1
|
Saitani EM, Pippa N, Perinelli DR, Forys A, Papakyriakopoulou P, Lagopati N, Bonacucina G, Trzebicka B, Gazouli M, Pispas S, Valsami G. PEO- b-PCL/Tween 80/cyclodextrin systems: from bioinspired fabrication to possible nasal administration of ropinirole hydrochloride. J Mater Chem B 2024; 12:6587-6604. [PMID: 38804576 DOI: 10.1039/d4tb00489b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In this study, we designed and developed systems composed of poly(ethylene-oxide)-b-poly(ε-caprolactone) block copolymers of different molecular weights and compositions, non-ionic surfactant, and cyclodextrins. The innovation of this study lies in the combination of these diverse biomaterials to create biomimetic and bioinspired drug delivery supramolecular structures. The systems were formed by the thin-film hydration method. Extensive physicochemical and morphological characterization was conducted using differential scanning calorimetry, light scattering techniques, microcalorimetry analysis, high-resolution ultrasound spectroscopy, surface tension measurements, fluorescence spectroscopy, cryogenic transmission electron microscopy images, and in vitro cytotoxicity evaluation. These innovative hybrid nanoparticles were found to be attractive candidates as drug delivery systems with unique properties by encompassing the physicochemical and thermotropic properties of both classes of materials. Subsequently, Ropinirole hydrochloride was used as a model drug for the purpose of this study. These systems showed a high RH content (%), and in vitro diffusion experiments revealed that more than 90% of the loading dose was released under pH and temperature conditions that simulate the conditions of the nasal cavity. Promising drug release performance was observed with all tested formulations, worth further investigation to explore both ex vivo permeation through the nasal mucosa and in vivo performance in an experimental animal model.
Collapse
Affiliation(s)
- Elmina-Marina Saitani
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece.
| | - Natassa Pippa
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece.
| | - Diego Romano Perinelli
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy.
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland.
| | - Paraskevi Papakyriakopoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece.
| | - Nefeli Lagopati
- Department of Basic Medical Science, Laboratory of Biology, School of Medicine National and Kapodistrian University of Athens, 11527 Athens, Greece.
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Giulia Bonacucina
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy.
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland.
| | - Maria Gazouli
- Department of Basic Medical Science, Laboratory of Biology, School of Medicine National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece.
| |
Collapse
|
2
|
Saitani EM, Pippa N, Perinelli DR, Forys A, Papakyriakopoulou P, Lagopati N, Bonacucina G, Trzebicka B, Gazouli M, Pispas S, Valsami G. Fabricating Polymer/Surfactant/Cyclodextrin Hybrid Particles for Possible Nose-to-Brain Delivery of Ropinirole Hydrochloride: In Vitro and Ex Vivo Evaluation. Int J Mol Sci 2024; 25:1162. [PMID: 38256239 PMCID: PMC10816138 DOI: 10.3390/ijms25021162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Ropinirole is a non-ergolinic dopamine agonist used to manage Parkinson's disease and it is characterized by poor oral bioavailability. This study aimed to design and develop advanced drug delivery systems composed of poloxamer 407, a non-ionic surfactant (Tween 80), and cyclodextrins (methyl-β-CD or hydroxy-propyl-β-CD) for possible brain targeting of ropinirole after nasal administration for the treatment of Parkinson's disease. The hybrid systems were formed by the thin-film hydration method, followed by an extensive physicochemical and morphological characterization. The in vitro cytotoxicity of the systems on HEK293 cell lines was also tested. In vitro release and ex vivo mucosal permeation of ropinirole were assessed using Franz cells at 34 °C and with phosphate buffer solution at pH 5.6 in the donor compartment, simulating the conditions of the nasal cavity. The results indicated that the diffusion-controlled drug release exhibited a progressive increase throughout the experiment, while a proof-of-concept experiment on ex vivo permeation through rabbit nasal mucosa revealed a better performance of the prepared hybrid systems in comparison to ropinirole solution. The encouraging results in drug release and mucosal permeation indicate that these hybrid systems can serve as attractive platforms for effective and targeted nose-to-brain delivery of ropinirole with a possible application in Parkinson's disease. Further ex vivo and in vivo studies to support the results of the present work are ongoing.
