1
|
Lau CS, Park SY, Ethiraj LP, Singh P, Raj G, Quek J, Prasadh S, Choo Y, Goh BT. Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. Int J Mol Sci 2024; 25:6805. [PMID: 38928517 PMCID: PMC11204188 DOI: 10.3390/ijms25126805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration involves multiple factors such as tissue interactions, an inflammatory response, and vessel formation. In the event of diseases, old age, lifestyle, or trauma, bone regeneration can be impaired which could result in a prolonged healing duration or requiring an external intervention for repair. Currently, bone grafts hold the golden standard for bone regeneration. However, several limitations hinder its clinical applications, e.g., donor site morbidity, an insufficient tissue volume, and uncertain post-operative outcomes. Bone tissue engineering, involving stem cells seeded onto scaffolds, has thus been a promising treatment alternative for bone regeneration. Adipose-derived mesenchymal stem cells (AD-MSCs) are known to hold therapeutic value for the treatment of various clinical conditions and have displayed feasibility and significant effectiveness due to their ease of isolation, non-invasive, abundance in quantity, and osteogenic capacity. Notably, in vitro studies showed AD-MSCs holding a high proliferation capacity, multi-differentiation potential through the release of a variety of factors, and extracellular vesicles, allowing them to repair damaged tissues. In vivo and clinical studies showed AD-MSCs favoring better vascularization and the integration of the scaffolds, while the presence of scaffolds has enhanced the osteogenesis potential of AD-MSCs, thus yielding optimal bone formation outcomes. Effective bone regeneration requires the interplay of both AD-MSCs and scaffolds (material, pore size) to improve the osteogenic and vasculogenic capacity. This review presents the advances and applications of AD-MSCs for bone regeneration and bone tissue engineering, focusing on the in vitro, in vivo, and clinical studies involving AD-MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Chau Sang Lau
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - So Yeon Park
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Lalith Prabha Ethiraj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Priti Singh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Grace Raj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Jolene Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Yen Choo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Bee Tin Goh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
2
|
Mishra AH, Mohan S, Gutti P, Krishna S, Sundaraman S, Chakraborti S, Jaiswal AK, Nambi Raj NA, Mishra D. Bioselective and Radiopaque Zinc-Biopolymeric Complex-Based Porous Biomaterials Promote Mammalian Tissue Ingrowth In Vivo While Inhibiting Microbial Biofilm Gene Expression and Biofilm Formation. ACS APPLIED BIO MATERIALS 2024; 7:3701-3713. [PMID: 38748449 DOI: 10.1021/acsabm.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Metal-organic complexes have shown astounding bioactive properties; however, they are rarely explored as biomaterials. Recent studies showed that carboxymethyl-chitosan (CMC) genipin-conjugated zinc biomimetic scaffolds have unique bioselective properties. The biomaterial was reported to be mammalian cell-friendly; at the same time, it was found to discourage microbial biofilm formation on its surface, which seemed to be a promising solution to addressing the problem of trauma-associated biofilm formation and development of antimicrobial resistance. However, the mechanically frail characteristics and zinc overload raise concerns and limit the potential of the said biomaterials. Hence, the present work is focused on improving the strength of the earlier scaffold formulations, testing its in vivo efficacy and reaffirming its action against biofilm-forming microbe Staphylococcus aureus. Scaling up of CMC proportion increased rigidity, and 8% CMC was found to be the ideal concentration for robust scaffold fabrication. Freeze-dried CMC scaffolds with or without genipin (GP) cross-linking were conjugated with zinc using 2 M zinc acetate solution. Characterization results indicated that the CMC-Zn scaffolds, without genipin, showed mechanical properties close to bone fillers, resist in vitro enzymatic degradation until 4 weeks, are porous in nature, and have radiopacity close to mandibular bones. Upon implantation in a subcutaneous pocket of Wistar rats, the scaffolds showed tissue in-growth with simultaneous degradation without any signs of toxicity past 28 days. Neither were there any signs of toxicity in any of the vital organs. Considering many superior properties among the other formulations, the CMC-Zn scaffolds were furthered for biofilm studies. CMC-Zn showed negligible S. aureus biofilm formation on its surface as revealed by an alamar blue-based study. RT-PCR analysis revealed that CMC-Zn downregulated the expression of pro-biofilm effector genes such as icaC and clfB. A protein docking study predicted the inhibitory mechanism of CMC-Zn. Although it binds strongly when alone, at high density, it may cause inactivation of the transmembrane upstream activators of the said genes, thereby preventing their dimerization and subsequent inactivation of the effector genes. In conclusion, zinc-conjugated carboxymethyl-chitosan scaffolds are mechanically robust, porous, yet biodegradable, harmless to the host in the long term, they are radiopaque and prevent biofilm gene expression in notorious microbes; hence, they could be a suitable candidate for bone filler applications.
Collapse
Affiliation(s)
- Arushi Hitendra Mishra
- Bioinspired Design Lab, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Sanjukta Mohan
- Bioinspired Design Lab, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Pavan Gutti
- Bioinspired Design Lab, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Sreevatsan Krishna
- Bioinspired Design Lab, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Sugunapriyadarshini Sundaraman
- Bioinspired Design Lab, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Sourangshu Chakraborti
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Amit Kumar Jaiswal
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - N Arunai Nambi Raj
- School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Debasish Mishra
- Bioinspired Design Lab, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
3
|
Zhang S, Lee Y, Liu Y, Yu Y, Han I. Stem Cell and Regenerative Therapies for the Treatment of Osteoporotic Vertebral Compression Fractures. Int J Mol Sci 2024; 25:4979. [PMID: 38732198 PMCID: PMC11084822 DOI: 10.3390/ijms25094979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Osteoporotic vertebral compression fractures (OVCFs) significantly increase morbidity and mortality, presenting a formidable challenge in healthcare. Traditional interventions such as vertebroplasty and kyphoplasty, despite their widespread use, are limited in addressing the secondary effects of vertebral fractures in adjacent areas and do not facilitate bone regeneration. This review paper explores the emerging domain of regenerative therapies, spotlighting stem cell therapy's transformative potential in OVCF treatment. It thoroughly describes the therapeutic possibilities and mechanisms of action of mesenchymal stem cells against OVCFs, relying on recent clinical trials and preclinical studies for efficacy assessment. Our findings reveal that stem cell therapy, particularly in combination with scaffolding materials, holds substantial promise for bone regeneration, spinal stability improvement, and pain mitigation. This integration of stem cell-based methods with conventional treatments may herald a new era in OVCF management, potentially improving patient outcomes. This review advocates for accelerated research and collaborative efforts to translate laboratory breakthroughs into clinical practice, emphasizing the revolutionary impact of regenerative therapies on OVCF management. In summary, this paper positions stem cell therapy at the forefront of innovation for OVCF treatment, stressing the importance of ongoing research and cross-disciplinary collaboration to unlock its full clinical potential.
Collapse
Affiliation(s)
- Songzi Zhang
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (S.Z.); (Y.L.); (Y.Y.)
| | - Yunhwan Lee
- Department of Medicine, School of Medicine, CHA University, Seongnam-si 13496, Republic of Korea;
| | - Yanting Liu
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (S.Z.); (Y.L.); (Y.Y.)
| | - Yerin Yu
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (S.Z.); (Y.L.); (Y.Y.)
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (S.Z.); (Y.L.); (Y.Y.)
| |
Collapse
|
4
|
Liu X, Huang H, Zhang J, Sun T, Zhang W, Li Z. Recent Advance of Strontium Functionalized in Biomaterials for Bone Regeneration. Bioengineering (Basel) 2023; 10:bioengineering10040414. [PMID: 37106601 PMCID: PMC10136039 DOI: 10.3390/bioengineering10040414] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Bone defect disease causes damage to people’s lives and property, and how to effectively promote bone regeneration is still a big clinical challenge. Most of the current repair methods focus on filling the defects, which has a poor effect on bone regeneration. Therefore, how to effectively promote bone regeneration while repairing the defects at the same time has become a challenge for clinicians and researchers. Strontium (Sr) is a trace element required by the human body, which mainly exists in human bones. Due to its unique dual properties of promoting the proliferation and differentiation of osteoblasts and inhibiting osteoclast activity, it has attracted extensive research on bone defect repair in recent years. With the deep development of research, the mechanisms of Sr in the process of bone regeneration in the human body have been clarified, and the effects of Sr on osteoblasts, osteoclasts, mesenchymal stem cells (MSCs), and the inflammatory microenvironment in the process of bone regeneration have been widely recognized. Based on the development of technology such as bioengineering, it is possible that Sr can be better loaded onto biomaterials. Even though the clinical application of Sr is currently limited and relevant clinical research still needs to be developed, Sr-composited bone tissue engineering biomaterials have achieved satisfactory results in vitro and in vivo studies. The Sr compound together with biomaterials to promote bone regeneration will be a development direction in the future. This review will present a brief overview of the relevant mechanisms of Sr in the process of bone regeneration and the related latest studies of Sr combined with biomaterials. The aim of this paper is to highlight the potential prospects of Sr functionalized in biomaterials.
