1
|
Ghalehkhondabi V, Soleymani M, Fazlali A. Synthesis of quercetin-loaded hyaluronic acid-conjugated pH/redox dual-stimuli responsive poly(methacrylic acid)/mesoporous organosilica nanoparticles for breast cancer targeted therapy. Int J Biol Macromol 2024; 263:130168. [PMID: 38365162 DOI: 10.1016/j.ijbiomac.2024.130168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
In the current study, a combination of precipitation polymerization and modified sol-gel methods were developed to prepare the novel hyaluronic acid-decorated pH and redox dual-stimuli responsive poly(methacrylic acid)/mesoporous organosilica nanoparticles with a core-shell structure for controlled drug release. The nanocarriers have a proper particle size of <200 nm, high negative zeta potential greater than -30 mV, controllable diameter, and tunable shell thickness. The prepared nanoparticles were able to entrap over 70 % of quercetin with a drug loading of >10 %, due to the mesoporous shell. In vitro drug release profiles indicated that the systems had good stability under normal physiological media, while the cumulative release was significantly accelerated at the simulated tumor tissue condition, which shows pH and redox-dependent drug release. In vitro cell viability and apoptosis assay proved that the obtained nanomaterials possess relatively good biocompatibility, and drug-loaded targeted nanoparticles exhibited greater cytotoxicity on MCF-7 human breast cancer cells than free drug and non-targeted nanocarriers due to the enhanced cellular uptake of nanoparticles via CD44 receptors overexpressed. All these findings demonstrated that proposed nanocarriers might be promising as a smart drug delivery system to improve the antitumor efficacy of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Vahab Ghalehkhondabi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, 3848177584 Arak, Iran; Research Institute of Advanced Technologies, Arak University, Arak 3848177584, Iran
| | - Meysam Soleymani
- Department of Chemical Engineering, Faculty of Engineering, Arak University, 3848177584 Arak, Iran; Research Institute of Advanced Technologies, Arak University, Arak 3848177584, Iran
| | - Alireza Fazlali
- Department of Chemical Engineering, Faculty of Engineering, Arak University, 3848177584 Arak, Iran; Research Institute of Advanced Technologies, Arak University, Arak 3848177584, Iran.
| |
Collapse
|
2
|
Sajid I, Hassan A, Begum R, Zhou S, Irfan A, Chaudhry AR, Farooqi ZH. Yolk-shell smart polymer microgels and their hybrids: fundamentals and applications. RSC Adv 2024; 14:8409-8433. [PMID: 38476178 PMCID: PMC10929002 DOI: 10.1039/d4ra00035h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Yolk-shell microgels and their hybrids have attained great importance in modern-day research owing to their captivating features and potential uses. This manuscript provides the strategies for preparation, classification, properties and current applications of yolk-shell microgels and their hybrids. Some of the yolk-shell microgels and their hybrids are identified as smart polymer yolk-shell microgels and smart hybrid microgels, respectively, as they react to changes in particular environmental stimuli such as pH, temperature and ionic strength of the medium. This unique behavior makes them a perfect candidate for utilization in drug delivery, selective catalysis, adsorption of metal ions, nanoreactors and many other fields. This review demonstrates the contemporary progress along with suggestions and future perspectives for further research in this specific field.
Collapse
Affiliation(s)
- Iqra Sajid
- School of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-9231269 +92-42-9230463 ext. 817
| | - Ahmad Hassan
- School of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-9231269 +92-42-9230463 ext. 817
| | - Robina Begum
- School of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-9231269 +92-42-9230463 ext. 817
| | - Shuiqin Zhou
- Department of Chemistry of The College of Staten Island, PhD Program in Chemistry of The Graduate Centre, The City University of New York 2800 Victory Boulevard, Staten Island NY 10314 USA
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha P. O. Box 551, Bisha 61922 Saudi Arabia
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-9231269 +92-42-9230463 ext. 817
| |
Collapse
|
3
|
Wang Y, Li S, Ren X, Yu S, Meng X. Nano-engineering nanomedicines with customized functions for tumor treatment applications. J Nanobiotechnology 2023; 21:250. [PMID: 37533106 PMCID: PMC10399036 DOI: 10.1186/s12951-023-01975-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Nano-engineering with unique "custom function" capability has shown great potential in solving technical difficulties of nanomaterials in tumor treatment. Through tuning the size and surface properties controllablly, nanoparticles can be endoewd with tailored structure, and then the characteristic functions to improve the therapeutic effect of nanomedicines. Based on nano-engineering, many have been carried out to advance nano-engineering nanomedicine. In this review, the main research related to cancer therapy attached to the development of nanoengineering nanomedicines has been presented as follows. Firstly, therapeutic agents that target to tumor area can exert the therapeutic effect effectively. Secondly, drug resistance of tumor cells can be overcome to enhance the efficacy. Thirdly, remodeling the immunosuppressive microenvironment makes the therapeutic agents work with the autoimmune system to eliminate the primary tumor and then prevent tumor recurrence and metastasis. Finally, the development prospects of nano-engineering nanomedicine are also outlined.