Collapse
Affiliation(s)
- Elmina-Marina Saitani
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece; (E.-M.S.); (N.P.); (P.P.)
| | - Natassa Pippa
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece; (E.-M.S.); (N.P.); (P.P.)
| | - Diego Romano Perinelli
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.R.P.); (G.B.)
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Paraskevi Papakyriakopoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece; (E.-M.S.); (N.P.); (P.P.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.L.); (M.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Giulia Bonacucina
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.R.P.); (G.B.)
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.L.); (M.G.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece; (E.-M.S.); (N.P.); (P.P.)
| |
Collapse
|
3
|
Tarannum N, Kumar D. Synthesis and characterization of copolymers of β-cyclodextrin derivatives. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
4
|
Wilhelms B, Broscheit J, Shityakov S. Chemical Analysis and Molecular Modelling of Cyclodextrin-Formulated Propofol and Its Sodium Salt to Improve Drug Solubility, Stability and Pharmacokinetics (Cytogenotoxicity). Pharmaceuticals (Basel) 2023; 16:ph16050667. [PMID: 37242449 DOI: 10.3390/ph16050667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 05/28/2023] Open
Abstract
Propofol is a widely used general anesthetic in clinical practice, but its use is limited by its water-insoluble nature and associated pharmacokinetic and pharmacodynamic limitations. Therefore, researchers have been searching for alternative formulations to lipid emulsion to address the remaining side effects. In this study, novel formulations for propofol and its sodium salt Na-propofolat were designed and tested using the amphiphilic cyclodextrin (CD) derivative hydroxypropyl-β-cyclodextrin (HPβCD). The study found that spectroscopic and calorimetric measurements suggested complex formation between propofol/Na-propofolate and HPβCD, which was confirmed by the absence of an evaporation peak and different glass transition temperatures. Moreover, the formulated compounds showed no cytotoxicity and genotoxicity compared to the reference. The molecular modeling simulations based on molecular docking predicted a higher affinity for propofol/HPβCD than for Na-propofolate/HPβCD, as the former complex was more stable. This finding was further confirmed by high-performance liquid chromatography. In conclusion, the CD-based formulations of propofol and its sodium salt may be a promising option and a plausible alternative to conventional lipid emulsions.
Collapse
Affiliation(s)
- Benedikt Wilhelms
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg University Hospital, 97080 Würzburg, Germany
| | - Jens Broscheit
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg University Hospital, 97080 Würzburg, Germany
| | - Sergey Shityakov
- Infochemistry Scientific Center, Laboratory of Chemoinformatics, ITMO University, Saint Petersburg 191002, Russia
| |
Collapse
|
5
|
Shin Y, Hu Y, Park S, Jung S. Novel succinoglycan dialdehyde/aminoethylcarbamoyl-β-cyclodextrin hydrogels for pH-responsive delivery of hydrophobic drugs. Carbohydr Polym 2023; 305:120568. [PMID: 36737206 DOI: 10.1016/j.carbpol.2023.120568] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
β-Cyclodextrin cross-linked succinoglycan dialdehyde hydrogels was prepared for hydrophobic drug delivery. Succinoglycan dialdehyde (SGDA) was synthesized from sodium periodate oxidation of succinoglycan isolated from Sinorhizobium meliloti Rm1021. Aminoethylcarbamoyl-β-cyclodextrin (ACD) was crosslinked with SGDA to form a succinoglycan dialdehyde/aminoethylcarbamoyl-β-cyclodextrin (SGDA/ACD) hydrogels. The SGDA/ACD hydrogels exhibited a 65.7 % improvement in storage modulus (G') and a 5.7-fold higher compressive strain than the SGDA/poly(ethylene glycol) diamine (PEG) hydrogels as controls. A hardly soluble drug, baicalein was used for the drug loading and release properties of SGDA/ACD hydrogels. Baicalein was released about 98 % within 48 h at pH 7.4, but not completely released even after 48 h at pH 2.0. In addition, at pH 7.4, only about 56 % of the baicalein loaded on the SGDA/PEG hydrogels was released within 48 h, while about 98 % of the baicalein loaded on the SGDA/ACD hydrogels was released within 48 h. It indicates that ACD significantly improved the solubilization efficacy of the baicalein. In vitro testing of cell viability using HEK-293 cells also showed that the SGDA/ACD hydrogels were suitable for the cells. In conclusion, SGDA/ACD hydrogels significantly enhance the utilization of baicalein and provide potential applications in drug delivery systems for hardly soluble drugs.
