticles prepared by using γ- polyglutamic acid not only had the traditional advantages of enhancing drug stability and slow-release effect, but also were simple to prepare without any biological toxicity. The current methods of nanoparticle preparation mainly include the ion gel method and solvent exchange method, which use the total electrostatic force, van der Waals force, hydrophobic interaction force and hydrogen bond force between molecules to embed materials with different characteristics. At present, there are more and more studies on the use of γ-polyglutamic acid to encapsulate drugs, and the research on the mechanism of its encapsulation and sustained release has gradually matured. The development and application of polyglutamic acid nanoparticles have broad prospects.
Collapse
Affiliation(s)
- Zhihan Liu
- Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai-201418, China
| | - Yan He
- Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai-201418, China
| | - Xia Ma
- Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai-201418, China
| |
Collapse
|
4
|
Zandieh MA, Farahani MH, Daryab M, Motahari A, Gholami S, Salmani F, Karimi F, Samaei SS, Rezaee A, Rahmanian P, Khorrami R, Salimimoghadam S, Nabavi N, Zou R, Sethi G, Rashidi M, Hushmandi K. Stimuli-responsive (nano)architectures for phytochemical delivery in cancer therapy. Biomed Pharmacother 2023; 166:115283. [PMID: 37567073 DOI: 10.1016/j.biopha.2023.115283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The use of phytochemicals for purpose of cancer therapy has been accelerated due to resistance of tumor cells to conventional chemotherapy drugs and therefore, monotherapy does not cause significant improvement in the prognosis and survival of patients. Therefore, administration of natural products alone or in combination with chemotherapy drugs due to various mechanisms of action has been suggested. However, cancer therapy using phytochemicals requires more attention because of poor bioavailability of compounds and lack of specific accumulation at tumor site. Hence, nanocarriers for specific delivery of phytochemicals in tumor therapy has been suggested. The pharmacokinetic profile of natural products and their therapeutic indices can be improved. The nanocarriers can improve potential of natural products in crossing over BBB and also, promote internalization in cancer cells through endocytosis. Moreover, (nano)platforms can deliver both natural and synthetic anti-cancer drugs in combination cancer therapy. The surface functionalization of nanostructures with ligands improves ability in internalization in tumor cells and improving cytotoxicity of natural compounds. Interestingly, stimuli-responsive nanostructures that respond to endogenous and exogenous stimuli have been employed for delivery of natural compounds in cancer therapy. The decrease in pH in tumor microenvironment causes degradation of bonds in nanostructures to release cargo and when changes in GSH levels occur, it also mediates drug release from nanocarriers. Moreover, enzymes in the tumor microenvironment such as MMP-2 can mediate drug release from nanocarriers and more progresses in targeted drug delivery obtained by application of nanoparticles that are responsive to exogenous stimulus including light.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Motahari
- Board-Certified in Veterinary Surgery, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Islamic Azad University, Babol Branch, Babol, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Seyedeh Setareh Samaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Versatile functionalization of pectic conjugate: From design to biomedical applications. Carbohydr Polym 2023; 306:120605. [PMID: 36746571 DOI: 10.1016/j.carbpol.2023.120605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Pectin exists extensively in nature and has attracted much attention in biological applications for its unique chemical and physical characteristics. Functionalized pectin, especially pectic conjugates, has given many possibilities for pectin to improve its properties and bioactivity as well as to deliver active molecules. To better exploit this strategy of pectic functionalization, this review presents in detail the structural modifications of pectin, different synthetic methods, and design strategies of pectic conjugates involving both traditional chemical and "green" approaches. Here, the research ideas and applications of pectic prodrugs as well as the development of preparation based on pectic conjugates are reviewed, with emphasis on crosslinking systems of functionalized pectin and nanosystems based on self-assembly techniques. We hope this review will provide comprehensive and valuable information for the functionalization and systematization of the pectic conjugate from synthesis to application.