Collapse
Affiliation(s)
- Yuxin Wang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shimei Li
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Shiping Yu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China.
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
4
|
Mohammadzadeh F, Golshan M, Haddadi-Asl V, Salami-Kalajahi M. Adsorption kinetics of methylene blue from wastewater using pH-sensitive starch-based hydrogels. Sci Rep 2023; 13:11900. [PMID: 37488175 PMCID: PMC10366085 DOI: 10.1038/s41598-023-39241-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023] Open
Abstract
In this work, starch/poly(acylic acid) hydrogels were synthesized through a free radical polymerization technique. The molar ratios of acrylic acid to N,N'-methylenebisacrylamide were 95:5, 94:6, and 93:7. The samples exhibited an amorphous porous structure, indicating that the size of the pores was contingent upon the amount of cross-linking agent. The quantity of acrylic acid in structure rose with a little increase in the amount of the cross-linking agent, which improved the hydrogels' heat stability. The swelling characteristics of the hydrogels were influenced by both the pH level and the amount of cross-linking agent. The hydrogel with a ratio of 94:6 exhibited the highest degree of swelling (201.90%) at a pH of 7.4. The dominance of the Fickian effect in regulating water absorption in the synthesized hydrogels was demonstrated, and the kinetics of swelling exhibited agreement with Schott's pseudo-second order model. The absorption of methylene blue by the hydrogels that were developed was found to be influenced by various factors, including the concentration of the dye, the quantity of the cross-linking agent, the pH level, and the duration of exposure. The hydrogel 95:5 exhibited the highest adsorption effectiveness (66.7%) for the dye solution with a concentration of 20 mg/L at pH 10.0. The examination of the kinetics and isotherms of adsorption has provided evidence that the process of physisorption takes place on heterogeneous adsorbent surfaces and can be explained by an exothermic nature.
Collapse
Affiliation(s)
- Fatemeh Mohammadzadeh
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Marzieh Golshan
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran.
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| |
Collapse
|
5
|
Preparation of nanocomposite polymer electrolytes by incorporating poly[poly(ethylene glycol) methyl ether methacrylate]-grafted poly(amidoamine) dendrimer for high performance lithium ion batteries. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Maamoun AA, Elkhateeb A, Zulfiqar S. Halloysite-Decorated Mechanically Robust Polyurethane Nanocomposite Foams for Acoustic Relevance. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ahmed Abdelhamid Maamoun
- Department of Engineering Physics and Mathematics, Chemistry Division, Faculty of Engineering, Ain Shams University, 1 EL-Sarayat Street - Abdo Basha Sq., Cairo11517, Egypt
| | - Ahmed Elkhateeb
- Department of Architecture, Faculty of Engineering, Ain Shams University, 1 EL-Sarayat Street - Abdo Basha Sq., Cairo11517, Egypt
| | - Sonia Zulfiqar
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, Ostrava701 03, Czech Republic
| |
Collapse
|
7
|
Synthesis and characterization of fluorescence poly(amidoamine) dendrimer-based pigments. Sci Rep 2022; 12:15180. [PMID: 36071149 PMCID: PMC9452493 DOI: 10.1038/s41598-022-19712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022] Open
Abstract
In this work, we looked at how to make fluorescence hybrid poly(amidoamine) dendrimer (PAMAM) dendrimers using calcozine red 6G and coumarin end groups. After synthesis of ethylenediamine (EDA)-cored 4th generation PAMAM dendrimer (G4.0), surface functional groups is reacted with calcozine red 6G (Rh6G) and 7-methacryloyloxy-4-methylcoumarin. Fourier transform infrared spectroscopy, proton nuclear magnetic resonance (1H NMR), and X-ray diffraction are used to characterize the structure of synthesized fluorescent hybrid dendrimers. Optical properties are demonstrated using a fluorescence spectrophotometer, and UV–Vis–NIR reflectance spectra. According to UV–Vis–NIR reflectance spectra, hybrid dendrimers were transparent in the NIR range. Moreover, quantum yield (Φs) of hybrid dendrimers was calculated in dimethylformamide (DMF), ethanol, dimethyl sulfoxide (DMSO), and distilled water (H2O). Dendrimers in which Rh6G was utilized to modification showed the maximum quantum yield in ethanol due to great interaction of structure with ethanol and the arrangement of ring-opened amide shape of calcozine red 6G.