Collapse
Affiliation(s)
- Younghyun Shin
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Yiluo Hu
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Sohyun Park
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea; Department of Systems Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea.
| |
Collapse
|
6
|
Cyclodextrin-Based Polymeric Drug Delivery Systems for Cancer Therapy. Polymers (Basel) 2023; 15:polym15061400. [PMID: 36987181 PMCID: PMC10052104 DOI: 10.3390/polym15061400] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Cyclodextrins (CDs) are one of the most extensively studied cyclic-oligosaccharides due to their low toxicity, good biodegradability and biocompatibility, facile chemical modification, and unique inclusion capacity. However, problems such as poor pharmacokinetics, plasma membrane disruption, hemolytic effects and a lack of target specificity still exist for their applications as drug carriers. Recently, polymers have been introduced into CDs to combine the advantages of both biomaterials for the superior delivery of anticancer agents in cancer treatment. In this review, we summarize four types of CD-based polymeric carriers for the delivery of chemotherapeutics or gene agents for cancer therapy. These CD-based polymers were classified based on their structural properties. Most of the CD-based polymers were amphiphilic with the introduction of hydrophobic/hydrophilic segments and were able to form nanoassemblies. Anticancer drugs could be included in the cavity of CDs, encapsulated in the nanoparticles or conjugated on the CD-based polymers. In addition, the unique structures of CDs enable the functionalization of targeting agents and stimuli-responsive materials to realize the targeting and precise release of anticancer agents. In summary, CD-based polymers are attractive carriers for anticancer agents.
Collapse
|
7
|
Mamman S, Yaacob SFFS, Raoov M, Mehamod FS, Zain NNM, Suah FBM. Exploring the performance of magnetic methacrylic acid-functionalized β-cyclodextrin adsorbent toward selected phenolic compounds. J Anal Sci Technol 2023. [DOI: 10.1186/s40543-023-00367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AbstractIn this study, the removal of bisphenol A (BPA), 2,4-dinitrophenol (2,4-DNP), and 2,4-dichlorophenol (2,4-DCP) using a new magnetic adsorbent methacrylic acid-functionalized β-cyclodextrin (Fe3O4@MAA-βCD) was evaluated. The materials were characterized by Fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, and X-ray diffraction. The batch adsorption experiments optimized and evaluated various operational parameters such as pH, contact time, sorbent dosage, initial concentration, and temperature. The result shows that DNP possessed the most excellent affinity toward Fe3O4@MAA-βCD adsorbents compared to BPA and DCP. Also, BPA showed the lowest removal and was used as a model analyte for further study. The adsorption kinetic data revealed that the uptake of these compounds follows the pseudo-second order. Freundlich and Halsey isotherms best-fitted the adsorption equilibrium data. The desorption process was exothermic and spontaneous, and a lower temperature favored the adsorption. Furthermore, hydrogen bonding, inclusion complexion, and π–π interactions contributed to the selected phenolic compound’s adsorption.