Collapse
|
5
|
Hassan M, Khaleel A, Karam SM, Al-Marzouqi AH, ur Rehman I, Mohsin S. Bacterial Inhibition and Osteogenic Potentials of Sr/Zn Co-Doped Nano-Hydroxyapatite-PLGA Composite Scaffold for Bone Tissue Engineering Applications. Polymers (Basel) 2023; 15:polym15061370. [PMID: 36987151 PMCID: PMC10057618 DOI: 10.3390/polym15061370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 03/12/2023] Open
Abstract
Bacterial infection associated with bone grafts is one of the major challenges that can lead to implant failure. Treatment of these infections is a costly endeavor; therefore, an ideal bone scaffold should merge both biocompatibility and antibacterial activity. Antibiotic-impregnated scaffolds may prevent bacterial colonization but exacerbate the global antibiotic resistance problem. Recent approaches combined scaffolds with metal ions that have antimicrobial properties. In our study, a unique strontium/zinc (Sr/Zn) co-doped nanohydroxyapatite (nHAp) and Poly (lactic-co-glycolic acid) -(PLGA) composite scaffold was fabricated using a chemical precipitation method with different ratios of Sr/Zn ions (1%, 2.5%, and 4%). The scaffolds’ antibacterial activity against Staphylococcus aureus were evaluated by counting bacterial colony-forming unit (CFU) numbers after direct contact with the scaffolds. The results showed a dose-dependent reduction in CFU numbers as the Zn concentration increased, with 4% Zn showing the best antibacterial properties of all the Zn-containing scaffolds. PLGA incorporation in Sr/Zn-nHAp did not affect the Zn antibacterial activity and the 4% Sr/Zn-nHAp-PLGA scaffold showed a 99.7% bacterial growth inhibition. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay showed that Sr/Zn co-doping supported osteoblast cell proliferation with no apparent cytotoxicity and the highest doping percentage in the 4% Sr/Zn-nHAp-PLGA was found to be ideal for cell growth. In conclusion, these findings demonstrate the potential for a 4% Sr/Zn-nHAp-PLGA scaffold with enhanced antibacterial activity and cytocompatibility as a suitable candidate for bone regeneration.
Collapse
Affiliation(s)
- Mozan Hassan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Abbas Khaleel
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sherif Mohamed Karam
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ali Hassan Al-Marzouqi
- Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ihtesham ur Rehman
- School of Medicine, University of Central Lancashire, Preston PR1 2HE, UK
| | - Sahar Mohsin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: ; Tel.: +971-3-713-7516
| |
Collapse
|
6
|
Lei C, Song JH, Li S, Zhu YN, Liu MY, Wan MC, Mu Z, Tay FR, Niu LN. Advances in materials-based therapeutic strategies against osteoporosis. Biomaterials 2023; 296:122066. [PMID: 36842238 DOI: 10.1016/j.biomaterials.2023.122066] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Osteoporosis is caused by the disruption in homeostasis between bone formation and bone resorption. Conventional management of osteoporosis involves systematic drug administration and hormonal therapy. These treatment strategies have limited curative efficacy and multiple adverse effects. Biomaterials-based therapeutic strategies have recently emerged as promising alternatives for the treatment of osteoporosis. The present review summarizes the current status of biomaterials designed for managing osteoporosis. The advantages of biomaterials-based strategies over conventional systematic drug treatment are presented. Different anti-osteoporotic delivery systems are concisely addressed. These materials include injectable hydrogels and nanoparticles, as well as anti-osteoporotic bone tissue engineering materials. Fabrication techniques such as 3D printing, electrostatic spinning and artificial intelligence are appraised in the context of how the use of these adjunctive techniques may improve treatment efficacy. The limitations of existing biomaterials are critically analyzed, together with deliberation of the future directions in biomaterials-based therapies. The latter include discussion on the use of combination strategies to enhance therapeutic efficacy in the osteoporosis niche.
Collapse
Affiliation(s)
- Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing-Han Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Song Li
- School of Stomatology, Xinjiang Medical University. Urumqi 830011, China
| | - Yi-Na Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ming-Yi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Mei-Chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhao Mu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
7
|
Schulze F, Lang A, Schoon J, Wassilew GI, Reichert J. Scaffold Guided Bone Regeneration for the Treatment of Large Segmental Defects in Long Bones. Biomedicines 2023; 11:biomedicines11020325. [PMID: 36830862 PMCID: PMC9953456 DOI: 10.3390/biomedicines11020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Bone generally displays a high intrinsic capacity to regenerate. Nonetheless, large osseous defects sometimes fail to heal. The treatment of such large segmental defects still represents a considerable clinical challenge. The regeneration of large bone defects often proves difficult, since it relies on the formation of large amounts of bone within an environment impedimental to osteogenesis, characterized by soft tissue damage and hampered vascularization. Consequently, research efforts have concentrated on tissue engineering and regenerative medical strategies to resolve this multifaceted challenge. In this review, we summarize, critically evaluate, and discuss present approaches in light of their clinical relevance; we also present future advanced techniques for bone tissue engineering, outlining the steps to realize for their translation from bench to bedside. The discussion includes the physiology of bone healing, requirements and properties of natural and synthetic biomaterials for bone reconstruction, their use in conjunction with cellular components and suitable growth factors, and strategies to improve vascularization and the translation of these regenerative concepts to in vivo applications. We conclude that the ideal all-purpose material for scaffold-guided bone regeneration is currently not available. It seems that a variety of different solutions will be employed, according to the clinical treatment necessary.
Collapse
Affiliation(s)
- Frank Schulze
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Annemarie Lang
- Departments of Orthopaedic Surgery & Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Georgi I. Wassilew
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Johannes Reichert
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-86-22530
| |
Collapse
|
8
|
Strontium-incorporated bioceramic scaffolds for enhanced osteoporosis bone regeneration. Bone Res 2022; 10:55. [PMID: 35999199 PMCID: PMC9399250 DOI: 10.1038/s41413-022-00224-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/15/2022] [Accepted: 05/29/2022] [Indexed: 11/23/2022] Open
Abstract
The restoration of bone defects caused by osteoporosis remains a challenge for surgeons. Strontium ranelate has been applied in preventative treatment approaches due to the biological functions of the trace element strontium (Sr). In this study, we aimed to fabricate bioactive scaffolds through Sr incorporation based on our previously developed modified amino-functional mesoporous bioactive glass (MBG) and to systematically investigate the bioactivity of the resulting scaffold in vitro and in vivo in an osteoporotic rat model. The results suggested that Sr-incorporated amino-functional MBG scaffolds possessed favorable biocompatibility. Moreover, with the incorporation of Sr, osteogenic and angiogenic capacities were upregulated in vitro. The in vivo results showed that the Sr-incorporated amino-functional MBG scaffolds achieved better bone regeneration and vessel formation. Furthermore, bioinformatics analysis indicated that the Sr-incorporated amino-functional MBG scaffolds could reduce reactive oxygen species levels in bone marrow mesenchymal stem cells in the osteoporotic model by activating the cAMP/PKA signaling pathway, thus playing an anti-osteoporosis role while promoting osteogenesis. This study demonstrated the feasibility of incorporating trace elements into scaffolds and provided new insights into biomaterial design for facilitating bone regeneration in the treatment of osteoporosis.