Collapse
|
6
|
Talib WH, Abuawad A, Thiab S, Alshweiat A, Mahmod AI. Flavonoid-based nanomedicines to target tumor microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Ye J, Yi Y, Wang H, Wang G, Sun Y, Liu E, Tao X, He C. A Study of Glutathione-Responsive Dual-Drug-Loaded Nanoparticles in Anti-Osteosarcoma Treatment. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We connected polyglutamic acid and methotrexate (MTX) through disulfide bonds to prepare glutathione-responsive nanoparticles (MTX NPs) and encapsulated doxorubicin (DOX) to obtain dual drug-loaded NPs (DOX/MTX NPs) (Fig. 1). The appearance of the carbonyl stretching vibration peak
at approximately 1640 cm−1 in the results of the infrared spectrum proved the successful synthesis of three kinds of nanoparticles (NPs) with different feeding ratios. The particle sizes of NPs with different feeding ratios were 100–200 nm, and the encapsulation of DOX
slightly increased the size, while the surface charge was always negative. The release of MTX at 10 mM glutathione (GSH) was as high as 91.45%, and that of DOX was 89.44%, suggesting that the breakage of disulfide bonds leads to the disintegration of NPs. The results of the cell experiment
showed that the encapsulation of DOX effectively increased toxicity and side effects in 143B cells and significantly induced cell apoptosis, and the inhibition of the migration rate increased as the feeding ratio increased. In animal experiments, DOX/MTX NPs significantly induced tumor cell
apoptosis and inhibited cell proliferation and tumor growth. The nanoparticles had excellent tumor-targeting properties. Tumor-targeted NPs with the combined action of the two drugs provided a good strategy for the efficient and precise treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jia Ye
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Yangfei Yi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Hongyi Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Guowei Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Yuting Sun
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Enze Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Xiaojun Tao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Chunlian He
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, China
| |
Collapse
|
8
|
Rezaei A, Rafieian F, Akbari-Alavijeh S, Kharazmi MS, Jafari SM. Release of bioactive compounds from delivery systems by stimuli-responsive approaches; triggering factors, mechanisms, and applications. Adv Colloid Interface Sci 2022; 307:102728. [PMID: 35843031 DOI: 10.1016/j.cis.2022.102728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 11/01/2022]
Abstract
Recent advances in emerging nanocarriers and stimuli-responsive (SR) delivery systems have brought about a revolution in the food and pharmaceutical industries. SR carriers are able to release the encapsulated bioactive compounds (bioactives) upon an external trigger. The potential of releasing the loaded bioactives in site-specific is of great importance for the pharmaceutical industry and medicine that can deliver the cargo in an appropriate condition. For the food industry, release of encapsulated bioactives is considerably important in processing or storage of food products and can be used in their formulation or packaging. There are various stimuli to control the favorite release of bioactives. In this review, we will shed light on the effect of different stimuli such as temperature, humidity, pH, light, enzymatic hydrolysis, redox, and also multiple stimuli on the release of encapsulated cargo and their potential applications in the food and pharmaceutical industries. An overview of cargo release mechanisms is also discussed. Furthermore, various alternatives to manipulate the controlled release of bioactives from carriers and the perspective of more progress in these SR carriers are highlighted.
Collapse
Affiliation(s)
- Atefe Rezaei
- Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran.
| | - Fatemeh Rafieian
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Safoura Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, P.O. Box 56199-11367, Ardabil, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
9
|
Yan Y, Wu Q, Ren P, Liu Q, Zhang N, Ji Y, Liu J. Zinc ions coordinated carboxymethyl chitosan-hyaluronic acid microgel for pulmonary drug delivery. Int J Biol Macromol 2021; 193:1043-1049. [PMID: 34800517 DOI: 10.1016/j.ijbiomac.2021.11.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
Microgel affords a porous and swollen microstructure for the establishment of pulmonary delivery system with sustained released properties. Here, we report a microgel (with the diameter around 4 μm) prepared with a precipitation method, synthesized by coordinating Zn2+ to the Schiff base cross-linked carboxymethyl chitosan and glycol split hyaluronate. The microgel has shown well swollen and pH sensitive behaviors, high safety and biocompatibility in vitro. Besides, the biomaterial could escape from macrophage phagocytosis, a key factor contribute to quick drug clearance in the lung after co-incubated with RAW 264.7 cells. In consist with this, the bovine serum albumin loaded in the microgel showed sustained release behavior in 24 h in vitro; meanwhile, the drug had a retention time up to 36 h in the lung and followed by clearance in ICR mice through pulmonary administration. Thus, our microgel platform provides a promising candidate for pulmonary drug delivery systems with controlled release rate.