Collapse
|
8
|
Li Y, Su Y, Li Z, Chen Y. Supramolecular Combination Cancer Therapy Based on Macrocyclic Supramolecular Materials. Polymers (Basel) 2022; 14:polym14224855. [PMID: 36432982 PMCID: PMC9696801 DOI: 10.3390/polym14224855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Supramolecular combination therapy adopts supramolecular materials to design intelligent drug delivery systems with different strategies for cancer treatments. Thereinto, macrocyclic supramolecular materials play a crucial role in encapsulating anticancer drugs to improve anticancer efficiency and decrease toxicity towards normal tissue by host-guest interaction. In general, chemotherapy is still common therapy for solid tumors in clinics. However, supramolecular combination therapy can overcome the limitations of the traditional single-drug chemotherapy in the laboratory findings. In this review, we summarized the combination chemotherapy, photothermal chemotherapy, and gene chemotherapy based on macrocyclic supramolecular materials. Finally, the application prospects in supramolecular combination therapy are discussed.
Collapse
|
9
|
Karthic A, Roy A, Lakkakula J, Alghamdi S, Shakoori A, Babalghith AO, Emran TB, Sharma R, Lima CMG, Kim B, Park MN, Safi SZ, de Almeida RS, Coutinho HDM. Cyclodextrin nanoparticles for diagnosis and potential cancer therapy: A systematic review. Front Cell Dev Biol 2022; 10:984311. [PMID: 36158215 PMCID: PMC9494816 DOI: 10.3389/fcell.2022.984311] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer is still one of the world’s deadliest health concerns. As per latest statistics, lung, breast, liver, prostate, and cervical cancers are reported topmost worldwide. Although chemotherapy is most widely used methodology to treat cancer, poor pharmacokinetic parameters of anticancer drugs render them less effective. Novel nano-drug delivery systems have the caliber to improve the solubility and biocompatibility of various such chemical compounds. In this regard, cyclodextrins (CD), a group of natural nano-oligosaccharide possessing unique physicochemical characteristics has been highly exploited for drug delivery and other pharmaceutical purposes. Their cup-like structure and amphiphilic nature allows better accumulation of drugs, improved solubility, and stability, whereas CDs supramolecular chemical compatibility renders it to be highly receptive to various kinds of functionalization. Therefore combining physical, chemical, and bio-engineering approaches at nanoscale to specifically target the tumor cells can help in maximizing the tumor damage without harming non-malignant cells. Numerous combinations of CD nanocomposites were developed over the years, which employed photodynamic, photothermal therapy, chemotherapy, and hyperthermia methods, particularly targeting cancer cells. In this review, we discuss the vivid roles of cyclodextrin nanocomposites developed for the treatment and theranostics of most important cancers to highlight its clinical significance and potential as a medical tool.
Collapse
Affiliation(s)
- Anandakrishnan Karthic
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Mumbai, India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
- *Correspondence: Arpita Roy, ; Bonglee Kim, ; Talha Bin Emran, ; Jaya Lakkakula,
| | - Jaya Lakkakula
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Mumbai, India
- Centre for Computational Biology and Translational Research, Amity University Maharashtra, Mumbai-Pune Expressway, Mumbai, India
- *Correspondence: Arpita Roy, ; Bonglee Kim, ; Talha Bin Emran, ; Jaya Lakkakula,
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Afnan Shakoori
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- *Correspondence: Arpita Roy, ; Bonglee Kim, ; Talha Bin Emran, ; Jaya Lakkakula,
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Arpita Roy, ; Bonglee Kim, ; Talha Bin Emran, ; Jaya Lakkakula,
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
- IRCBM, COMSATS University Islamabad, Lahore, Pakistan
| | - Ray Silva de Almeida
- Department of Biological Chemistry, Regional University of Cariri –URCA, Crato, Brazil
| | | |
Collapse
|
10
|
Saji VS. Recent Updates on Supramolecular-Based Drug Delivery - Macrocycles and Supramolecular Gels. CHEM REC 2022; 22:e202200053. [PMID: 35510981 DOI: 10.1002/tcr.202200053] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Indexed: 11/09/2022]
Abstract
Supramolecules-based drug delivery has attracted significant recent research attention as it could enhance drug solubility, retention time, targeting, and stimuli responsiveness. Among the different supramolecules and assemblies, the macrocycles and the supramolecular hydrogels are the two important categories investigated to a greater extent. Here, we provide the most recent advancements in these categories. Under macrocycles, reports on drug delivery by cyclodextrins, cucurbiturils, calixarenes/pillararenes, crown ethers and porphyrins are detailed. The second category discusses the supramolecular hydrogels of macrocycles/polymers and low molecular weight gelators. The updated information provided could be helpful to advance R & D in this vital area.