Collapse
|
8
|
Hamrahjoo M, Hadad S, Dehghani E, Salami-Kalajahi M, Roghani-Mamaqani H. Preparation of matrix-grafted graphene/poly(poly(ethylene glycol) methyl ether methacrylate) nanocomposite gel polymer electrolytes by reversible addition-fragmentation chain transfer polymerization for lithium ion batteries. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Du X, Peng Y, Zhao C, Xing J. Temperature/pH-responsive carmofur-loaded nanogels rapidly prepared via one-pot laser-induced emulsion polymerization. Colloids Surf B Biointerfaces 2022; 217:112611. [PMID: 35679736 DOI: 10.1016/j.colsurfb.2022.112611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/05/2022] [Accepted: 06/02/2022] [Indexed: 11/08/2022]
Abstract
Tumor microenvironment-responsive nanogels loading antitumor drugs can improve the chemotherapy efficiency due to their suitable size, great hydrophilicity, excellent biocompatibility, and sensitivity to specific stimulation. Herein, a simple and effective strategy of one-pot laser-induced emulsion polymerization at 532 nm was developed to prepare carmofur-loaded nanogels based on biocompatible and temperature/pH-sensitive monomers including polyethylene glycol diacrylate (PEGDA), N-vinylcaprolactam (NVCL), and 2-(dimethylamino) ethyl methacrylate (DMAEMA). The nanogels loading carmofur with dual-stimuli responsive drug release properties were rapidly obtained under laser irradiation (beam diameter 2.5 mm, laser power 60 mW) for only 100 s. These nanogels exhibited an average hydrodynamic diameter of 195.9 nm and a low polydispersity index of 0.115. The effect of monomer ratio on the size, morphology, double-bond conversion, and thermo/pH-sensitivity of nanogels was investigated. The cumulative carmofur release from nanogels at pH 5.0 within 48 h was nearly three times that at pH 7.4, while the release amount at 42 °C was twice that at 25 °C, showing the controlled and sustainable release with the change of pH and temperature. The in vitro release kinetics of carmofur was in accord with first-order release model.
Collapse
Affiliation(s)
- Xinjing Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yuanyuan Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Chunyue Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
10
|
López Ruiz A, Ramirez A, McEnnis K. Single and Multiple Stimuli-Responsive Polymer Particles for Controlled Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14020421. [PMID: 35214153 PMCID: PMC8877485 DOI: 10.3390/pharmaceutics14020421] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023] Open
Abstract
Polymers that can change their properties in response to an external or internal stimulus have become an interesting platform for drug delivery systems. Polymeric nanoparticles can be used to decrease the toxicity of drugs, improve the circulation of hydrophobic drugs, and increase a drug’s efficacy. Furthermore, polymers that are sensitive to specific stimuli can be used to achieve controlled release of drugs into specific areas of the body. This review discusses the different stimuli that can be used for controlled drug delivery based on internal and external stimuli. Internal stimuli have been defined as events that evoke changes in different characteristics, inside the body, such as changes in pH, redox potential, and temperature. External stimuli have been defined as the use of an external source such as light and ultrasound to implement such changes. Special attention has been paid to the particular chemical structures that need to be incorporated into polymers to achieve the desired stimuli response. A current trend in this field is the incorporation of several stimuli in a single polymer to achieve higher specificity. Therefore, to access the most recent advances in stimuli-responsive polymers, the focus of this review is to combine several stimuli. The combination of different stimuli is discussed along with the chemical structures that can produce it.