Collapse
|
9
|
Nik Md Noordin Kahar NNF, Ahmad N, Mariatti M, Yahaya BH, Sulaiman AR, Abdul Hamid ZA. A review on bioceramics scaffolds for bone defect in different types of animal models: HA and β -TCP. Biomed Phys Eng Express 2022; 8. [PMID: 35921834 DOI: 10.1088/2057-1976/ac867f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/03/2022] [Indexed: 11/12/2022]
Abstract
Increased life expectancy has led to an increase in the use of bone substitutes in numerous nations, with over two million bone-grafting surgeries performed worldwide each year. A bone defect can be caused by trauma, infections, and tissue resections which can self-heal due to the osteoconductive nature of the native extracellular matrix components. However, natural self-healing is time-consuming, and new bone regeneration is slow, especially for large bone defects. It also remains a clinical challenge for surgeons to have a suitable bone substitute. To date, there are numerous potential treatments for bone grafting, including gold-standard autografts, allograft implantation, xenografts, or bone graft substitutes. Tricalcium phosphate (TCP) and hydroxyapatite (HA) are the most extensively used and studied bone substitutes due to their similar chemical composition to bone. The scaffolds should be testedin vivoandin vitrousing suitable animal models to ensure that the biomaterials work effectively as implants. Hence, this article aims to familiarize readers with the most frequently used animal models for biomaterials testing and highlight the available literature for in vivo studies using small and large animal models. This review summarizes the bio ceramic materials, particularly HA and β-TCP scaffolds, for bone defects in small and large animal models. Besides, the design considerations for the pre-clinical animal model selection for bone defect implants are emphasized and presented.
Collapse
Affiliation(s)
- Nik Nur Farisha Nik Md Noordin Kahar
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia - Kampus Kejuruteraan Seri Ampangan, Transkrian, Nibong Tebal, Seberang Perai Selatan, Nibong Tebal, Pulau Pinang, 14300, MALAYSIA
| | - Nurazreena Ahmad
- Biomaterials Niche Group, School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia - Kampus Kejuruteraan Seri Ampangan, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300 Penang, Malaysia, Nibong Tebal, Pulau Pinang, 14300, MALAYSIA
| | - M Mariatti
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia - Kampus Kejuruteraan Seri Ampangan, Engineering Campus, Universiti Sains Malaysia, 14300 NibongTebal,, Nibong Tebal, Pulau Pinang, 14300, MALAYSIA
| | - Badrul Hisham Yahaya
- Cluster of Regenerative Medicine, Universiti Sains Malaysia Institut Perubatan dan Pengigian Termaju, Bertam, Kepala Batas, Pulau Pinang, 13200, MALAYSIA
| | - Abdul Razak Sulaiman
- Department of Orthopaedics, School of Medical Science, Universiti Sains Malaysia - Kampus Kesihatan, 16150, Kota Bharu, Kelantan, MALAYSIA, Kubang Kerian, Kelantan, 16150, MALAYSIA
| | - Zuratul Ain Abdul Hamid
- School of Materials & Mineral Resources Engineering, Universiti Sains Malayisa, Universiti Sains Malaysia - Engineering Campus Seri Ampangan, Universiti Sains Malaysia, Engineering Campus, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, 14300, MALAYSIA
| |
Collapse
|
10
|
Camacho-Alonso F, Tudela-Mulero MR, Navarro JA, Buendía AJ, Mercado-Díaz AM. Use of buccal fat pad-derived stem cells cultured on bioceramics for repair of critical-sized mandibular defects in healthy and osteoporotic rats. Clin Oral Investig 2022; 26:5389-5408. [PMID: 35524820 PMCID: PMC9381637 DOI: 10.1007/s00784-022-04506-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To compare new bone formation in mandibular symphysis critical-sized bone defects (CSBDs) in healthy and osteoporotic rats filled with bioceramics (BCs) with or without buccal fat pad mesenchymal stem cells (BFPSCs). MATERIALS AND METHODS Thirty-two adult female Sprague-Dawley rats were randomized to two groups (n = 16 per group): group 1 healthy and group 2 osteoporotic (with bilateral ovariectomy). The central portion of the rat mandibular symphysis was used as a physiological CSBD. In each group, eight defects were filled with BC (hydroxyapatite 60% and β-tricalcium phosphate 40%) alone and eight with BFPSCs cultured on BC. The animals were sacrificed at 4 and 8 weeks, and the mandibles were processed for micro-computed tomography to analyze radiological union and bone mineral density (BMD); histological analysis of the bone union; and immunohistochemical analysis, which included immunoreactivity of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2). RESULTS In both groups, CSBDs filled with BC + BFPSCs showed greater radiological bone union, BMD and histological bone union, and more VEGF and BMP-2 positivity, compared with CSBDs treated with BC alone at 4 and 8 weeks. CONCLUSIONS The application of BFPSCs cultured on BCs improves bone regeneration in CSBDs compared with BCs alone in healthy and osteoporotic rats. CLINICAL RELEVANCE Our results may aid bone regeneration of maxillofacial CSBDs of both healthy and osteoporotic patients, but further studies are necessary.
Collapse
Affiliation(s)
- Fabio Camacho-Alonso
- Department of Oral Surgery, University of Murcia, Murcia, Spain.
- Oral Surgery Teaching Unit, University Dental Clinic, Morales Meseguer Hospital (2Nd Floor), Marqués de los Vélez s/n, 30008, Murcia, Spain.
| | | | - J A Navarro
- Department of Histology and Pathological Anatomy, University of Murcia, Murcia, Spain
| | - A J Buendía
- Department of Histology and Pathological Anatomy, University of Murcia, Murcia, Spain
| | | |
Collapse
|
11
|
Yan MD, Ou YJ, Lin YJ, Liu RM, Fang Y, Wu WL, Zhou L, Yao X, Chen J. Does the incorporation of strontium into calcium phosphate improve bone repair? A meta-analysis. BMC Oral Health 2022; 22:62. [PMID: 35260122 PMCID: PMC8905839 DOI: 10.1186/s12903-022-02092-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/21/2022] [Indexed: 12/09/2022] Open
Abstract
Background The application of calcium phosphate (CaP)-based bone substitutes plays an important role in periodontal regeneration, implant dentistry and alveolar bone reconstruction. The incorporation of strontium (Sr) into CaP-based bone substitutes appears to improve their biological properties, but the reported in vivo bone repair performance is inconsistent among studies. Herein, we conducted a systematic review and meta-analysis to investigate the in vivo performance of Sr-doped materials. Methods We searched PubMed, EMBASE (via OVIDSP), and reference lists to identify relevant animal studies. The search, study selection, and data extraction were performed independently by two investigators. Meta-analyses and sub-group analyses were conducted using Revman version 5.4.1. The heterogeneity between studies were assessed by I2. Publication bias was investigated through a funnel plot. Results Thirty-five studies were finally enrolled, of which 16 articles that reported on new bone formation (NBF) were included in the meta-analysis, covering 31 comparisons and 445 defects. The overall effect for NBF was 2.25 (95% CI 1.61–2.90, p < 0.00001, I2 = 80%). Eight comparisons from 6 studies reported the outcomes of bone volume/tissue volume (BV/TV), with an overall effect of 1.42 (95% CI 0.65–2.18, p = 0.0003, I2 = 75%). Fourteen comparisons reported on the material remaining (RM), with the overall effect being -2.26 (95% CI − 4.02 to − 0.50, p = 0.0009, I2 = 86%). Conclusions Our study revealed that Sr-doped calcium phosphate bone substitutes improved in vivo performance of bone repair. However, more studies are also recommended to further verify this conclusion. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02092-7.