Collapse
Affiliation(s)
- Viswanathan S Saji
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
11
|
Palladium Nanoparticles-Decorated β-Cyclodextrin–Cyanoguanidine Modified Graphene Oxide: A Heterogeneous Nanocatalyst for Suzuki–Miyaura Coupling and Reduction of 4-Nitrophenol Reactions in Aqueous Media. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Mohamadhoseini M, Mohamadnia Z. Alginate-based self-healing hydrogels assembled by dual cross-linking strategy: Fabrication and evaluation of mechanical properties. Int J Biol Macromol 2021; 191:139-151. [PMID: 34543626 DOI: 10.1016/j.ijbiomac.2021.09.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/08/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022]
Abstract
One way to enhance the poor mechanical properties of the self-healing hydrogels based on host-guest (HG) interaction is employing the dual cross-linking method. Here, the alginate-based hydrogels based on HG complexation were prepared through the modification of alginate (ALG) polysaccharide with beta-cyclodextrin (βCD) and adamantane (Ad) as host and guest groups with different grafting values, respectively. The porous structure was confirmed for all ALG-CD:ALG-Ad hydrogels. The average pore size of ALG-CD1:ALG-Ad1 hydrogel cross-linked by HG interactions was 288 μm. Mechanical properties of the alginate-based HG hydrogels were improved by incorporating Ca2+ ions in their structure through dual cross-linking methodology. The maximum modulus of the porous dual-crosslinked hydrogel was reached up to 6500 Pa. The healing time of less than 5 s was obtained for the alginate-based hydrogels. The fabricated hydrogels can be used in 3D printing, tissue engineering, and drug delivery systems due to their biocompatibility and shear-thinning behavior.
Collapse
Affiliation(s)
- Masoumeh Mohamadhoseini
- Polymer Research Laboratory, Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Zahra Mohamadnia
- Polymer Research Laboratory, Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran.
| |
Collapse
|
13
|
Liu Z, Ye L, Xi J, Wang J, Feng ZG. Cyclodextrin polymers: Structure, synthesis, and use as drug carriers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101408] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Yasen W, Dong R, Aini A, Zhu X. Recent advances in supramolecular block copolymers for biomedical applications. J Mater Chem B 2021; 8:8219-8231. [PMID: 32803207 DOI: 10.1039/d0tb01492c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Supramolecular block copolymers (SBCs) have received considerable interest in polymer chemistry, materials science, biomedical engineering and nanotechnology owing to their unique structural and functional advantages, such as low cytotoxicity, outstanding biodegradability, smart environmental responsiveness, and so forth. SBCs comprise two or more different homopolymer subunits linked by noncovalent bonds, and these polymers, in particular, combine the dynamically reversible nature of supramolecular polymers with the hierarchical microphase-separated structures of block polymers. A rapidly increasing number of publications on the synthesis and applications of SBCs have been reported in recent years; however, a systematic summary of the design, synthesis, properties and applications of SBCs has not been published. To this end, this review provides a brief overview of the recent advances in SBCs and describes the synthesis strategies, properties and functions, and their widespread applications in drug delivery, gene delivery, protein delivery, bioimaging and so on. In this review, we aim to elucidate the general concepts and structure-property relationships of SBCs, as well as their practical bioapplications, shedding further valuable insights into this emerging research field.