Collapse
Affiliation(s)
- Aida López Ruiz
- Chemical and Materials Engineering Department, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| | - Ann Ramirez
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| | - Kathleen McEnnis
- Chemical and Materials Engineering Department, New Jersey Institute of Technology, Newark, NJ 07102, USA;
- Correspondence:
| |
Collapse
|
11
|
Xie G, Du S, Huang Q, Mo M, Gao Y, Li M, Tao J, Zhang L, Zhu J. Photonic Hydrogels for Synergistic Visual Bacterial Detection and On-Site Photothermal Disinfection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5856-5866. [PMID: 35061361 DOI: 10.1021/acsami.1c22586] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rapid and sensitive diagnostics in the early stage of bacterial infection and immediate treatment play critical roles in the control of infectious diseases. However, it remains challenging to develop integrated systems with both rapid detection of bacterial infection and timely on-demand disinfection ability. Herein, we demonstrate a photonic hydrogel platform integrating visual diagnosis and on-site photothermal disinfection by incorporating Fe3O4@C nanoparticles into a poly(hydroxyethyl methacrylate)-co-polyacrylamide (PHEMA-co-PAAm) matrix. In vitro experiments demonstrate that such a hydrogel can respond to pH variation caused by bacterial metabolism and generate the corresponding color changes to realize naked-eye observation. Meanwhile, its excellent photothermal conversion ability enables it to effectively kill bacteria by destroying cell membranes under near-infrared irradiation. Moreover, the pigskin infection wound model also verifies the bacterial detection performance and disinfection ability of the hydrogel in vivo. Our strategy demonstrates a new approach for visual diagnosis and treatment of bacterial infections.
Collapse
Affiliation(s)
- Ge Xie
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Shuo Du
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Qiuyi Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Mo
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yujie Gao
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Miaomiao Li
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lianbin Zhang
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
12
|
|
13
|
Razavi B, Soleymani-Kashkooli M, Salami-Kalajahi M, Roghani-Mamaqani H. Morphology evolution of multi-responsive ABA triblock copolymers containing photo-crosslinkable coumarin molecules. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Recent advancements and future submissions of silica core-shell nanoparticles. Int J Pharm 2021; 609:121173. [PMID: 34627997 DOI: 10.1016/j.ijpharm.2021.121173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022]
Abstract
The core-shell silica-based nanoparticles (CSNPs) possess outstanding properties for developing next-generation therapeutics. CSNPs provide greater surface area owing to their mesoporous structure, which offers a high opportunity for surface modification. This review highlights the potential of core-shell silica-based nanoparticle (CSNP) based injectable nanotherapeutics (INT); its role in drug delivery, biomedical imaging, light-triggered phototherapy, Plasmonic enhancers, gene delivery, magnetic hyperthermia, immunotherapy, and potential as next-generation theragnostic. Specifically, the conceptual crosstalk on modern synthetic strategies, biodistribution profiles with a mechanistic view on the therapeutics loading and release modeling are dealt in detail. The manuscript also converses the challenges associated with CSNPs, regulatory hurdles, and their current market position.
Collapse
|
15
|
Pashaei-Sarnaghi R, Najafi F, Taghavi-Kahagh A, Salami-Kalajahi M, Roghani-Mamaqani H. Synthesis, photocrosslinking, and self-assembly of coumarin-anchored poly(amidoamine) dendrimer for smart drug delivery system. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Polyampholyte poly[2-(dimethylamino)ethyl methacrylate]-star-poly(methacrylic acid) star copolymers as colloidal drug carriers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Application of poly(amidoamine) dendrimer as transfer agent to synthesize poly(amidoamine)-b-poly(methyl acrylate) amphiphilc block copolymers: Self-assembly in aqueous media and drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Arjmand F, Salami‐Kalajahi M, Roghani‐Mamaqani H. Fabrication of acid‐labile poly(2‐hydroxyethyl methacrylate) nanoparticles using aldazine‐based crosslinker as
pH
‐sensitive drug nanocarriers. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fereshteh Arjmand
- Faculty of Polymer Engineering Sahand University of Technology Tabriz Iran
- Institute of Polymeric Materials Sahand University of Technology Tabriz Iran
| | - Mehdi Salami‐Kalajahi