Collapse
Affiliation(s)
- Yishu Yan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, People's Republic of China.
| | - Qingqing Wu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Panpan Ren
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Qiuyi Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Na Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yang Ji
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, CA 92093, United States
| | - Jingxian Liu
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, People's Republic of China
| |
Collapse
|
10
|
Shishir MRI, Gowd V, Suo H, Wang M, Wang Q, Chen F, Cheng KW. Advances in smart delivery of food bioactive compounds using stimuli-responsive carriers: Responsive mechanism, contemporary challenges, and prospects. Compr Rev Food Sci Food Saf 2021; 20:5449-5488. [PMID: 34668321 DOI: 10.1111/1541-4337.12851] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/12/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022]
Abstract
Many important food bioactive compounds are plant secondary metabolites that have traditional applications for health promotion and disease prevention. However, the chemical instability and poor bioavailability of these compounds represent major challenges to researchers. In the last decade, therefore, major impetus has been given for the research and development of advanced carrier systems for the delivery of natural bioactive molecules. Among them, stimuli-responsive carriers hold great promise for simultaneously improving stability, bioavailability, and more importantly delivery and on-demand release of intact bioactive phytochemicals to target sites in response to certain stimuli or combination of them (e.g., pH, temperature, oxidant, enzyme, and irradiation) that would eventually enhance therapeutic outcomes and reduce side effects. Hybrid formulations (e.g., inorganic-organic complexes) and multi-stimuli-responsive formulations have demonstrated great potential for future studies. Therefore, this review systematically compiles and assesses the recent advances on the smart delivery of food bioactive compounds, particularly quercetin, curcumin, and resveratrol through stimuli-responsive carriers, and critically reviews their functionality, underlying triggered-release mechanism, and therapeutic potential. Finally, major limitations, contemporary challenges, and possible solutions/future research directions are highlighted. Much more research is needed to optimize the processing parameters of existing formulations and to develop novel ones for lead food bioactive compounds to facilitate their food and nutraceutical applications.
Collapse
Affiliation(s)
- Mohammad Rezaul Islam Shishir
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Vemana Gowd
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Hao Suo
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,School of Biological Sciences, The University of Hong Kong, Hong Kong, P. R. China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
11
|
Omidi S, Rafiee Z, Kakanejadifard A. Design and synthesis of curcumin nanostructures: Evaluation of solubility, stability, antibacterial and antioxidant activities. Bioorg Chem 2021; 116:105308. [PMID: 34509044 DOI: 10.1016/j.bioorg.2021.105308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
By coupling a quaternary pyridinium compound and curcumin (CM), a new antimicrobial agent called CP was obtained. The poor water-solubility was the most important limiting factor in the use of CM and CP. To address this problem, a hydrophilic hyperbranched polyglycerol (PG) was synthesized and reacted with CM and CP via Schiff base reaction to form two new macromolecules. Due to the presence of polymer, the solubility and stability of CM and CP increased significantly in aqueous media. Since the new macromolecules were including the hydrophilic polymeric and curcumin hydrophobic units, they self-assembled into spherical nanostructures, which were characterized by Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) images. The synthetic nanostructures exhibited a controlled release of curcumin unit in the acidic environment. In vitro experiments showed that the new macromolecules are potent antibacterial and antioxidant agents.
Collapse
Affiliation(s)
- Sakineh Omidi
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran.
| | - Zeinab Rafiee
- Department of Chemistry, Malayer University, Malayer, Iran
| | - Ali Kakanejadifard
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| |
Collapse
|
12
|
Dhara (Ganguly) M. Smart polymeric nanostructures for targeted delivery of therapeutics. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1842766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mahua Dhara (Ganguly)
- Department of Chemistry, Vivekananda Satavarshiki Mahavidyalaya, Jhargram, West Bengal, India
| |
Collapse
|
13
|
Rashidzadeh H, Rezaei SJT, Zamani S, Sarijloo E, Ramazani A. pH-sensitive curcumin conjugated micelles for tumor triggered drug delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:320-336. [PMID: 33026298 DOI: 10.1080/09205063.2020.1833815] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Development of new drugs are confronted with some barriers and challenges, since these projects are mainly expensive, complex, time consuming with lack of success, there is an urgent need to reformulate the current poorly water soluble anti-cancer drugs. In this study, a new type of polymer-curcumin conjugates based on glycidyl azide polymer (GAP) was developed for cancer therapy. The copolymer was used for delivery of curcumin (CUR) as an anticancer drug to cancer cells. Our method is based on the facile conjugation of CUR to amine-containing polymeric vehicles through imine linkage bonds, which could remain stable in normal physiological condition while readily dissociate by an acidic environment and make the prodrug active to liberate its payload CUR to inhibit cell growth. The results demonstrated that fabricated amphiphilic PDCs were self-assembled into nanosized micelles in aqueous solution and the micelles showed an average size of 180 nm with a good polydispersity index. Drug release studies demonstrated that this nano-conjugate is fairly stable at physiologic environments but prone to mild acidic conditions which would trigger the release of conjugated CUR. Moreover, the PDCs micelles exhibited excellent cytotoxicity effect on 4T1 mouse breast cancer cell line but no significant toxicity was observed for the copolymer. In addition, the copolymer did not display remarkable toxicity against A. salina even at high doses of copolymer. In addition, the synthesized PDCs exhibited hemolysis lowers than 6%. The safety of copolymers as a drug vehicle was also confirmed by LD50, since all mice which treated with 5000 mg/Kg (limited dose) were still alive after one week. Our findings revealed that these unique pH-sensitive PDCs may provide a promising approach for delivery of the anticancer drugs to cancer cells.[Formula: see text].