Collapse
Affiliation(s)
- Ming-Dong Yan
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yan-Jing Ou
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Department of Oral Implantology, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou, 350002, China
| | - Yan-Jun Lin
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Rui-Min Liu
- ORAL Center, Fujian Provincial Governmental Hospital (Affiliated Hospital of Fujian Health College), Fuzhou, 350003, China
| | - Yan Fang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Wei-Liang Wu
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Lin Zhou
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Xiu Yao
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology and Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.
| |
Collapse
|
12
|
Sundar R, Joseph J, Babu S, Varma H, John A, Abraham A. 3D-bulk to nanoforms of modified hydroxyapatite: Characterization and osteogenic potency in an in vitro 3D bone model system. J Biomed Mater Res B Appl Biomater 2021; 110:1151-1164. [PMID: 34918849 DOI: 10.1002/jbm.b.34989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/07/2021] [Accepted: 11/27/2021] [Indexed: 11/07/2022]
Abstract
Synthetic bioceramics are replacing conventional methods of treating bone defects with autografts owing to the high demand of bone substitutes, with their Surface topography and size contributing to favor cytocompatibility in tissue regeneration. This experimental study deals with the comparative evaluation of the physical characterizations of four different in-house synthesized bioceramics from 3D-bulk to nanoforms of hydroxyapatite (HA), Biphasic calcium phosphate (BCP), Strontium doped hydroxyapatite (SrHA) and Silica coated hydroxyapatite (HASi) and also simultaneously evaluates adhesion, proliferation and osteogenic differentiation of rabbit adipose derived mesenchymal stem cells (RADMSCs) on these biomimetic ceramic niches. The osteogenic induced cells grown on 3D scaffolds for a period of 7, 14, 21, and 28 days were analyzed for their viability (MTT, LDH, live-dead assays), morphology (SEM), proliferation (Cytox-Red) and osteogenic differentiation (ALP, osteocalcin expression). Cellular activities and differentiation of RADMSCs were significantly higher on SrHA indicating the role of strontium in the differentiation of mesenchymal stem cells on this ceramic platform to the bone lineage. In order to reinforce the materials for hard tissue implantation and drug delivery, nano-SrHA (nSrHA) became the nanoparticle of choice based on its non-toxicity, cytocompatibility and osteogenic properties (nSrHA > nHASi > nBCP > nHA).
Collapse
Affiliation(s)
- Rebu Sundar
- Department of Biochemistry, University of Kerala, Trivandrum, India
| | - Josna Joseph
- Advanced Centre for Tissue Engineering, Department of Biochemistry, University of Kerala, Trivandrum, India
| | - Suresh Babu
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum, India
| | - Harikrishna Varma
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum, India
| | - Annie John
- Department of Biochemistry, University of Kerala, Trivandrum, India
| | - Annie Abraham
- Department of Biochemistry, University of Kerala, Trivandrum, India
| |
Collapse
|
13
|
Sneha KR, Sailaja GS. Intrinsically radiopaque biomaterial assortments: a short review on the physical principles, X-ray imageability, and state-of-the-art developments. J Mater Chem B 2021; 9:8569-8593. [PMID: 34585717 DOI: 10.1039/d1tb01513c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
X-ray attenuation ability, otherwise known as radiopacity of a material, could be indisputably tagged as the central and decisive parameter that produces contrast in an X-ray image. Radiopaque biomaterials are vital in the healthcare sector that helps clinicians to track them unambiguously during pre and post interventional radiological procedures. Medical imaging is one of the most powerful resources in the diagnostic sector that aids improved treatment outcomes for patients. Intrinsically radiopaque biomaterials enable themselves for visual targeting/positioning as well as to monitor their fate and further provide the radiologists with critical insights about the surgical site. Moreover, the emergence of advanced real-time imaging modalities is a boon to the contemporary healthcare systems that allow to perform minimally invasive surgical procedures and thereby reduce the healthcare costs and minimize patient trauma. X-ray based imaging is one such technologically upgraded diagnostic tool with many variants like digital X-ray, computed tomography, digital subtraction angiography, and fluoroscopy. In light of these facts, this review is aimed to briefly consolidate the physical principles of X-ray attenuation by a radiopaque material, measurement of radiopacity, classification of radiopaque biomaterials, and their recent advanced applications.
Collapse
Affiliation(s)
- K R Sneha
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi - 682022, India.
| | - G S Sailaja
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi - 682022, India. .,Interuniversity Centre for Nanomaterials and Devices, CUSAT, Kochi - 682022, India.,Centre for Advanced Materials, CUSAT, Kochi - 682022, India
| |
Collapse
|
14
|
Duta L, Dorcioman G, Grumezescu V. A Review on Biphasic Calcium Phosphate Materials Derived from Fish Discards. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2856. [PMID: 34835621 PMCID: PMC8620776 DOI: 10.3390/nano11112856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022]
Abstract
This review summarizes the results reported on the production of biphasic calcium phosphate (BCP) materials derived from fish wastes (i.e., heads, bones, skins, and viscera), known as fish discards, and offers an in-depth discussion on their promising potential for various applications in many fields, especially the biomedical one. Thus, considerable scientific and technological efforts were recently focused on the capability of these sustainable materials to be transformed into economically attractive and highly valuable by-products. As a consequence of using these wastes, plenty of beneficial social effects, with both economic and environmental impact, will arise. In the biomedical field, there is a strong and continuous interest for the development of innovative solutions for healthcare improvement using alternative materials of biogenic origin. Thus, the orthopedic field has witnessed a significant development due to an increased demand for a large variety of implants, grafts, and/or scaffolds. This is mainly due to the increase of life expectancy and higher frequency of bone-associated injuries and diseases. As a consequence, the domain of bone-tissue engineering has expanded to be able to address a plethora of bone-related traumas and to deliver a viable and efficient substitute to allografts or autografts by combining bioactive materials and cells for bone-tissue ingrowth. Among biomaterials, calcium phosphate (CaP)-based bio-ceramics are widely used in medicine, in particular in orthopedics and dentistry, due to their excellent bioactive, osteoconductive, and osteointegrative characteristics. Recently, BCP materials (synthetic or natural), a class of CaP, which consist of a mixture of two phases, hydroxyapatite (HA) and beta tricalcium phosphate (β-TCP), in different concentrations, gained increased attention due to their superior overall performances as compared to single-phase formulations. Moreover, the exploitation of BCP materials from by-products of fish industry was reported to be a safe, cheap, and simple procedure. In the dedicated literature, there are many reviews on synthetic HA, β-TCP, or BCP materials, but to the best of our knowledge, this is the first collection of results on the effects of processing conditions on the morphological, compositional, structural, mechanical, and biological properties of the fish discard-derived BCPs along with the tailoring of their features for various applications.
Collapse
Affiliation(s)
| | | | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (L.D.); (G.D.)
| |
Collapse
|
15
|
Mai X, Kang Z, Wang N, Qin X, Xie W, Song F. Oxygen Plasma Technology-Assisted Preparation of Three-Dimensional Reduced Graphene Oxide/Polypyrrole/Strontium Composite Scaffold for Repair of Bone Defects Caused by Osteoporosis. Molecules 2021; 26:4451. [PMID: 34361602 PMCID: PMC8347243 DOI: 10.3390/molecules26154451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Repairs of bone defects caused by osteoporosis have always relied on bone tissue engineering. However, the preparation of composite tissue engineering scaffolds with a three-dimensional (3D) macroporous structure poses huge challenges in achieving osteoconduction and osteoinduction for repairing bone defects caused by osteoporosis. In the current study, a three-dimensional macroporous (150-300 μm) reduced graphene oxide/polypyrrole composite scaffold modified by strontium (Sr) (3D rGO/PPY/Sr) was successfully prepared using the oxygen plasma technology-assisted method, which is simple, safe, and inexpensive. The findings of the MTT assay and AO/EB fluorescence double staining showed that 3D rGO/PPY/Sr has a good biocompatibility and effectively promoted MC3T3-E1 cell proliferation. Furthermore, the ALP assay and alizarin red staining showed that 3D rGO/PPY/Sr increased the expression levels of ALP activity and the formation of calcified nodules. The desirable biocompatibility, osteoconduction, and osteoinduction abilities, assure that the 3D macroporous rGO/PPY/Sr composite scaffold offers promising potential for use in the repair of bone defects caused by osteoporosis in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaoxue Mai
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (X.M.); (Z.K.); (N.W.); (X.Q.)
| | - Zebiao Kang
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (X.M.); (Z.K.); (N.W.); (X.Q.)
| | - Na Wang
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (X.M.); (Z.K.); (N.W.); (X.Q.)
| | - Xiaoli Qin
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (X.M.); (Z.K.); (N.W.); (X.Q.)
| | - Weibo Xie
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (X.M.); (Z.K.); (N.W.); (X.Q.)
- Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Fuxiang Song
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (X.M.); (Z.K.); (N.W.); (X.Q.)
| |
Collapse
|
16
|
Tao ZS, Li TL, Wu XJ, Yang M. Local administration with tauroursodeoxycholic acid could improve osseointegration of hydroxyapatite-coated titanium implants in ovariectomized rats. J Biomater Appl 2021; 36:552-561. [PMID: 34162236 DOI: 10.1177/08853282211027678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite advances in the pathogenesis of Tauroursodeoxycholic acid (TUDCA) on bone, the understanding of the effects and mechanisms of bone osseointegration in TUDCA-associated Hydroxyapatite (HA)-coated titanium implants remains poor. Therefore, the present work was aimed to evaluate the effect of local administration with TUDCA on HA-coated titanium implants osseointegration in ovariectomized(OVX) rats and further investigation of the possible mechanism. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into three groups: sham operation(Sham) group, OVX group and TUDCA group, and all the rats from Sham group and OVX group received HA implants and animals belonging to group TUDCA received TUDCA-HA implants until death at 12 weeks. The bilateral femurs of rats were harvested for evaluation. TUDCA increased new bone formation around the surface of titanium rods and push-out force other than group OVX. Histology, Micro-CT and biochemical analysis results showed systemic TUDCA showed positive effects than OVX group on bone formation in osteopenic rats, with beneficial effect on via activation OPG/RANKL pathway and BMP-2/Smad1 pathway and microarchitecture as well as by reducing protein expression of TNF-α and IFN-γ. The present study suggests that local use of TUDCA may bring benefits to the osseointegration of HA-coated titanium implants in patients with osteoporosis, and this effect may be related to the inhibition of inflammatory reaction and promotion of osteogenesis.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of 74649Wannan Medical College, Yijishan Hospital, Wuhu, People's Republic of China
| | - Tian-Lin Li
- Department of Trauma Orthopedics, The First Affiliated Hospital of 74649Wannan Medical College, Yijishan Hospital, Wuhu, People's Republic of China
| | - Xing-Jing Wu
- Department of Trauma Orthopedics, The First Affiliated Hospital of 74649Wannan Medical College, Yijishan Hospital, Wuhu, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of 74649Wannan Medical College, Yijishan Hospital, Wuhu, People's Republic of China
| |
Collapse
|
17
|
The Influence of Strontium on Bone Tissue Metabolism and Its Application in Osteoporosis Treatment. Int J Mol Sci 2021; 22:ijms22126564. [PMID: 34207344 PMCID: PMC8235140 DOI: 10.3390/ijms22126564] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is a chronic disease characterized by low bone mass caused by increased bone turnover and impaired bone microarchitecture. In treatment, we use antiresorptive or anabolic drugs, which usually have a unidirectional effect, i.e., they inhibit the activity of osteoclasts or stimulate the effect of osteoblasts. Strontium ranelate is an anti-osteoporosis drug with a unique mechanism of action (used primarily in postmenopausal women). Unlike other medicines, it has a multidirectional effect on bone tissue, intensifying osteoblastogenesis while inhibiting osteoclastogenesis. It turns out that this effect is demonstrated by strontium ions, an element showing physical and chemical similarity to calcium, the basic element that builds the mineral fraction of bone. As a result, strontium acts through the calcium-sensing receptor (CaSR) receptor in bone tissue cells. In recent years, there has been a significant increase in interest in the introduction of strontium ions in place of calcium ions in ceramics used as bone replacement materials for the treatment of bone fractures and defects caused by osteoporosis. The aim of this study was to summarize current knowledge about the role of strontium in the treatment of osteoporosis, its effects (in various forms), and the ways in which it is administered.
Collapse
|
18
|
Hydroxyapatite nanophases augmented with selenium and manganese ions for bone regeneration: Physiochemical, microstructural and biological characterization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112149. [PMID: 34082960 DOI: 10.1016/j.msec.2021.112149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 11/23/2022]
Abstract
Hydroxyapatite (HAP) nanopowders with different manganese (Mn) and selenium (Se) contents with Mn/Ca and Se/P molar ratio of 1 mol%, 2.5 mol% and 5 mol% were synthesized by wet-co-chemical precipitation method. The results revealed that with either Mn or Se doping, ion-substituted apatite phase was achieved with good crystallographic features. The combined evidence obtained from spectrometric techniques revealed that nanocrystalline HAP was effectively doped with Mn and Se ions, where Se in form of SeO32- replaced PO43- and Mn2+ replaced Ca2+. Mn and Se doped HAP samples exhibited rod-like and needle-like morphology with strong tendency to form agglomerates. HAP enriched with Mn and Se represented a strong antibacterial effect and also showed prominent blood compatibility. From the biocompatibility testing, it was evident that Mn and Se doped HAP augmented the osteoblasts adhesion, migration and proliferation in a dose-dependent manner. To conclude from this study, it is clearly evident that the doping amount of both Mn and Se ions can determine the size and morphology of the final HAP product. Therefore, Mn and Se HAP nanopowders with molar ratio less than 5 mol% without any heat treatment can provide good crystallographic features to HAP with satisfying micro-structural, thermal and biological properties.
Collapse
|
19
|
Bosch-Rué E, Diez-Tercero L, Giordano-Kelhoffer B, Delgado LM, Bosch BM, Hoyos-Nogués M, Mateos-Timoneda MA, Tran PA, Gil FJ, Perez RA. Biological Roles and Delivery Strategies for Ions to Promote Osteogenic Induction. Front Cell Dev Biol 2021; 8:614545. [PMID: 33520992 PMCID: PMC7841204 DOI: 10.3389/fcell.2020.614545] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Bone is the most studied tissue in the field of tissue regeneration. Even though it has intrinsic capability to regenerate upon injury, several pathologies and injuries could hamper the highly orchestrated bone formation and resorption process. Bone tissue engineering seeks to mimic the extracellular matrix of the tissue and the different biochemical pathways that lead to successful regeneration. For many years, the use of extrinsic factors (i.e., growth factors and drugs) to modulate these biological processes have been the preferred choice in the field. Even though it has been successful in some instances, this approach presents several drawbacks, such as safety-concerns, short release profile and half-time life of the compounds. On the other hand, the use of inorganic ions has attracted significant attention due to their therapeutic effects, stability and lower biological risks. Biomaterials play a key role in such strategies where they serve as a substrate for the incorporation and release of the ions. In this review, the methodologies used to incorporate ions in biomaterials is presented, highlighting the osteogenic properties of such ions and the roles of biomaterials in controlling their release.
Collapse
Affiliation(s)
- Elia Bosch-Rué
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Leire Diez-Tercero
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Luis M. Delgado
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Begoña M. Bosch
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mireia Hoyos-Nogués
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Phong A. Tran
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Francisco Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Roman A. Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
20
|
Wang H, Xu Q, Hu H, Shi C, Lin Z, Jiang H, Dong H, Guo J. The Fabrication and Function of Strontium-modified Hierarchical Micro/Nano Titanium Implant. Int J Nanomedicine 2020; 15:8983-8998. [PMID: 33239873 PMCID: PMC7682802 DOI: 10.2147/ijn.s268657] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/19/2020] [Indexed: 12/15/2022] Open
Abstract
Background Relying on surface topography alone to enhance the osteointegration of implants is still inadequate. An effective way to combine long-term ion release and surface topography to enhance osteogenic property is urgently needed. Purpose The objective of this study is to fabricate a long-term strontium ion release implant system and confirm the biological function in vitro and in vivo. Methods The biomimic surface was fabricated through alkali-heat treatment and magnetron sputtering. The in vitro biological function assays were determined by MTT, fluorescence staining, alkaline phosphatase activity, extracellular mineralization, and quantitative real-time polymerase chain reaction assays. The in vivo experiments were detected by micro-CT, HE staining and Masson staining. Results The biomimic surface structure has been successfully fabricated. The in vitro cell assays determined that AH-Ti/Sr90 possessed the best biological function. The in vivo experiments demonstrated that AH-Ti/Sr90 could promote osteointegration significantly under both in normal and osteoporotic conditions. Conclusion We determined that AH-Ti/Sr90 possesses the best osteogenic property, long-term ion release capacity and osteointegration promotion ability. It has potential clinic application prospects. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/-6Wh1MOigI0
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, 250012, People's Republic of China
| | - Qiuping Xu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, 250012, People's Republic of China
| | - Hui Hu
- Osaka Dental University Kusuha School, Hirakata City, Osaka 573-1121, Japan
| | - Chunling Shi
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Ziyan Lin
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Huixi Jiang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Huaipu Dong
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Jing Guo
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, 250012, People's Republic of China
| |
Collapse
|
21
|
Grazioli G, Silva AF, Souza JF, David C, Diehl L, Sousa-Neto MD, Cava SS, Fajardo AR, Moraes RR. Synthesis and characterization of poly(vinyl alcohol)/chondroitin sulfate composite hydrogels containing strontium-doped hydroxyapatite as promising biomaterials. J Biomed Mater Res A 2020; 109:1160-1172. [PMID: 32985092 DOI: 10.1002/jbm.a.37108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 01/20/2023]
Abstract
Novel poly(vinyl alcohol)/chondroitin sulfate (PVA/CS) composite hydrogels containing hydroxyapatite (HA) or Sr-doped HA (HASr) particles were synthesized by a freeze/thaw method and characterized aiming towards biomedical applications. HA and HASr were synthesized by a wet-precipitation method and added to the composite hydrogels in fractions up to 15 wt%. Physical-chemical characterizations of particles and hydrogels included scanning electron microscopy, energy-dispersive spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetry, porosity, compressive strength/elastic modulus, swelling degree, and cell viability. Particles were irregular in shape and appeared to have narrow size variation. The thermal behavior of composite hydrogels was altered compared to the control (bare) hydrogel. All hydrogels exhibited high porosity. HA/HASr particles reduced total porosity without reducing pore size. The mechanical strength was improved as the fraction of HA or HASr was increased. HASr particles led to a faster water uptake but did not interfere with the total hydrogel swelling capacity. In cell viability essay, increased cell growth (above 120%) was observed in all groups including the control hydrogel, suggesting a bioactive effect. In conclusion, PVA/CS hydrogels containing HA or HASr particles were successfully synthesized and showed promising morphological, mechanical, and swelling properties, which are particularly required for scaffolding.