- Faculty of Polymer Engineering Sahand University of Technology Tabriz Iran
- Institute of Polymeric Materials Sahand University of Technology Tabriz Iran
| | - Hossein Roghani‐Mamaqani
- Faculty of Polymer Engineering Sahand University of Technology Tabriz Iran
- Institute of Polymeric Materials Sahand University of Technology Tabriz Iran
| |
Collapse
|
19
|
Preparation and study on properties of dual responsive block copolymer-grafted polypyrrole smart Janus nanoparticles. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02498-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Razavi B, Abbaszadeh R, Salami-Kalajahi M, Roghani-Mamaqani H. Multi-responsive poly(amidoamine)-initiated dendritic-star supramolecular structures containing UV cross-linkable coumarin groups for smart drug delivery. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
A review on synthesis and applications of dendrimers. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02053-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Huyan T, Li H, Peng H, Chen J, Yang R, Zhang W, Li Q. Extracellular Vesicles - Advanced Nanocarriers in Cancer Therapy: Progress and Achievements. Int J Nanomedicine 2020; 15:6485-6502. [PMID: 32922012 PMCID: PMC7457829 DOI: 10.2147/ijn.s238099] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are a class of cell-derived, lipid bilayer membrane composed vesicles, and some of them such as exosomes and ectosomes have been proven, playing remarkable roles in transmitting intercellular information, and being involved in each property of cell physiological activities. Nowadays, EVs are considered as potential nanocarriers which could partially resolve the problems of current chemotherapy because of their distinctive advantages. As endogenous membrane encompassed vesicles with nanosize, EVs are able to pass through the natural barriers with prolonged circulation time in vivo and have intrinsic cell targeting properties, they are less toxic, and less immunogenic. Recently, studies focusing on EV-based drug delivery system for cancer therapy have exploded dramatically. This review aims to outline the current applications of EVs as potential nanosized drug carriers in cancer therapy. Firstly, the characteristics and biofunctions of each EV subtype are described. Then the variety of therapeutic cargoes, the loading methods, and the targeting strategy of engineered EVs are emphatically introduced. Thereafter the pros and cons of EVs applied as therapeutic carriers, as well as the future prospects in this field, are discussed.
Collapse
Affiliation(s)
- Ting Huyan
- Key Laboratory for Space Biosciences and Biotechnology, Institute of Special Environment Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China.,Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Hongduo Li
- Xi'an Institute for Food and Drug Control, Xi'an 710054, People's Republic of China
| | - Hourong Peng
- Key Laboratory for Space Biosciences and Biotechnology, Institute of Special Environment Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Jinzhao Chen
- Shanxi Weiqidaguangming Pharmaceutical Co., Ltd, Datong, Shanxi Province 037301, People's Republic of China
| | - Ruixin Yang
- Xi'an Institute for Food and Drug Control, Xi'an 710054, People's Republic of China
| | - Wei Zhang
- Department of Anesthesiology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou 450003, People's Republic of China
| | - Qi Li
- Key Laboratory for Space Biosciences and Biotechnology, Institute of Special Environment Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| |
Collapse
|
23
|
Wu Y, Han T, Zhou T, Qiao X, Chen X, Zhou P, Liu J. A novel silicon nanoparticles-infilled capsule prepared by an oil-in-water emulsion strategy for high-performance Li-ion battery anodes. NANOTECHNOLOGY 2020; 31:335403. [PMID: 32375141 DOI: 10.1088/1361-6528/ab90b9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conventional approaches for preparing yolk-shell nanostructures require complicated procedures such as multi-step coatings and template removal. Herein, we present a new and general strategy for making yolk-shell nanocomposites based on an oil-in-water emulsion system. As a demonstrating case, silicon nanoparticles were dispersed in an oil phase which was in an oil-in-water emulsion; then the oil/water interface was in-situ polymerized to form microcapsules. After carbonization, the shell of microcapsules was formed. The Li-ion battery anodes based on the microcapsules exhibit a good electrochemical performance including stable capacity and high rate-performance. The capacity remains 1100 mAh g-1 after 500 cycles at a current density of 1.9 A g-1, along with a Coulombic efficiency of ≈ 99.9%. In addition, the method presented here is general, which is applicable for the synthesis of many yolk shell-structured nanocomposites.