Collapse
Affiliation(s)
- Hamid Rashidzadeh
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Jamal Tabatabaei Rezaei
- Laboratory of Novel Drug Delivery Systems, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Sahar Zamani
- Laboratory of Novel Drug Delivery Systems, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Elnaz Sarijloo
- Laboratory of Novel Drug Delivery Systems, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
14
|
Yang Z, Liu J, Lu Y. Doxorubicin and CD‑CUR inclusion complex co‑loaded in thermosensitive hydrogel PLGA‑PEG‑PLGA localized administration for osteosarcoma. Int J Oncol 2020; 57:433-444. [PMID: 32468050 PMCID: PMC7307595 DOI: 10.3892/ijo.2020.5067] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/24/2020] [Indexed: 12/16/2022] Open
Abstract
Combination therapy is a promising and prevalent strategy for osteosarcoma treatment. Curcumin (CUR), as a chemosensitizer, improves the antitumor effect of first‑line chemotherapy drugs. However, due to its poor solubility and instability in physiological conditions, the bioavailability of CUR is limited. In order to improve the physicochemical properties of natural CUR, β‑cyclodextrin was adopted to generate a β‑cyclodextrin curcumin (CD‑CUR) inclusion complex. A thermosensitive hydrogel, poly(D,L‑lactide‑co‑glycolide)-poly(ethylene‑glycol)‑poly(D,L‑lactide‑co‑glycolide), was selected and synthesized to co‑deliver doxorubicin (DOX) and CD‑CUR to tumor sites. The dual‑drug delivery system (gel+DOX+CD‑CUR) was prepared by mixing drugs with hydrogels and had a perfect sol‑gel phase transition temperature (18.3˚C for 20% concentration). Both DOX and CUR were released from hydrogels in a sustained manner in PBS (pH 7.4) medium. The combination therapy based on DOX+CD‑CUR exhibited higher antitumor activity than monotherapies in vitro. Combined CD‑CUR therapy significantly downregulated Bcl‑2 expression and upregulated caspase‑3 expression, suggesting that DOX combined with CD‑CUR treatment has a higher apoptosis‑inducing efficiency. The antitumor efficiency of the gel+DOX+CD‑CUR strategy was evaluated in K‑7 tumor‑bearing mice, and this localized combination therapy demonstrated a higher antitumor efficiency compared with free DOX+CD‑CUR or single‑drug strategies. There were no significant differences in body weight and histological changes of major organs in each group. Therefore, the present combination treatment based on hydrogel may be a feasible approach to co‑deliver DOX and CD‑CUR to osteosarcoma tumor sites in clinical practice.
Collapse
Affiliation(s)
- Zhiming Yang
- Department of Thoracic Surgery, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of University of Science and Technology of China West District), Hefei, Anhui 230000, P.R. China
| | - Jianguo Liu
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yichen Lu
- Department of Oncology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410002, P.R. China
| |
Collapse
|
15
|
Melnyk T, Đorđević S, Conejos-Sánchez I, Vicent MJ. Therapeutic potential of polypeptide-based conjugates: Rational design and analytical tools that can boost clinical translation. Adv Drug Deliv Rev 2020; 160:136-169. [PMID: 33091502 DOI: 10.1016/j.addr.2020.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
The clinical success of polypeptides as polymeric drugs, covered by the umbrella term "polymer therapeutics," combined with related scientific and technological breakthroughs, explain their exponential growth in the development of polypeptide-drug conjugates as therapeutic agents. A deeper understanding of the biology at relevant pathological sites and the critical biological barriers faced, combined with advances regarding controlled polymerization techniques, material bioresponsiveness, analytical methods, and scale up-manufacture processes, have fostered the development of these nature-mimicking entities. Now, engineered polypeptides have the potential to combat current challenges in the advanced drug delivery field. In this review, we will discuss examples of polypeptide-drug conjugates as single or combination therapies in both preclinical and clinical studies as therapeutics and molecular imaging tools. Importantly, we will critically discuss relevant examples to highlight those parameters relevant to their rational design, such as linking chemistry, the analytical strategies employed, and their physicochemical and biological characterization, that will foster their rapid clinical translation.