Collapse
Affiliation(s)
- Guillermo Grazioli
- Department of Dental Materials, University of the Republic, Montevideo, Uruguay.,Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Adriana F Silva
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Jaqueline F Souza
- Laboratory of Technology and Development of Composites and Polymeric Materials - LaCoPol, Federal University of Pelotas, Pelotas, Brazil
| | - Carla David
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Lisiane Diehl
- Advanced Crystal Growth and Photonics - CCAF, Federal University of Pelotas, Pelotas, Brazil
| | - Manoel D Sousa-Neto
- Department of Restorative Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | - Sergio S Cava
- Advanced Crystal Growth and Photonics - CCAF, Federal University of Pelotas, Pelotas, Brazil
| | - André R Fajardo
- Laboratory of Technology and Development of Composites and Polymeric Materials - LaCoPol, Federal University of Pelotas, Pelotas, Brazil
| | - Rafael R Moraes
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
22
|
Lodoso-Torrecilla I, Klein Gunnewiek R, Grosfeld EC, de Vries RBM, Habibović P, Jansen JA, van den Beucken JJJP. Bioinorganic supplementation of calcium phosphate-based bone substitutes to improve in vivo performance: a systematic review and meta-analysis of animal studies. Biomater Sci 2020; 8:4792-4809. [PMID: 32729591 DOI: 10.1039/d0bm00599a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Supplementation of CaP-based bone graft substitutes with bioinorganics such as strontium, zinc or silicon is an interesting approach to increase the biological performance in terms of bone regenerative potential of calcium phosphate (CaP)-based bone substitutes. However, the in vivo efficacy of this approach has not been systematically analyzed, yet. Consequently, we performed a systematic review using the available literature regarding the effect of bioinorganic supplementation in CaP-based biomaterials on new bone formation and material degradation in preclinical animal bone defect models and studied this effect quantitatively by performing a meta-analysis. Additional subgroup analyses were used to study the effect of different bioinorganics, animal model, or phase category of CaP-based biomaterial on bone formation or material degradation. Results show that bioinorganic supplementation increases new bone formation (standardized mean difference [SMD]: 1.43 SD, confidence interval [CI]: 1.13-1.73). Additional subgroup analysis showed that strontium, magnesium and silica significantly enhanced bone formation, while zinc did not have any effect. This effect of bioinorganic supplementation on new bone formation was stronger for DCPD or β-TCP and biphasic CaPs than for HA or α-TCP (p < 0.001). In general, material degradation was slightly hindered by bioinorganic supplementation (mean difference [MD]: 0.84%, CI: 0.01-1.66), with the exception of strontium that significantly enhanced degradation. Overall, bioinorganic supplementation represents an effective approach to enhance the biological performance of CaP-based bone substitutes.
Collapse
|
23
|
Montagna G, Cristofaro F, Fassina L, Bruni G, Cucca L, Kochen A, Divieti Pajevic P, Bragdon B, Visai L, Gerstenfeld L. An in vivo Comparison Study Between Strontium Nanoparticles and rhBMP2. Front Bioeng Biotechnol 2020; 8:499. [PMID: 32612980 PMCID: PMC7308719 DOI: 10.3389/fbioe.2020.00499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/29/2020] [Indexed: 01/24/2023] Open
Abstract
The osteoinductive property of strontium was repeatedly proven in the last decades. Compelling in vitro data demonstrated that strontium hydroxyapatite nanoparticles exert a dual action, by promoting osteoblasts-driven matrix secretion and inhibiting osteoclasts-driven matrix resorption. Recombinant human bone morphogenetic protein 2 (rhBMP2) is a powerful osteoinductive biologic, used for the treatment of vertebral fractures and critically-sized bone defects. Although effective, the use of rhBMP2 has limitations due its recombinant morphogen nature. In this study, we examined the comparison between two osteoinductive agents: rhBMP2 and the innovative strontium-substituted hydroxyapatite nanoparticles. To test their effectiveness, we independently loaded Gelfoam sponges with the two osteoinductive agents and used the sponges as agent-carriers. Gelfoam are FDA-approved biodegradable medical devices used as delivery system for musculoskeletal defects. Their porous structure and spongy morphology make them attractive in orthopedic field. The abiotic characterization of the loaded sponges, involving ion release pattern and structure investigation, was followed by in vivo implantation onto the periosteum of healthy mice and comparison of the effects induced by each implant was performed. Abiotic analysis demonstrated that strontium was continuously released from the sponges over 28 days with a pattern similar to rhBMP2. Histological observations and gene expression analysis showed stronger endochondral ossification elicited by strontium compared to rhBMP2. Osteoclast activity was more inhibited by strontium than by rhBMP2. These results demonstrated the use of sponges loaded with strontium nanoparticles as potential bone grafts might provide better outcomes for complex fractures. Strontium nanoparticles are a novel and effective non-biologic treatment for bone injuries and can be used as novel powerful therapeutics for bone regeneration.
Collapse
Affiliation(s)
- Giulia Montagna
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.,Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Francesco Cristofaro
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Giovanna Bruni
- C.S.G.I. Department of Chemistry, Physical-Chemistry Section, University of Pavia, Pavia, Italy
| | - Lucia Cucca
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Alejandro Kochen
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA, United States
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA, United States
| | - Beth Bragdon
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, United States
| | - Livia Visai
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Louis Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
24
|
Recent developments in strontium-based biocomposites for bone regeneration. J Artif Organs 2020; 23:191-202. [PMID: 32100147 DOI: 10.1007/s10047-020-01159-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/25/2020] [Indexed: 12/13/2022]
Abstract
Recent advances in biomaterial designing techniques offer immense support to tailor biomimetic scaffolds and to engineer the microstructure of biomaterials for triggering bone regeneration in challenging bone defects. The current review presents the different categories of recently explored strontium-integrated biomaterials, including calcium silicate, calcium phosphate, bioglasses and polymer-based synthetic implants along with their in vivo bone formation efficacies and/or in vitro cell responses. The role and significance of controlled drug release scaffold/carrier design in strontium-triggered osteogenesis was also comprehensively described. Furthermore, the effects of stem cells and growth factors on bone remodeling are also elucidated.