Collapse
Affiliation(s)
- Yong Wu
- Key Laboratory of Functional Molecular Solids of the Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000 People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
Safavi-Mirmahalleh SA, Salami-Kalajahi M, Roghani-Mamaqani H. Adsorption kinetics of methyl orange from water by pH-sensitive poly(2-(dimethylamino)ethyl methacrylate)/nanocrystalline cellulose hydrogels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28091-28103. [PMID: 32405949 DOI: 10.1007/s11356-020-09127-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
A series of hydrogel nanocomposites was fabricated by in situ polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA) in presence of different amounts of (amine- and alkyl-modified) nanocrystalline cellulose (NCC). Modification and nanocomposites properties were proved by different analysis methods such as Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and field emission scanning electron microscopy (FE-SEM). The new hydrogel nanocomposites were applied for removing methyl orange (MO) used as anionic dye and presented in process water at different pH values. The effects of the fabrication process such as modification and content of NCC, contact time, and pH value on swelling ratio (SR), and equilibrium adsorption kinetics were studied. Results showed that the swelling ratio of PDMAEMA-based nanocomposites varied with the different types of nanoparticles showing the significant effect of the modification process. The MO adsorption into the hydrogel nanocomposites was affected by intermolecular and electrostatic interactions between functional groups of hydrogel and dye. The adsorption capacity decreased at high pH value, and it was significantly affected type of nanoparticles introduced into the hydrogel network. The addition of unmodified NCC did not affect adsorption kinetics significantly. Finally, adsorption kinetics was investigated by pseudo-first-order, pseudo-second-order and intraparticle diffusion models where pseudo-first-order model showed the best correlation with experimental results.
Collapse
Affiliation(s)
- Seyedeh-Arefeh Safavi-Mirmahalleh
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| |
Collapse
|
25
|
Vatankhah Z, Dehghani E, Salami-Kalajahi M, Roghani-Mamaqani H. Seed's morphology-induced core-shell composite particles by seeded emulsion polymerization for drug delivery. Colloids Surf B Biointerfaces 2020; 191:111008. [DOI: 10.1016/j.colsurfb.2020.111008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/08/2020] [Accepted: 03/31/2020] [Indexed: 01/25/2023]
|
26
|
Rostami-Tapeh-Esmail E, Golshan M, Salami-Kalajahi M, Roghani-Mamaqani H. UV-stabilized self-assembled amphiphilic triblock terpolymers supramolecular structures with low cytotoxicity as doxorubicin carriers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110745. [DOI: 10.1016/j.msec.2020.110745] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
|
27
|
Habibi N, Quevedo DF, Gregory JV, Lahann J. Emerging methods in therapeutics using multifunctional nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1625. [DOI: 10.1002/wnan.1625] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/16/2019] [Accepted: 02/04/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Nahal Habibi
- Biointerfaces Institute, Department of Chemical Engineering University of Michigan Ann Arbor Michigan USA
| | - Daniel F. Quevedo
- Biointerfaces Institute, Department of Biomedical Engineering University of Michigan Ann Arbor Michigan USA
| | - Jason V. Gregory
- Biointerfaces Institute, Department of Chemical Engineering University of Michigan Ann Arbor Michigan USA
| | - Joerg Lahann
- Biointerfaces Institute, Department of Chemical Engineering University of Michigan Ann Arbor Michigan USA
- Biointerfaces Institute, Department of Biomedical Engineering University of Michigan Ann Arbor Michigan USA
- Biointerfaces Institute, Department of Materials Science and Engineering University of Michigan Ann Arbor Michigan USA
- Biointerfaces Institute, Department of Macromolecular Science and Engineering University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
28
|
Vatankhah Z, Dehghani E, Salami-Kalajahi M, Roghani-Mamaqani H. One-step fabrication of low cytotoxic anisotropic poly(2-hydroxyethyl methacrylate-co-methacrylic acid) particles for efficient release of DOX. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Wang J, Li D, Fan Y, Shi M, Yang Y, Wang L, Peng Y, Shen M, Shi X. Core-shell tecto dendrimers formed via host-guest supramolecular assembly as pH-responsive intelligent carriers for enhanced anticancer drug delivery. NANOSCALE 2019; 11:22343-22350. [PMID: 31728477 DOI: 10.1039/c9nr08309j] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The design of pH-sensitive supramolecular drug delivery systems for efficient antineoplastic drug delivery remains a huge challenge. Herein, we describe the development of pH-responsive core-shell tecto dendrimers (CSTDs) formed using benzimidazole (BM)-modified generation 3 (G3) poly(amidoamine) (PAMAM) dendrimers (G3.NHAc-BM) as a shell and β-cyclodextrin (CD)-modified G5 PAMAM dendrimers (G5.NHAc-CD) as a core. By virtue of the host-guest recognition and pH-responsiveness of BM/β-CD assembly, the pH-sensitive supramolecular CSTDs of G5.NHAc-CD/BM-G3.NHAc were formed and adopted to encapsulate the anticancer drug doxorubicin (DOX) via hydrophobic interactions for pH-responsive drug delivery applications. The synthesis of dendrimer derivatives and the loading of the DOX were well characterized via different methods. We show that the encapsulated DOX can be released in a sustained manner with a rapid release speed under a slightly acidic pH condition (pH < 6), which is similar to acidic tumor microenvironment. The enhanced intracellular release of DOX and improved anticancer activity of the drug-loaded pH-responsive CSTDs were demonstrated and compared with the control CSTDs formed without pH-responsiveness through flow cytometry and viability assays of cancer cells. Furthermore, the pH-sensitive CSTDs also showed efficient drug penetration and growth inhibition of three-dimensional tumor spheroids owing to the faster DOX release in an acidic pH environment. The pH-sensitive G5.NHAc-CD/BM-G3.NHAc CSTDs may be employed as a valuable intelligent delivery system for various anticancer drugs.