Collapse
Affiliation(s)
- Wumaier Yasen
- School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, China and School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Ruijiao Dong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. and Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| | - Aliya Aini
- School of Foreign Languages, Xinjiang University, Urumqi 830046, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
15
|
Seidi F, Jin Y, Xiao H. Polycyclodextrins: Synthesis, functionalization, and applications. Carbohydr Polym 2020; 242:116277. [PMID: 32564845 DOI: 10.1016/j.carbpol.2020.116277] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 01/03/2023]
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides with unique conical structure enabling host-guest inclusion complexes. However, virgin CDs sufferfrom low solubility, lack of functional groups and its inability to strong complexation with the guests. One of the most efficient ways to improve the properties of cyclodextrins is the synthesis of polycyclodextrins. Generally, there are two types of polycyclodextrins: 1) polymers containing CD units as parts of the main backbone; and 2) polymers with CD units as side chains. These polycyclodextrins are produced (i) from direct copolymerization of virgin cyclodextrins or cyclodextrins derivatives with various monomers including isocyanates, epoxides, carboxylic acids, anhydrides, acrylates, acrylamides and fluorinated aromatic compounds, or (ii) by post-functionalization of other polymers with CDs or CD derivatives.. By selecting the proper derivatives of CDs and controlling the polymerization, polycyclodextrins with linear, hyperbranched, and crosslinked structures have been synthesized. Polycyclodextrins have found significant applications in numerous areas, as adsorbents for removal of organic pollutants, carriers in gene/drug delivery, and for preparation of supramolecular based hydrogels. The focus of this review paper is placed on the synthesis, characterization, and applications of CDs so as to highlight challenges as well as the promising features of the future ahead of material developments based on CDs.
Collapse
Affiliation(s)
- Farzad Seidi
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yongcan Jin
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3 Canada.
| |
Collapse
|
16
|
Kost B, Brzeziński M, Socka M, Baśko M, Biela T. Biocompatible Polymers Combined with Cyclodextrins: Fascinating Materials for Drug Delivery Applications. Molecules 2020; 25:E3404. [PMID: 32731371 PMCID: PMC7435941 DOI: 10.3390/molecules25153404] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclodextrins (CD) are a group of cyclic oligosaccharides with a cavity/specific structure that enables to form inclusion complexes (IC) with a variety of molecules through non-covalent host-guest interactions. By an elegant combination of CD with biocompatible, synthetic and natural polymers, different types of universal drug delivery systems with dynamic/reversible properties have been generated. This review presents the design of nano- and micro-carriers, hydrogels, and fibres based on the polymer/CD supramolecular systems highlighting their possible biomedical applications. Application of the most prominent hydrophobic aliphatic polyesters that exhibit biodegradability, represented by polylactide and polycaprolactone, is described first. Subsequently, particular attention is focused on materials obtained from hydrophilic polyethylene oxide. Moreover, examples are also presented for grafting of CD on polysaccharides. In summary, we show the application of host-guest interactions in multi-component functional biomaterials for controlled drug delivery.
Collapse
Affiliation(s)
- Bartłomiej Kost
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.S.); (M.B.); (T.B.)
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.S.); (M.B.); (T.B.)
| | | | | | | |
Collapse
|
17
|
Synthesis, characterization and applications of copolymer of β – cyclodextrin: a review. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02058-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
El-Zeiny HM, Abukhadra MR, Sayed OM, Osman AH, Ahmed SA. Insight into novel β-cyclodextrin-grafted-poly (N-vinylcaprolactam) nanogel structures as advanced carriers for 5-fluorouracil: Equilibrium behavior and pharmacokinetic modeling. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124197] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Lee JH, Park SH, Kim SH. Fabrication of bio-based polyurethane nanofibers incorporated with a triclosan/cyclodextrin complex for antibacterial applications. RSC Adv 2020; 10:3450-3458. [PMID: 35497710 PMCID: PMC9048417 DOI: 10.1039/c9ra06992e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/08/2020] [Indexed: 12/28/2022] Open