Collapse
|
25
|
Strontium Promotes the Proliferation and Osteogenic Differentiation of Human Placental Decidual Basalis- and Bone Marrow-Derived MSCs in a Dose-Dependent Manner. Stem Cells Int 2019; 2019:4242178. [PMID: 31885606 PMCID: PMC6893266 DOI: 10.1155/2019/4242178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/28/2019] [Accepted: 08/22/2019] [Indexed: 02/05/2023] Open
Abstract
The osteogenic potential of mesenchymal stromal cells (MSCs) varies among different tissue sources. Strontium enhances the osteogenic differentiation of bone marrow-derived MSCs (BM-MSCs), but whether it exerts similar effects on placental decidual basalis-derived MSCs (PDB-MSCs) remains unknown. Here, we compared the influence of strontium on the proliferation and osteogenic differentiation of human PDB- and BM-MSCs in vitro. We found that 1 mM and 10 mM strontium, but not 0.1 mM strontium, evidently promoted the proliferation of human PDB- and BM-MSCs. These doses of strontium showed a comparable alkaline phosphatase activity in both cell types, but their osteogenic gene expressions were promoted in a dose-dependent manner. Strontium at doses of 0.1 mM and 1 mM elevated several osteogenic gene expressions of PDB-MSCs, but not those of BM-MSCs at an early stage. Nevertheless, they failed to enhance the mineralization of either cell type. By contrast, 10 mM strontium facilitated the osteogenic gene expression as well as the mineralization of human PDB- and BM-MSCs. Collectively, this study demonstrated that human PDB- and BM-MSCs shared a great similarity in response to strontium, which promoted their proliferation and osteogenic differentiation in a dose-dependent manner.
Collapse
|
26
|
Adipose-Derived Stem Cells in Bone Tissue Engineering: Useful Tools with New Applications. Stem Cells Int 2019; 2019:3673857. [PMID: 31781238 PMCID: PMC6875209 DOI: 10.1155/2019/3673857] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Adipose stem cells (ASCs) are a crucial element in bone tissue engineering (BTE). They are easy to harvest and isolate, and they are available in significative quantities, thus offering a feasible and valid alternative to other sources of mesenchymal stem cells (MSCs), like bone marrow. Together with an advantageous proliferative and differentiative profile, they also offer a high paracrine activity through the secretion of several bioactive molecules (such as growth factors and miRNAs) via a sustained exosomal release which can exert efficient conditioning on the surrounding microenvironment. BTE relies on three key elements: (1) scaffold, (2) osteoprogenitor cells, and (3) bioactive factors. These elements have been thoroughly investigated over the years. The use of ASCs has offered significative new advancements in the efficacy of each of these elements. Notably, the phenotypic study of ASCs allowed discovering cell subpopulations, which have enhanced osteogenic and vasculogenic capacity. ASCs favored a better vascularization and integration of the scaffolds, while improvements in scaffolds' materials and design tried to exploit the osteogenic features of ASCs, thus reducing the need for external bioactive factors. At the same time, ASCs proved to be an incredible source of bioactive, proosteogenic factors that are released through their abundant exosome secretion. ASC exosomes can exert significant paracrine effects in the surroundings, even in the absence of the primary cells. These paracrine signals recruit progenitor cells from the host tissues and enhance regeneration. In this review, we will focus on the recent discoveries which have involved the use of ASCs in BTE. In particular, we are going to analyze the different ASCs' subpopulations, the interaction between ASCs and scaffolds, and the bioactive factors which are secreted by ASCs or can induce their osteogenic commitment. All these advancements are ultimately intended for a faster translational and clinical application of BTE.
Collapse
|
27
|
Abdelrazik H, Giordano E, Barbanti Brodano G, Griffoni C, De Falco E, Pelagalli A. Substantial Overview on Mesenchymal Stem Cell Biological and Physical Properties as an Opportunity in Translational Medicine. Int J Mol Sci 2019; 20:ijms20215386. [PMID: 31671788 PMCID: PMC6862078 DOI: 10.3390/ijms20215386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) have piqued worldwide interest for their extensive potential to treat a large array of clinical indications, their unique and controversial immunogenic and immune modulatory properties allowing ample discussions and debates for their possible applications. Emerging data demonstrating that the interaction of biomaterials and physical cues with MSC can guide their differentiation into specific cell lineages also provide new interesting insights for further MSC manipulation in different clinical applications. Moreover, recent discoveries of some regulatory molecules and signaling pathways in MSC niche that may regulate cell fate to distinct lineage herald breakthroughs in regenerative medicine. Although the advancement and success in the MSC field had led to an enormous increase in the amount of ongoing clinical trials, we still lack defined clinical therapeutic protocols. This review will explore the exciting opportunities offered by human and animal MSC, describing relevant biological properties of these cells in the light of the novel emerging evidence mentioned above while addressing the limitations and challenges MSC are still facing.
Collapse
Affiliation(s)
- Heba Abdelrazik
- Department of Clinical Pathology, Cairo University, Cairo 1137, Egypt.
- Department of Diagnosis, central laboratory department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16131 Genoa, Italy.
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, 47522 Cesena, Italy.
| | - Giovanni Barbanti Brodano
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Cristiana Griffoni
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy.
- Institute of Biostructures and Bioimages (IBB), National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
28
|
Wang L, Pathak JL, Liang D, Zhong N, Guan H, Wan M, Miao G, Li Z, Ge L. Fabrication and characterization of strontium-hydroxyapatite/silk fibroin biocomposite nanospheres for bone-tissue engineering applications. Int J Biol Macromol 2019; 142:366-375. [PMID: 31593715 DOI: 10.1016/j.ijbiomac.2019.09.107] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022]
Abstract
Osteoinductive bone filling biomaterials are in high demand for effective bone defect reconstruction. In this study, we aimed to design both organic and inorganic substances containing strontium-doped hydroxyapatite/silk fibroin (SrHA/SF) biocomposite nanospheres as an osteoinductive bone defect-filling biomaterial. SrHA/SF nanospheres were prepared with different concentration of Sr using ultrasonic coprecipitation method. The nanospheres were characterized using XRD, FTIR, SEM, TEM, ICP-AES and TGA. Solid and dense SrHA/SF nanospheres with 500-700 nm size and rough surfaces were synthesized successfully. Higher crystallinity and HA/SF phase were observed with the increase in Sr-concentration. The doping of different concentration of Sr did not affect the size and surface characteristics of the nanospheres. ICP-AES data showed that Sr/Ca ratio in SrHA/SF is very close to the nominal value. Nanospheres with higher concentration of Sr did not negatively affect the biocompatibility, but enhanced viability of mesenchymal stem cells (MSCs). Moreover, SrHA/SF nanospheres showed higher osteogenic differentiation potential compared to HA/SF nanospheres as indicated by the results from ALP staining, ALP activity, and Runx2, Alp, Col-1 and Opn gene expression assay in MSCs culture. Our findings suggest this novel design of biocompatible and osteoinductive SrHA/SF biocomposite nanospheres as a potential bone defect-filling biomaterial for bone regenerative applications.
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Dongliang Liang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Ningying Zhong
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Hongbing Guan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Mianjia Wan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Guohou Miao
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Zhengmao Li
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China.
| |
Collapse
|
29
|
Chandran S, John A. Osseointegration of osteoporotic bone implants: Role of stem cells, Silica and Strontium - A concise review. J Clin Orthop Trauma 2019; 10:S32-S36. [PMID: 31695257 PMCID: PMC6823697 DOI: 10.1016/j.jcot.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 08/02/2018] [Indexed: 01/06/2023] Open
Abstract
Osteoporotic fracture treatment has become a skeletal reconstructive challenge due to accelerated bone turnover and impaired bone regeneration potential. Poor osseointegration ability of the osteoporotic bone usually results in implant pull out and failure. Adoption of conventional bone fracture treatment strategies like autografts and allografts have limited applications in such pathological conditions. Hence biomaterials functionalised with therapeutic ions or drugs may be adopted to aid the delivery of therapeutic factors at the defect site to promote bone healing and implant integration, towards functional restoration of the fractured bone. This concise review narrates on improving the osseointegration ability of biomaterials using functional ions like Silica and Strontium. Silica based bone substitutes are known to promote bone healing in non pathological conditions. Further, Strontium based drugs show significant effects in the prevention and treatment of osteoporotic bones. In addition, stem cell therapy has become the focus of orthopaedic research attributed to its ability to restore and accelerate the bone healing process, but the clinical application of stem cells in osteoporotic condition is scarce. Present review suggests a novel strategy of combining the therapeutic potential of functional ions like Silica, Strontium and stem cells within a single implant unit to facilitate osseointegration and osteogenesis, so as to reduce the chances of implant rejection/pull out and encourage osteoporotic bone re-union.