Collapse
Affiliation(s)
- Jianhong Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Najafi F, Salami-Kalajahi M, Roghani-Mamaqani H, Kahaie-Khosrowshahi A. A comparative study on solubility improvement of tetracycline and dexamethasone by poly(propylene imine) and polyamidoamine dendrimers: An insight into cytotoxicity and cell proliferation. J Biomed Mater Res A 2019; 108:485-495. [PMID: 31682311 DOI: 10.1002/jbm.a.36830] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/20/2023]
Abstract
Many of new chemical discovered in pharmaceutical industry are hydrophobic compounds. Various techniques have been used to overcome solubility problems of hydrophobic drugs in aqueous media. In the meantime, dendrimers have been considered for sustainability, nanoscale size, high carry capacity, tunable terminal functional groups in terms of drug delivery and solubility. In this work, we have synthesized poly(propylene imine) (PPI) dendrimer up to fifth generation using reduction of nitrile groups after Michael addition and also, polyamidoamine (PAMAM) dendrimer up to fourth generation using Michael addition and amidation reactions. fourth and fifth generations of PPI dendrimer and fourth and third generations of PAMAM dendrimer in different concentrations were used to evaluate the solubility of two hydrophobic drugs (tetracycline and dexamethasone). Furthermore, cytotoxicity of dendrimers and dendrimers/drugs hybrids was studied. The results showed that with increasing concentrations and also the generation of dendrimers, the solubility of these two hydrophobic drugs was increased. Cytotoxicity study through MTT assay against Osteoblast-like cell line (MG-63 cells) showed that dendrimers were relatively cytotoxic where adding dexamethasone caused higher cytotoxicity. However, tetracycline showed no significant effect on cytotoxicity whereas prevented cell proliferation.
Collapse
Affiliation(s)
- Faezeh Najafi
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran.,Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran.,Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran.,Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Amir Kahaie-Khosrowshahi
- Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran.,Tissue Engineering and Stem cells Research Center, Sahand University of Technology, Tabriz, Iran.,Tissue Engineering and Stem cells Research Center, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
31
|
Nikravan G, Haddadi-Asl V, Salami-Kalajahi M. Stimuli-responsive DOX release behavior of cross-linked poly(acrylic acid) nanoparticles. E-POLYMERS 2019. [DOI: 10.1515/epoly-2019-0021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractCross-linked poly(acrylic acid) nanoparticles were synthesized via distillation precipitation polymerization of acrylic acid and ethylene glycol dimethacrylate withdifferent molar ratios. Spherical nanoparticles with diameters between 75 and 122 nm were synthesized and exhibited temperature and pH-responsive behaviors. However, this behavior was less pronounced for samples with higher cross-linking degrees. The potential of all nanoparticles as carriers for controlled release of doxorubicin (DOX) anti-cancer drug was examined at pH values of 1.2, 5.3 and 7.4. An obvious alleviation in burst release behavior and the amount of cumulative drug release was seen for all nanoparticles as the pH of the medium and the cross-linking degree of nanoparticle increased. Also kinetics of drug release was studied using mathematical models of zero-order, first-order, Higuchi, Korsmeyer-Peppas and Hixson-Crowell, where Higuchi and Korsmeyer-Peppas models best defined the kinetics of drug release.