Abstract
A hybrid polyol consisting of a polycaprolactone diol/castor oil mixture was used to synthesize a biopolyurethane (BPU) that has a dendritic point but is soluble in organic solvents. The chemical structure of the obtained BPU was determined using Fourier transform infrared (FT-IR) spectroscopy and proton nuclear magnetic resonance spectroscopy. The mechanical properties of the electrospun BPU nanofiber were confirmed using a universal testing machine. To enhance the solubility of triclosan (TR), TR–cyclodextrin (CD) complexes were prepared. αCD, βCD, and γCD were used to study the formation of the TR–CD complexes using a coprecipitation technique. The results showed that TR did not form a complex with αCD, whereas it forms complexes partially with βCD and completely with γCD. These findings are supported by FT-IR, differential scanning calorimetry, and X-ray diffraction analyses. The electrospun BPU/TR–CD nanofibers were investigated in terms of morphology, releasing behavior, and antibacterial tests. The BPU/TR–γCD nanofiber shows better antibacterial activity than the others. The results obtained in this study are expected to broaden the range of biobased polyurethane applications where antibacterial properties are required. Bio-polyurethane nanofibers containing triclosan–cyclodextrin complexes to enhance antibacterial properties were prepared using an electrospinning method.![]()
Collapse
Affiliation(s)
- Joo Hyung Lee
- Department of Organic and Nano Engineering
- College of Engineering
- Hanyang University
- Seoul
- Korea
| | | | - Seong Hun Kim
- Department of Organic and Nano Engineering
- College of Engineering
- Hanyang University
- Seoul
- Korea
| |
Collapse
|
20
|
Guo F, Li G, Ma S, Zhou H, Yu X. Dual-responsive nanocarriers from star shaped poly( N-isopropylacrylamide) coated mesoporous silica for drug delivery. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1683555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Feng Guo
- College of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Guiying Li
- College of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Songmei Ma
- College of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Hengquan Zhou
- College of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Xinyue Yu
- College of Chemistry and Materials Science, Ludong University, Yantai, China
| |
Collapse
|
21
|
Ding L, Zhang P, Fu C, Yin J, Mao Y, Liu N, Li S, Yang C, Zhao R, Deng K. Synthesis of Temperature and Light Sensitive Copolymers with Controlled Aggregation during Phase Transitions. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lan Ding
- College of Chemistry & Environmental ScienceAffiliated HospitalHebei University Baoding 071002 China
| | - Pengfei Zhang
- College of Chemistry & Environmental ScienceAffiliated HospitalHebei University Baoding 071002 China
| | - Congcong Fu
- College of Chemistry & Environmental ScienceAffiliated HospitalHebei University Baoding 071002 China
| | - Jialin Yin
- College of Chemistry & Environmental ScienceAffiliated HospitalHebei University Baoding 071002 China
| | - Yongwang Mao
- College of Chemistry & Environmental ScienceAffiliated HospitalHebei University Baoding 071002 China
| | - Na Liu
- College of Chemistry & Environmental ScienceAffiliated HospitalHebei University Baoding 071002 China
| | - Shihua Li
- College of Chemistry & Environmental ScienceAffiliated HospitalHebei University Baoding 071002 China
| | - Chunying Yang
- College of Chemistry & Environmental ScienceAffiliated HospitalHebei University Baoding 071002 China
| | - Ronghui Zhao
- College of Chemistry & Environmental ScienceAffiliated HospitalHebei University Baoding 071002 China
| | - Kuilin Deng
- College of Chemistry & Environmental ScienceAffiliated HospitalHebei University Baoding 071002 China
| |
Collapse
|
22
|
Seidi F, Shamsabadi AA, Amini M, Shabanian M, Crespy D. Functional materials generated by allying cyclodextrin-based supramolecular chemistry with living polymerization. Polym Chem 2019. [DOI: 10.1039/c9py00495e] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclodextrin molecules are cyclic oligosaccharides that display a unique structure including an inner side and two faces on their outer sides.