Collapse
|
30
|
Functionalization of Ceramic Coatings for Enhancing Integration in Osteoporotic Bone: A Systematic Review. COATINGS 2019. [DOI: 10.3390/coatings9050312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: The success of reconstructive orthopaedic surgery strongly depends on the mechanical and biological integration between the prosthesis and the host bone tissue. Progressive population ageing with increased frequency of altered bone metabolism conditions requires new strategies for ensuring an early implant fixation and long-term stability. Ceramic materials and ceramic-based coatings, owing to the release of calcium phosphate and to the precipitation of a biological apatite at the bone-implant interface, are able to promote a strong bonding between the host bone and the implant. Methods: The aim of the present systematic review is the analysis of the existing literature on the functionalization strategies for improving the implant osteointegration in osteoporotic bone and their relative translation into the clinical practice. The review process, conducted on two electronic databases, identified 47 eligible preclinical studies and 5 clinical trials. Results: Preclinical data analysis showed that functionalization with both organic and inorganic molecules usually improves osseointegration in the osteoporotic condition, assessed mainly in rodent models. Clinical studies, mainly retrospective, have tested no functionalization strategies. Registered trademarks materials have been investigated and there is lack of information about the micro- or nano- topography of ceramics. Conclusions: Ceramic materials/coatings functionalization obtained promising results in improving implant osseointegration even in osteoporotic conditions but preclinical evidence has not been fully translated to clinical applications.
Collapse
|
31
|
Autefage H, Allen F, Tang HM, Kallepitis C, Gentleman E, Reznikov N, Nitiputri K, Nommeots-Nomm A, O'Donnell MD, Lange C, Seidt BM, Kim TB, Solanki AK, Tallia F, Young G, Lee PD, Pierce BF, Wagermaier W, Fratzl P, Goodship A, Jones JR, Blunn G, Stevens MM. Multiscale analyses reveal native-like lamellar bone repair and near perfect bone-contact with porous strontium-loaded bioactive glass. Biomaterials 2019; 209:152-162. [PMID: 31048149 PMCID: PMC6527862 DOI: 10.1016/j.biomaterials.2019.03.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/08/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
Abstract
The efficient healing of critical-sized bone defects using synthetic biomaterial-based strategies is promising but remains challenging as it requires the development of biomaterials that combine a 3D porous architecture and a robust biological activity. Bioactive glasses (BGs) are attractive candidates as they stimulate a biological response that favors osteogenesis and vascularization, but amorphous 3D porous BGs are difficult to produce because conventional compositions crystallize during processing. Here, we rationally designed a porous, strontium-releasing, bioactive glass-based scaffold (pSrBG) whose composition was tailored to deliver strontium and whose properties were optimized to retain an amorphous phase, induce tissue infiltration and encourage bone formation. The hypothesis was that it would allow the repair of a critical-sized defect in an ovine model with newly-formed bone exhibiting physiological matrix composition and structural architecture. Histological and histomorphometric analyses combined with indentation testing showed pSrBG encouraged near perfect bone-to-material contact and the formation of well-organized lamellar bone. Analysis of bone quality by a combination of Raman spectral imaging, small-angle X-ray scattering, X-ray fluorescence and focused ion beam-scanning electron microscopy demonstrated that the repaired tissue was akin to that of normal, healthy bone, and incorporated small amounts of strontium in the newly formed bone mineral. These data show the potential of pSrBG to induce an efficient repair of critical-sized bone defects and establish the importance of thorough multi-scale characterization in assessing biomaterial outcomes in large animal models.
Collapse
Affiliation(s)
- H Autefage
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - F Allen
- Institute of Orthopaedics and Musculoskeletal Science, University College London, London, WC1E 6BT, United Kingdom
| | - H M Tang
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - C Kallepitis
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - E Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, United Kingdom
| | - N Reznikov
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - K Nitiputri
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - A Nommeots-Nomm
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - M D O'Donnell
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - C Lange
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - B M Seidt
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - T B Kim
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - A K Solanki
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - F Tallia
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - G Young
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - P D Lee
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - B F Pierce
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - W Wagermaier
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - P Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - A Goodship
- Institute of Orthopaedics and Musculoskeletal Science, University College London, London, WC1E 6BT, United Kingdom
| | - J R Jones
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - G Blunn
- Institute of Orthopaedics and Musculoskeletal Science, University College London, London, WC1E 6BT, United Kingdom; School of Pharmacy and Biomedical Sciences, University of Portsmouth, PO1 2DT Portsmouth, United Kingdom.
| | - M M Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
32
|
Lin WC, Yao C, Huang TY, Cheng SJ, Tang CM. Long-term in vitro degradation behavior and biocompatibility of polycaprolactone/cobalt-substituted hydroxyapatite composite for bone tissue engineering. Dent Mater 2019; 35:751-762. [PMID: 30857736 DOI: 10.1016/j.dental.2019.02.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/13/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Currently, infections due to foreign-body reactions caused by bacteria or implant materials at the wound site are one of the major reasons for the failure of guided tissue regeneration (GTR) and guided bone regeneration (GBR) in clinical applications. The purpose of this study was to develop regeneration membranes with localized cobalt ion release to reduce infection and inflammation by polycaprolactone (PCL)/cobalt-substituted hydroxyapatite (CoHA). METHODS The PCL composite membrane containing 20 wt% CoHA powders was prepared by solvent casting. The surface morphology, crystal structure, chemical composition and thermal properties of PCL composite membranes were characterized. The biocompatibility, osteogenic differentiation and antibacterial properties of composite membrane were also investigated. Then, in biodegradability was assessed by immersing phosphate buffer solution (PBS) for 6 months. RESULTS Physicochemical analyses revealed that CoHA is evenly mixed in the membranes and assistance reduce the crystallinity of PCL for getting more degradation amounts than PCL membrane. Osteoblast cells culture on the membrane showed that the CoHA significantly increases cell proliferation and found the calcium deposition production increased over 90% compared with PCL after 7 days of culture. A good antibacterial effect was achieved by the addition of CoHA powder. The results were confirmed by 2.4 times reduction of proliferation of Escherichia coli (E. coli) seeded on the composite membrane after 24 h. Immersing in PBS for 6 months indicated that PCL-CoHA composite membrane has improved biodegradation and can continuously remove free radicals to reduce the inflammatory response. SIGNIFICANCE The PCL-CoHA composite membrane with suitable releasing of cobalt ion can be considered as a potential choice for bone tissue regeneration.
Collapse
Affiliation(s)
- Wei-Chun Lin
- Graduate Institute of Oral Science, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Chenmin Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Ting-Yun Huang
- Graduate Institute of Oral Science, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Shih-Jung Cheng
- Department of Dentistry, Chung Shan Medical University, Taiwan.
| | - Cheng-Ming Tang
- Graduate Institute of Oral Science, Chung Shan Medical University, Taichung 40201, Taiwan; Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| |
Collapse
|
33
|
Gugjoo MB, Amarpal. Mesenchymal stem cell research in sheep: Current status and future prospects. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Luo Y, Chen S, Shi Y, Ma J. 3D printing of strontium-doped hydroxyapatite based composite scaffolds for repairing critical-sized rabbit calvarial defects. ACTA ACUST UNITED AC 2018; 13:065004. [PMID: 30091422 DOI: 10.1088/1748-605x/aad923] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, strontium substituted hydroxyapatite (Sr-HAP) was synthesized using collagen type I and citrate as bi-templates and the obtained nanoparticles with high similarity to natural bone minerals were made into composite scaffolds with interconnected porous structure using a three-dimensional (3D) printing technique. A calcium deficient structure of HAP phase was caused by doping Sr which was verified by Fourier transform infrared, x-ray diffractometer, scanning electron microscopy and transmission electron microscopy. The Sr/(Sr + Ca) molar ratio in Sr-HAP nanoparticles was 5.8% estimated by EDX. Furthermore, both 3D printed scaffolds made of Sr-HAP and HAP had uniform porous structure and porosity of about 60%. Cell culturing indicated that MC3T3-E1 cells could adhere on the surface of the scaffolds and the strontium substitution could enhance cell adhesion, proliferation and alkaline phosphatase activity. The printed composite scaffolds were used to repair critical-sized rabbit calvarial defects with a diameter of 15 mm. The results showed that the Sr-HAP scaffolds had better osteogenic capability and stimulated more new bone formation within 12 weeks. It was suggested that these printed Sr-HAP composite scaffolds possessed high potential as candidates in the application of bone augmentation and regeneration.
Collapse
Affiliation(s)
- Yun Luo
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | | | | | | |
Collapse
|