Collapse
Affiliation(s)
- Goolia Nikravan
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| |
Collapse
|
32
|
Investigating Janus morphology development of poly(acrylic acid)/poly(2‑(dimethylamino)ethyl methacrylate) composite particles: An experimental study and mathematical modeling of DOX release. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Dehghani E, Salami-Kalajahi M, Roghani-Mamaqani H. Fabricating cauliflower-like and dumbbell-like Janus particles: Loading and simultaneous release of DOX and ibuprofen. Colloids Surf B Biointerfaces 2019; 173:155-163. [DOI: 10.1016/j.colsurfb.2018.09.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/04/2018] [Accepted: 09/26/2018] [Indexed: 01/22/2023]
|
34
|
Dehghani E, Salami-Kalajahi M, Roghani-Mamaqani H, Barzgari-Mazgar T, Nasiri SS. Design of polyelectrolyte core-shell and polyelectrolyte/non-polyelectrolyte Janus nanoparticles as drug nanocarriers. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1461647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Elham Dehghani
- Department of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Tohid Barzgari-Mazgar
- Department of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Shadi-Sadat Nasiri
- Department of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
35
|
Fallahi-Sambaran M, Salami-Kalajahi M, Dehghani E, Abbasi F. Investigation of different core-shell toward Janus morphologies by variation of surfactant and feeding composition: A study on the kinetics of DOX release. Colloids Surf B Biointerfaces 2018; 170:578-587. [PMID: 29975906 DOI: 10.1016/j.colsurfb.2018.06.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/10/2018] [Accepted: 06/29/2018] [Indexed: 11/28/2022]
Abstract
Composite particles with two individual hydrophilic parts were synthesized via seeded emulsion polymerization. As first part, nearly-monodisperse ethylene glycol dimethacrylate (EGDMA)-crosslinked poly(acrylic acid) (PAA) particles were synthesized by distillation precipitation polymerization (DPP). These particles were used as seeds in emulsion polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA). Effects of type of surfactant, monomers/seed weight ratio and amount of shell crosslinker on the synthesized composite particles' morphology were studied. Different morphologies consisting of core-shell, Janus type, raspberry-like and porous core-shell structures were investigated by variations of polymerization parameters. Different structures were chosen as drug carriers and subjected to DOX loading and release system. Results showed that amount of drug loading and extent of release were strongly dependent on the structure of carriers whereas for all carriers, DOX was released more rapid. Kinetics of release was evaluated by different mathematical models to investigate the release mechanism through composite particles. Results showed that only Korsmeyer-Peppas model fitted the drug release data and other ones were inappropriate in this field.
Collapse
Affiliation(s)
- Mehrab Fallahi-Sambaran
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Elham Dehghani
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Farhang Abbasi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| |
Collapse
|
36
|
Dehghani E, Salami-Kalajahi M, Roghani-Mamaqani H. Simultaneous two drugs release form Janus particles prepared via polymerization-induced phase separation approach. Colloids Surf B Biointerfaces 2018; 170:85-91. [PMID: 29894836 DOI: 10.1016/j.colsurfb.2018.05.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 01/06/2023]
Abstract
Seeded emulsion polymerization of 2-dimethylaminoethylamino methacrylate (DMAEMA) was carried out using monodispersed poly(2-hydroxyehtyl methacrylate) (PHEMA) seeds to produce Janus particles. Three feeding approaches were used comprising one together, rest and continuous feeding methods to investigate different morphologies. However, FE-SEM results showed that all feeding approaches yielded dumbbell-like Janus particles. Furthermore, snowman-like Janus particles were obtained via seeded distillation precipitation polymerization (DPP). It is shown that minimizing the total interfacial free energy alongside difference in solubility parameters of Janus domains are responsible for obtained morphologies. Two different morphologies (dumbbell-like and snowman-like) were chosen as carriers of ibuprofen and DOX simultaneously. Also, simultaneous release of two drugs were investigated in different conditions. Dumbbell-like Janus particles showed higher ibuprofen loading whereas DOX was more loaded onto snowman-like Janus particles. Also, DOX was released more rapidly through Janus particles at different pH values and both types of Janus particles showed similar drugs release behaviors.
Collapse
Affiliation(s)
- Elham Dehghani
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| |
Collapse
|
37
|
Mazloomi-Rezvani M, Salami-Kalajahi M, Roghani-Mamaqani H. Fabricating core (Au)-shell (different stimuli-responsive polymers) nanoparticles via inverse emulsion polymerization: Comparing DOX release behavior in dark room and under NIR lighting. Colloids Surf B Biointerfaces 2018; 166:144-151. [DOI: 10.1016/j.colsurfb.2018.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 01/05/2023]
|