Collapse
Affiliation(s)
- Tetiana Melnyk
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Snežana Đorđević
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inmaculada Conejos-Sánchez
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
16
|
Omidi S, Kakanejadifard A. A review on biological activities of Schiff base, hydrazone, and oxime derivatives of curcumin. RSC Adv 2020; 10:30186-30202. [PMID: 35518272 PMCID: PMC9056295 DOI: 10.1039/d0ra05720g] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Schiff base, hydrazone, and oxime derivatives of curcumin showed enhanced biological activities.
Collapse
Affiliation(s)
- Sakineh Omidi
- Department of Chemistry
- Faculty of Science
- Lorestan University
- Khorramabad
- Iran
| | - Ali Kakanejadifard
- Department of Chemistry
- Faculty of Science
- Lorestan University
- Khorramabad
- Iran
| |
Collapse
|
17
|
Zhang HJ, Zhao X, Chen LJ, Yang CX, Yan XP. pH-Driven Targeting Nanoprobe with Dual-Responsive Drug Release for Persistent Luminescence Imaging and Chemotherapy of Tumor. Anal Chem 2019; 92:1179-1188. [DOI: 10.1021/acs.analchem.9b04318] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hong-Jiao Zhang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xu Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Li-Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Cheng-Xiong Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
18
|
Liu B, Che C, Liu J, Si M, Gong Z, Li Y, Zhang J, Yang G. Fabrication and Antitumor Mechanism of a Nanoparticle Drug Delivery System: Graphene Oxide/Chitosan Oligosaccharide/
γ
‐Polyglutamic Acid Composites for Anticancer Drug Delivery. ChemistrySelect 2019. [DOI: 10.1002/slct.201903145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Baoqing Liu
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Chengchuan Che
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Jinfeng Liu
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Meiru Si
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Zhijin Gong
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Yuan Li
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Junming Zhang
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| | - Ge Yang
- College of Life SciencesQufu Normal University Qufu 273165, Shandong China
| |
Collapse
|
19
|
Raza A, Hayat U, Rasheed T, Bilal M, Iqbal HMN. Redox-responsive nano-carriers as tumor-targeted drug delivery systems. Eur J Med Chem 2018; 157:705-715. [PMID: 30138802 DOI: 10.1016/j.ejmech.2018.08.034] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/23/2018] [Accepted: 08/12/2018] [Indexed: 02/08/2023]
Abstract
With ever increasing scientific knowledge and awareness, research is underway around the globe to design new types of stimuli (external/internal) responsive nano-carriers for biotechnological applications at large and biomedical/pharmaceutical in particular. Based on literature evidence, stimuli-responsive carriers have been classified into four major categories, i.e. (1) physical, (2) chemical, (3) biological, and (4) dual (combination of any of the first three classes). Among various types, redox-responsive nano-carriers are of supreme interests and discussed here in this review. The difference in redox potential in tumor and normal tissue is considered as a potential target for tumor targeting leading to the development of redox-responsive drug delivery systems (DDS). In this regard, a high concentration of glutathione in tumor/intracellular environment has extensively been exploited. Disulfide bonds were found as a promising tool for designing redox-responsive which tend to cleave in a reductive environment forming sulfhydryl groups. Many nano-carriers have been explored widely to control tumor growth. These systems were used against the tumor xenograft animal model and showed improved tumor targeting with tumor growth inhibition. Herein, an effort has been made to summarize various aspects from design to development of numerous types of redox-responsive DDS including liposomes, micelles, nanoparticles, nanogel and prodrug based nanomedicines. An emphasis is also given on various types of nano-carriers with special reference to the tumor-targeted drug delivery applications. Also, dual responsive nano-carriers (in addition to redox-responsive) have also been briefly discussed. Towards the end of the chapter, the information is also given on their future perspectives.
Collapse
Affiliation(s)
- Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Uzma Hayat
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico.
| |
Collapse
|
20
|
Zhang L, Wu L, Shi G, Sang X, Ni C. Studies on the preparation and controlled release of redox/pH-responsive zwitterionic nanoparticles based on poly-L-glutamic acid and cystamine. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:646-662. [DOI: 10.1080/09205063.2018.1433108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Liping Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Luyan Wu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Gang Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Xinxin Sang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Caihua Ni
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|