Collapse
Affiliation(s)
- Farzad Seidi
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | | | - Mojtaba Amini
- Department of Chemistry
- Faculty of Science
- University of Maragheh
- Maragheh
- Iran
| | - Meisam Shabanian
- Faculty of Chemistry and Petrochemical Engineering
- Standard Research Institute (SRI)
- Karaj
- Iran
| | - Daniel Crespy
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| |
Collapse
|
23
|
Cui X, Wang N, Wang H, Li G, Tao Q. pH sensitive supramolecular vesicles from cyclodextrin graft copolymer and benzimidazole ended block copolymer as dual drug carriers. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1493686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xuejun Cui
- Hospital of Ludong University, Yantai, China
| | - Nairong Wang
- College Chemistry and Materials Science, Ludong University, Yantai, China
| | - Hongsheng Wang
- College Chemistry and Materials Science, Ludong University, Yantai, China
| | - Guiying Li
- College Chemistry and Materials Science, Ludong University, Yantai, China
| | - Qian Tao
- College Chemistry and Materials Science, Ludong University, Yantai, China
| |
Collapse
|
24
|
Qian C, Yan P, Wan G, Liang S, Dong Y, Wang J. Facile synthetic Photoluminescent Graphene Quantum dots encapsulated β-cyclodextrin drug carrier system for the management of macular degeneration: Detailed analytical and biological investigations. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:244-249. [DOI: 10.1016/j.jphotobiol.2018.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 01/19/2023]
|
25
|
Zhou Z, Li G, Wang N, Guo F, Guo L, Liu X. Synthesis of temperature/pH dual-sensitive supramolecular micelles from β-cyclodextrin-poly(N-isopropylacrylamide) star polymer for drug delivery. Colloids Surf B Biointerfaces 2018; 172:136-142. [DOI: 10.1016/j.colsurfb.2018.08.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022]
|
26
|
Mejías FJR, Gutiérrez MT, Durán AG, Molinillo JMG, Valdivia MM, Macías FA. Provitamin supramolecular polymer micelle with pH responsiveness to control release, bioavailability enhancement and potentiation of cytotoxic efficacy. Colloids Surf B Biointerfaces 2018; 173:85-93. [PMID: 30273872 DOI: 10.1016/j.colsurfb.2018.09.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 12/22/2022]
Abstract
Encapsulation techniques to generate core/shell systems provide a method that improves physicochemical properties, which are very important in biological applications. β-carotene is a common carotenoid that has shown preventive effects in skin diseases and vitamin A deficiency but this compound has limited water solubility and bioavailability, which hinder its broad application. The use of polyrotaxane compounds formed from cyclodextrins has allowed supramolecular polymer micelles (SMPMs) to be synthesized to encapsulate β-carotene. The polymeric compound Pluronic F127® was also used to create core/shell nanoparticles (NPs) that contain β-carotene. Bioactive compound encapsulation was fully confirmed by nuclear magnetic resonance spectroscopy and by scanning and transmission electron microscopy. The method based on cyclodextrin and lecithin allow to release slowly when the systems were exposed to an aqueous medium by pH control, with an increase of 16 times of bioavailability comparing with free carotenoid. This allowed to potentiate the cytotoxic activity on a melanoma cell line by enhancing the water solubility to more than 28 mg/L, and present promising applications of SMPMs to provitamins.
Collapse
Affiliation(s)
- Francisco J R Mejías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, C/ República Saharaui, 7, 11510, Puerto Real, Cádiz, Spain
| | - M Teresa Gutiérrez
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, C/ República Saharaui, 7, 11510, Puerto Real, Cádiz, Spain
| | - Alexandra G Durán
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, C/ República Saharaui, 7, 11510, Puerto Real, Cádiz, Spain
| | - José M G Molinillo
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, C/ República Saharaui, 7, 11510, Puerto Real, Cádiz, Spain
| | - Manuel M Valdivia
- Department of Biomedicine, Biotechnology and Public Health, Institute of Biomolecules (INBIO), School of Science, University of Cadiz, C/República Saharaui, 7, 11510 Puerto Real, Cádiz, Spain
| | - Francisco A Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, C/ República Saharaui, 7, 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
27
|
Zhou Z, Guo F, Wang N, Meng M, Li G. Dual pH-sensitive supramolecular micelles from star-shaped PDMAEMA based on β-cyclodextrin for drug release. Int J Biol Macromol 2018; 116:911-919. [DOI: 10.1016/j.ijbiomac.2018.05.092] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022]
|